Megerditch Kiledjian

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1484743/publications.pdf

Version: 2024-02-01

87888 79698 5,918 74 38 73 citations h-index g-index papers 152 152 152 5551 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	mRNA-Decapping Associated DcpS Enzyme Controls Critical Steps of Neuronal Development. Cerebral Cortex, 2022, 32, 1494-1507.	2.9	2
2	Xrn1 is a deNADding enzyme modulating mitochondrial NAD-capped RNA. Nature Communications, 2022, 13, 889.	12.8	15
3	Recent insights into noncanonical 5′ capping and decapping of RNA. Journal of Biological Chemistry, 2022, 298, 102171.	3.4	10
4	InsP ₇ is a small-molecule regulator of NUDT3-mediated mRNA decapping and processing-body dynamics. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 19245-19253.	7.1	27
5	DXO/Rai1 enzymes remove 5′-end FAD and dephospho-CoA caps on RNAs. Nucleic Acids Research, 2020, 48, 6136-6148.	14.5	27
6	Mammalian Nudix proteins cleave nucleotide metabolite caps on RNAs. Nucleic Acids Research, 2020, 48, 6788-6798.	14.5	46
7	Structural and mechanistic basis of mammalian Nudt12 RNA deNADding. Nature Chemical Biology, 2019, 15, 575-582.	8.0	49
8	CapZyme-Seq Comprehensively Defines Promoter-Sequence Determinants for RNA 5′ Capping with NAD+. Molecular Cell, 2018, 70, 553-564.e9.	9.7	64
9	Eukaryotic RNA 5′-End NAD + Capping and DeNADding. Trends in Cell Biology, 2018, 28, 454-464.	7.9	64
10	Nicotinamide-Containing Di- and Trinucleotides as Chemical Tools for Studies of NAD-Capped RNAs. Organic Letters, 2018, 20, 7650-7655.	4.6	17
11	"NAD-capQ―detection and quantitation of NAD caps. Rna, 2018, 24, 1418-1425.	3.5	33
12	Highly efficient 5' capping of mitochondrial RNA with NAD+ and NADH by yeast and human mitochondrial RNA polymerase. ELife, $2018, 7, \ldots$	6.0	64
13	5′ End Nicotinamide Adenine Dinucleotide Cap in Human Cells Promotes RNA Decay through DXO-Mediated deNADding. Cell, 2017, 168, 1015-1027.e10.	28.9	184
14	Reversible methylation of m6Am in the 5′ cap controls mRNA stability. Nature, 2017, 541, 371-375.	27.8	797
15	New insights into decapping enzymes and selective <scp>mRNA</scp> decay. Wiley Interdisciplinary Reviews RNA, 2017, 8, e1379.	6.4	118
16	A long noncoding RNA associated with susceptibility to celiac disease. Science, 2016, 352, 91-95.	12.6	211
17	Nudt3 is an mRNA decapping enzyme that modulates cell migration. Rna, 2016, 22, 773-781.	3.5	50
18	DcpS is a transcript-specific modulator of RNA in mammalian cells. Rna, 2015, 21, 1306-1312.	3.5	22

#	Article	IF	Citations
19	Structural and biochemical studies of the distinct activity profiles of Rai1 enzymes. Nucleic Acids Research, 2015, 43, 6596-6606.	14.5	16
20	Twenty years of RNA and mRNA decay. Rna, 2015, 21, 664-666.	3.5	0
21	Mutations in DCPS and EDC3 in autosomal recessive intellectual disability indicate a crucial role for mRNA decapping in neurodevelopment. Human Molecular Genetics, 2015, 24, 3172-3180.	2.9	40
22	Thalamic WNT3 Secretion Spatiotemporally Regulates the Neocortical Ribosome Signature and mRNA Translation to Specify Neocortical Cell Subtypes. Journal of Neuroscience, 2015, 35, 10911-10926.	3.6	50
23	The ROQ domain of Roquin recognizes mRNA constitutive-decay element and double-stranded RNA. Nature Structural and Molecular Biology, 2014, 21, 679-685.	8.2	71
24	Structure and Function of Pre-mRNA 5′-End Capping Quality Control and 3′-End Processing. Biochemistry, 2014, 53, 1882-1898.	2.5	33
25	A Mammalian Pre-mRNA 5′ End Capping Quality Control Mechanism and an Unexpected Link of Capping to Pre-mRNA Processing. Molecular Cell, 2013, 50, 104-115.	9.7	129
26	The DcpS inhibitor RG3039 improves survival, function and motor unit pathologies in two SMA mouse models. Human Molecular Genetics, 2013, 22, 4084-4101.	2.9	78
27	Multiple Nudix family proteins possess mRNA decapping activity. Rna, 2013, 19, 390-399.	3.5	120
28	Dcp2 Decapping Protein Modulates mRNA Stability of the Critical Interferon Regulatory Factor (IRF) IRF-7. Molecular and Cellular Biology, 2012, 32, 1164-1172.	2.3	34
29	Activation of 5′-3′ exoribonuclease Xrn1 by cofactor Dcs1 is essential for mitochondrial function in yeast. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 8264-8269.	7.1	34
30	Dxo1 is a new type of eukaryotic enzyme with both decapping and $5\hat{a}\in^2$ - $3\hat{a}\in^2$ exoribonuclease activity. Nature Structural and Molecular Biology, 2012, 19, 1011-1017.	8.2	93
31	Normal and Aberrantly Capped mRNA Decapping. The Enzymes, 2012, 31, 165-180.	1.7	6
32	Differential utilization of decapping enzymes in mammalian mRNA decay pathways. Rna, 2011, 17, 419-428.	3.5	60
33	Regulation of mRNA decapping. Wiley Interdisciplinary Reviews RNA, 2010, 1, 253-265.	6.4	119
34	Identification of a quality-control mechanism for mRNA 5′-end capping. Nature, 2010, 467, 608-611.	27.8	150
35	Differential regulation of microRNA stability. Rna, 2010, 16, 1032-1039.	3.5	253
36	Multiple mRNA Decapping Enzymes in Mammalian Cells. Molecular Cell, 2010, 40, 423-432.	9.7	133

#	Article	IF	Citations
37	Modulation of Neuritogenesis by a Protein Implicated in X-Linked Mental Retardation. Journal of Neuroscience, 2009, 29, 12419-12427.	3.6	26
38	Mutational analysis of a Dcp2-binding element reveals general enhancement of decapping by 5′-end stem-loop structures. Nucleic Acids Research, 2009, 37, 2227-2237.	14.5	25
39	Tri- to be Mono- for Bacterial mRNA Decay. Structure, 2009, 17, 317-319.	3.3	4
40	Structure and function of the 5′â†'3′ exoribonuclease Rat1 and its activating partner Rai1. Nature, 2009, 458, 784-788.	27.8	177
41	Drosophila processing bodies in oogenesis. Developmental Biology, 2008, 322, 276-288.	2.0	71
42	DcpS as a Therapeutic Target for Spinal Muscular Atrophy. ACS Chemical Biology, 2008, 3, 711-722.	3.4	120
43	Preface. Methods in Enzymology, 2008, 449, xvii-xviii.	1.0	5
44	DcpS, a general modulator of cap-binding protein-dependent processes?. RNA Biology, 2008, 5, 216-219.	3.1	33
45	Transcript-Specific Decapping and Regulated Stability by the Human Dcp2 Decapping Protein. Molecular and Cellular Biology, 2008, 28, 939-948.	2.3	57
46	Mechanistic and Kinetic Analysis of the DcpS Scavenger Decapping Enzyme. Journal of Biological Chemistry, 2008, 283, 16427-16436.	3.4	18
47	DcpS scavenger decapping enzyme can modulate pre-mRNA splicing. Rna, 2008, 14, 1132-1142.	3.5	35
48	Chapter 1 Analysis of mRNA Decapping. Methods in Enzymology, 2008, 448, 3-21.	1.0	15
49	An Erythroid-Enriched Endoribonuclease (ErEN) Involved in α -Globin mRNA Turnover. Protein and Peptide Letters, 2007, 14, 131-136.	0.9	8
50	3′ Terminal oligo U-tract-mediated stimulation of decapping. Rna, 2007, 13, 2356-2365.	3.5	110
51	A View to a Kill: Structure of the RNA Exosome. Cell, 2006, 127, 1093-1095.	28.9	13
52	Identification of an mRNA-Decapping Regulator Implicated in X-Linked Mental Retardation. Molecular Cell, 2006, 24, 713-722.	9.7	37
53	More than $1+2$ in mRNA decapping. Nature Structural and Molecular Biology, 2006, 13, 7-9.	8.2	12
54	Decapper Comes into Focus. Structure, 2006, 14, 171-172.	3.3	2

#	Article	IF	CITATIONS
55	Dcp2 Decaps m2,2,7GpppN-Capped RNAs, and Its Activity Is Sequence and Context Dependent. Molecular and Cellular Biology, 2005, 25, 8779-8791.	2.3	39
56	Scavenger Decapping Activity Facilitates $5\hat{a}\in^2$ to $3\hat{a}\in^2$ mRNA Decay. Molecular and Cellular Biology, 2005, 25, 9764-9772.	2.3	38
57	Functional analysis of mRNA scavenger decapping enzymes. Rna, 2004, 10, 1412-1422.	3.5	71
58	Poly(A)-binding-protein-mediated regulation of hDcp2 decapping in vitro. EMBO Journal, 2004, 23, 1968-1976.	7.8	54
59	Insights into the Structure, Mechanism, and Regulation of Scavenger mRNA Decapping Activity. Molecular Cell, 2004, 14, 67-80.	9.7	114
60	Functional characterization of the mammalian mRNA decapping enzyme hDcp2. Rna, 2003, 9, 1138-1147.	3.5	105
61	Analysis of recombinant yeast decapping enzyme. Rna, 2003, 9, 231-238.	3.5	155
62	The hDcp2 protein is a mammalian mRNA decapping enzyme. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 12663-12668.	7.1	294
63	Identification of Target Messenger RNA Substrates for the Murine Deleted in Azoospermia-Like RNA-Binding Protein1. Biology of Reproduction, 2002, 66, 475-485.	2.7	97
64	Characterization and Purification of a Mammalian Endoribonuclease Specific for the α-Globin mRNA. Journal of Biological Chemistry, 2002, 277, 2597-2604.	3.4	20
65	The scavenger mRNA decapping enzyme DcpS is a member of the HIT family of pyrophosphatases. EMBO Journal, 2002, 21, 4699-4708.	7.8	224
66	Regulated alpha-globin mRNA decay is a cytoplasmic event proceeding through 3'-to-5' exosome-dependent decapping. Rna, 2002, 8, 1526-37.	3.5	33
67	Functional Link between the Mammalian Exosome and mRNA Decapping. Cell, 2001, 107, 751-762.	28.9	224
68	Identification of an erythroid-enriched endoribonuclease activity involved in specific mRNA cleavage. EMBO Journal, 2000, 19, 295-305.	7.8	73
69	Identification of a Complex that Binds to the CD154 3′ Untranslated Region: Implications for a Role in Message Stability During T Cell Activation. Journal of Immunology, 2000, 165, 4478-4486.	0.8	30
70	The Poly(A)-Binding Protein and an mRNA Stability Protein Jointly Regulate an Endoribonuclease Activity. Molecular and Cellular Biology, 2000, 20, 6334-6341.	2.3	6
71	Purification and RNA Binding Properties of the Polycytidylate-Binding Proteins αCP1 and αCP2. Methods, 1999, 17, 84-91.	3.8	23
72	An mRNA Stability Complex Functions with Poly(A)-Binding Protein To Stabilize mRNA In Vitro. Molecular and Cellular Biology, 1999, 19, 4552-4560.	2.3	226

#	Article	IF	CITATIONS
73	Finding the right RNA: Identification of cellular mRNA substrates for RNA-binding proteins. Rna, 1999, 5, 1071-1082.	3.5	44
74	Analysis of the human liver/bone/kidney alkaline phosphatase promoterin vivoandin vitro. Nucleic Acids Research, 1990, 18, 957-961.	14.5	52