Meng Ni

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/148432/publications.pdf

Version: 2024-02-01

371 papers

23,269 citations

14614 66 h-index 135 g-index

377 all docs

377 docs citations

times ranked

377

18963 citing authors

#	Article	IF	CITATIONS
1	A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renewable and Sustainable Energy Reviews, 2007, 11, 401-425.	8.2	3,632
2	A review on reforming bio-ethanol for hydrogen production. International Journal of Hydrogen Energy, 2007, 32, 3238-3247.	3.8	1,061
3	An overview of hydrogen production from biomass. Fuel Processing Technology, 2006, 87, 461-472.	3.7	1,032
4	Technological development of hydrogen production by solid oxide electrolyzer cell (SOEC). International Journal of Hydrogen Energy, 2008, 33, 2337-2354.	3.8	576
5	Recent Advances and Prospective in Ruthenium-Based Materials for Electrochemical Water Splitting. ACS Catalysis, 2019, 9, 9973-10011.	5.5	491
6	Flexible Zn– and Li–air batteries: recent advances, challenges, and future perspectives. Energy and Environmental Science, 2017, 10, 2056-2080.	15.6	477
7	A review on hydrogen production using aluminum and aluminum alloys. Renewable and Sustainable Energy Reviews, 2009, 13, 845-853.	8.2	443
8	Energy and exergy analysis of hydrogen production by a proton exchange membrane (PEM) electrolyzer plant. Energy Conversion and Management, 2008, 49, 2748-2756.	4.4	424
9	Hydrogen Production over Titaniaâ€Based Photocatalysts. ChemSusChem, 2010, 3, 681-694.	3.6	404
10	Thermal-expansion offset for high-performance fuel cell cathodes. Nature, 2021, 591, 246-251.	13.7	328
11	Parametric study of solid oxide fuel cell performance. Energy Conversion and Management, 2007, 48, 1525-1535.	4.4	300
12	A review of biomass-derived fuel processors for fuel cell systems. Renewable and Sustainable Energy Reviews, 2009, 13, 1301-1313.	8.2	252
13	Potential of renewable hydrogen production for energy supply in Hong Kong. International Journal of Hydrogen Energy, 2006, 31, 1401-1412.	3.8	232
14	Selfâ€Catalyzed Growth of Co, Nâ€Codoped CNTs on Carbonâ€Encased CoS <i>_x</i> Surface: A Nobleâ€Metalâ€Free Bifunctional Oxygen Electrocatalyst for Flexible Solid Zn–Air Batteries. Advanced Functional Materials, 2019, 29, 1904481.	7.8	217
15	Bigger is Surprisingly Better: Agglomerates of Larger RuP Nanoparticles Outperform Benchmark Pt Nanocatalysts for the Hydrogen Evolution Reaction. Advanced Materials, 2018, 30, e1800047.	11.1	212
16	Parametric study of solid oxide steam electrolyzer for hydrogen production. International Journal of Hydrogen Energy, 2007, 32, 2305-2313.	3.8	174
17	In-situ growth of Co3O4 nanowire-assembled clusters on nickel foam for aqueous rechargeable Zn-Co3O4 and Zn-air batteries. Applied Catalysis B: Environmental, 2019, 241, 104-112.	10.8	167
18	Energy and exergy analysis of hydrogen production by solid oxide steam electrolyzer plant. International Journal of Hydrogen Energy, 2007, 32, 4648-4660.	3.8	164

#	Article	IF	CITATIONS
19	2D thermal modeling of a solid oxide electrolyzer cell (SOEC) for syngas production by H2O/CO2 co-electrolysis. International Journal of Hydrogen Energy, 2012, 37, 6389-6399.	3.8	154
20	A modeling study on concentration overpotentials of a reversible solid oxide fuel cell. Journal of Power Sources, 2006, 163, 460-466.	4.0	149
21	An electrochemical model for syngas production by co-electrolysis of H2O and CO2. Journal of Power Sources, 2012, 202, 209-216.	4.0	148
22	Application of cascading thermoelectric generator and cooler for waste heat recovery from solid oxide fuel cells. Energy Conversion and Management, 2017, 148, 1382-1390.	4.4	148
23	Rechargeable alkaline zinc batteries: Progress and challenges. Energy Storage Materials, 2020, 31, 44-57.	9.5	139
24	Co ₃ O ₄ Nanosheets as Active Material for Hybrid Zn Batteries. Small, 2018, 14, e1800225.	5.2	131
25	Recent Advances in Perovskite Oxides as Electrode Materials for Nonaqueous Lithium–Oxygen Batteries. Advanced Energy Materials, 2017, 7, 1602674.	10.2	129
26	Rechargeable Zn-air batteries: Recent trends and future perspectives. Renewable and Sustainable Energy Reviews, 2022, 154, 111771.	8.2	126
27	Micro-scale modelling of solid oxide fuel cells with micro-structurally graded electrodes. Journal of Power Sources, 2007, 168, 369-378.	4.0	125
28	Bifunctionality from Synergy: CoP Nanoparticles Embedded in Amorphous CoOx Nanoplates with Heterostructures for Highly Efficient Water Electrolysis. Advanced Science, 2018, 5, 1800514.	5.6	124
29	Mini-review of perovskite oxides as oxygen electrocatalysts for rechargeable zinc–air batteries. Chemical Engineering Journal, 2020, 397, 125516.	6.6	121
30	An analytical study of the porosity effect on dye-sensitized solar cell performance. Solar Energy Materials and Solar Cells, 2006, 90, 1331-1344.	3.0	120
31	Progress Report on Proton Conducting Solid Oxide Electrolysis Cells. Advanced Functional Materials, 2019, 29, 1903805.	7.8	120
32	Advances in Porous Perovskites: Synthesis and Electrocatalytic Performance in Fuel Cells and Metal–Air Batteries. Energy and Environmental Materials, 2020, 3, 121-145.	7.3	119
33	A comprehensive review of solid oxide fuel cells operating on various promising alternative fuels. Energy Conversion and Management, 2022, 253, 115175.	4.4	117
34	Multiâ€Functional Hydrogels for Flexible Zincâ€Based Batteries Working under Extreme Conditions. Advanced Energy Materials, 2021, 11, 2101749.	10.2	116
35	Modeling of SOFC running on partially pre-reformed gas mixture. International Journal of Hydrogen Energy, 2012, 37, 1731-1745.	3.8	111
36	Modeling and parametric simulations of solid oxide fuel cells with methane carbon dioxide reforming. Energy Conversion and Management, 2013, 70, 116-129.	4.4	109

#	Article	IF	Citations
37	All-solid-state flexible zinc-air battery with polyacrylamide alkaline gel electrolyte. Journal of Power Sources, 2020, 450, 227653.	4.0	108
38	Ammonia-fed solid oxide fuel cells for power generation-A review. International Journal of Energy Research, 2009, 33, 943-959.	2.2	101
39	The application of orthogonal test method in the parameters optimization of PEMFC under steady working condition. International Journal of Hydrogen Energy, 2016, 41, 11380-11390.	3.8	99
40	Experimental study of variable operating parameters effects on overall PEMFC performance and spatial performance distribution. Energy, 2016, 115, 550-560.	4.5	95
41	Mechanical failure and mitigation strategies for the membrane in a proton exchange membrane fuel cell. Renewable and Sustainable Energy Reviews, 2019, 113, 109289.	8.2	93
42	Mathematical modeling of the coupled transport and electrochemical reactions in solid oxide steam electrolyzer for hydrogen production. Electrochimica Acta, 2007, 52, 6707-6718.	2.6	92
43	Structural and oxygen-transport studies of double perovskites $PrBa < sub > 1a^2 \times sub > Co < sub > 2 < sub > O < sub > 5 + 1^2 < sub > (x = 0.00, 0.05, and 0.10) toward their application as superior oxygen reduction electrodes. Journal of Materials Chemistry A, 2014, 2, 20520-20529.$	5.2	92
44	Computational fluid dynamics modeling of a solid oxide electrolyzer cell for hydrogen production. International Journal of Hydrogen Energy, 2009, 34, 7795-7806.	3.8	90
45	Rapid cold start of proton exchange membrane fuel cells by the printed circuit board technology. International Journal of Hydrogen Energy, 2014, 39, 18369-18378.	3.8	87
46	A high-performance Zn battery based on self-assembled nanostructured NiCo2O4 electrode. Journal of Power Sources, 2019, 421, 6-13.	4.0	87
47	Modeling of a solid oxide electrolysis cell for carbon dioxide electrolysis. Chemical Engineering Journal, 2010, 164, 246-254.	6.6	86
48	Two-stage thermoelectric generators for waste heat recovery from solid oxide fuel cells. Energy, 2017, 132, 280-288.	4.5	86
49	An Electrochemical Model of a Solid Oxide Steam Electrolyzer for Hydrogen Production. Chemical Engineering and Technology, 2006, 29, 636-642.	0.9	85
50	Thermodynamic analysis of ammonia fed solid oxide fuel cells: Comparison between proton-conducting electrolyte and oxygen ion-conducting electrolyte. Journal of Power Sources, 2008, 183, 682-686.	4.0	84
51	Modeling of all porous solid oxide fuel cells. Applied Energy, 2018, 219, 105-113.	5.1	84
52	Rich atomic interfaces between sub-1 nm RuOx clusters and porous Co3O4 nanosheets boost oxygen electrocatalysis bifunctionality for advanced Zn-air batteries. Energy Storage Materials, 2020, 32, 20-29.	9.5	84
53	Geometric Properties of Nanostructured Solid Oxide Fuel Cell Electrodes. Journal of the Electrochemical Society, 2013, 160, F278-F289.	1.3	83
54	A high-precision approach to reconstruct distribution of relaxation times from electrochemical impedance spectroscopy. Journal of Power Sources, 2016, 308, 1-6.	4.0	81

#	Article	IF	CITATIONS
55	Theoretical modeling of TiO2/TCO interfacial effect on dye-sensitized solar cell performance. Solar Energy Materials and Solar Cells, 2006, 90, 2000-2009.	3.0	80
56	Thermo-electrochemical modeling of ammonia-fueled solid oxide fuel cells consideringÂammonia thermal decomposition in the anode. International Journal of Hydrogen Energy, 2011, 36, 3153-3166.	3.8	77
57	Simulation of sintering kinetics and microstructure evolution of composite solid oxide fuel cells electrodes. International Journal of Hydrogen Energy, 2012, 37, 3392-3402.	3.8	77
58	Modeling of direct carbon solid oxide fuel cell for CO and electricity cogeneration. Applied Energy, 2016, 178, 353-362.	5.1	77
59	Spherical Ruthenium Disulfide-Sulfur-Doped Graphene Composite as an Efficient Hydrogen Evolution Electrocatalyst. ACS Applied Materials & Samp; Interfaces, 2018, 10, 34098-34107.	4.0	75
60	Mathematical Modelling of Proton-Conducting Solid Oxide Fuel Cells and Comparison with Oxygen-lon-Conducting Counterpart. Fuel Cells, 2007, 7, 269-278.	1.5	72
61	Mathematical modeling of ammonia-fed solid oxide fuel cells with different electrolytes. International Journal of Hydrogen Energy, 2008, 33, 5765-5772.	3.8	72
62	Electrochemical modeling and parametric study of methane fed solid oxide fuel cells. Energy Conversion and Management, 2009, 50, 268-278.	4.4	72
63	Monoclinic SrlrO ₃ : An Easily Synthesized Conductive Perovskite Oxide with Outstanding Performance for Overall Water Splitting in Alkaline Solution. Chemistry of Materials, 2020, 32, 4509-4517.	3.2	72
64	A-site deficient/excessive effects of LaMnO3 perovskite as bifunctional oxygen catalyst for zinc-air batteries. Electrochimica Acta, 2020, 333, 135566.	2.6	71
65	Performance assessment of a hybrid system integrating a molten carbonate fuel cell and a thermoelectric generator. Energy, 2016, 112, 520-527.	4. 5	70
66	An efficient electrocatalyst as cathode material for solid oxide fuel cells: BaFe0·95Sn0·05O3â^Î. Journal of Power Sources, 2016, 326, 459-465.	4.0	70
67	BaCo _{0.7} Fe _{0.22} Y _{0.08} O _{3â^Î} as an Active Oxygen Reduction Electrocatalyst for Low-Temperature Solid Oxide Fuel Cells below 600 °C. ACS Energy Letters, 2017, 2, 301-305.	8.8	70
68	Integration of Zn–Ag and Zn–Air Batteries: A Hybrid Battery with the Advantages of Both. ACS Applied Materials & Diterfaces, 2018, 10, 36873-36881.	4.0	70
69	Consistency analysis of polymer electrolyte membrane fuel cell stack during cold start. Applied Energy, 2019, 241, 420-432.	5.1	70
70	Advances in modeling and simulation of Li–air batteries. Progress in Energy and Combustion Science, 2017, 62, 155-189.	15.8	68
71	Modeling of methane fed solid oxide fuel cells: Comparison between proton conducting electrolyte and oxygen ion conducting electrolyte. Journal of Power Sources, 2008, 183, 133-142.	4.0	67
72	Internal behavior of segmented fuel cell during cold start. International Journal of Hydrogen Energy, 2014, 39, 16025-16035.	3.8	66

#	Article	IF	CITATIONS
73	Modelling of SOEC-FT reactor: Pressure effects on methanation process. Applied Energy, 2017, 185, 814-824.	5.1	66
74	Modeling of CH4-assisted SOEC for H2O/CO2 co-electrolysis. International Journal of Hydrogen Energy, 2016, 41, 21839-21849.	3.8	65
75	Direct growth of ordered Nâ€doped carbon nanotube arrays on carbon fiber cloth as a freeâ€standing and binderâ€free air electrode for flexible quasiâ€solidâ€state rechargeable Znâ€Air batteries. , 2020, 2, 461-471.		64
76	Optimization of gas diffusion layer in high temperature PEMFC with the focuses on thickness and porosity. Applied Energy, 2021, 300, 117357.	5.1	63
77	Electrochemical modeling of hydrogen production by proton-conducting solid oxide steam electrolyzer. International Journal of Hydrogen Energy, 2008, 33, 4040-4047.	3.8	62
78	Thermodynamic analysis of combined Solid Oxide Electrolyzer andÂFischer–Tropsch processes. Energy, 2015, 81, 682-690.	4.5	62
79	Low temperature durability and consistency analysis of proton exchange membrane fuel cell stack based on comprehensive characterizations. Applied Energy, 2020, 264, 114626.	5.1	62
80	Towards online optimisation of solid oxide fuel cell performance: Combining deep learning with multi-physics simulation. Energy and Al, 2020, 1, 100003.	5.8	61
81	Research progress of MXene-based catalysts for electrochemical water-splitting and metal-air batteries. Energy Storage Materials, 2021, 43, 509-530.	9.5	60
82	Production of sustainable methane from renewable energy and captured carbon dioxide with the use of Solid Oxide Electrolyzer: AÂthermodynamic assessment. Energy, 2015, 82, 714-721.	4.5	58
83	Simultaneous Enhancement of the Thermoelectric and Mechanical Performance in One-Step Sintered n-Type Bi ₂ Te ₃ -Based Alloys via a Facile MgB ₂ Doping Strategy. ACS Applied Materials & Doping Strategy. ACS Applied Materials & Doping Strategy. ACS Applied Materials & Doping Strategy. ACS	4.0	58
84	Continuum scale modelling and complementary experimentation of solid oxide cells. Progress in Energy and Combustion Science, 2021, 85, 100902.	15.8	58
85	Theoretical modelling of the electrode thickness effect on maximum power point of dyeâ€sensitized solar cell. Canadian Journal of Chemical Engineering, 2008, 86, 35-42.	0.9	57
86	Facile Synthesis of Nitrogen and Sulfur Codoped Carbon from Ionic Liquid as Metal-Free Catalyst for Oxygen Reduction Reaction. ACS Applied Materials & Interfaces, 2015, 7, 7214-7221.	4.0	57
87	The mass transfer characteristics and energy improvement with various partially blocked flow channels in a PEM fuel cell. Energy, 2020, 206, 117977.	4.5	56
88	In-situ observation of the gas evolution process on the air electrode of Zn-air batteries during charging. Chemical Engineering Journal, 2022, 427, 130862.	6.6	55
89	Theoretical analysis of reversible solid oxide fuel cell based on proton-conducting electrolyte. Journal of Power Sources, 2008, 177, 369-375.	4.0	54
90	2D thermal-fluid modeling and parametric analysis of a planar solid oxide fuel cell. Energy Conversion and Management, 2010, 51, 714-721.	4.4	54

#	Article	IF	Citations
91	Challenges and opportunities in modelling of proton exchange membrane fuel cells (PEMFC). International Journal of Energy Research, 2017, 41, 1793-1797.	2.2	54
92	Optimized microporous layer for improving polymer exchange membrane fuel cell performance using orthogonal test design. Applied Energy, 2019, 254, 113714.	5.1	54
93	Achieving high energy density and efficiency through integration: progress in hybrid zinc batteries. Journal of Materials Chemistry A, 2019, 7, 15564-15574.	5.2	54
94	Chaotic flow-based fuel cell built on counter-flow microfluidic network: Predicting the over-limiting current behavior. Journal of Power Sources, 2011, 196, 9391-9397.	4.0	53
95	Structure optimization of anode parallel flow field for local starvation of proton exchange membrane fuel cell. Journal of Power Sources, 2018, 403, 1-10.	4.0	52
96	Nitrogen-doped graphene derived from ionic liquid as metal-free catalyst for oxygen reduction reaction and its mechanisms. Applied Energy, 2018, 225, 513-521.	5.1	52
97	Toward a new generation of low cost, efficient, and durable metal–air flow batteries. Journal of Materials Chemistry A, 2019, 7, 26744-26768.	5.2	51
98	2D heat and mass transfer modeling of methane steam reforming for hydrogen production in a compact reformer. Energy Conversion and Management, 2013, 65, 155-163.	4.4	50
99	Economic analysis of a solid oxide fuel cell cogeneration/trigeneration system for hotels in Hong Kong. Energy and Buildings, 2014, 75, 160-169.	3.1	50
100	Electrochemical Oxidation of Carbon at High Temperature: Principles and Applications. Energy & Energy & Fuels, 2018, 32, 4107-4117.	2.5	50
101	Mathematical modeling of a proton-conducting solid oxide fuel cell with current leakage. Journal of Power Sources, 2018, 400, 333-340.	4.0	50
102	Bifunctional electrocatalytic activity of La0.8Sr0.2MnO3-based perovskite with the A-site deficiency for oxygen reduction and evolution reactions in alkaline media. Applied Energy, 2019, 251, 113406.	5.1	50
103	Thermo-economic modeling and analysis of an NG-fueled SOFC-WGS-TSA-PEMFC hybrid energy conversion system for stationary electricity power generation. Energy, 2020, 192, 116613.	4.5	50
104	Physical principles for the calculation of equilibrium potential for co-electrolysis of steam and carbon dioxide in a Solid Oxide Electrolyzer Cell (SOEC). Electrochimica Acta, 2014, 147, 490-497.	2.6	49
105	A micro tri-generation system based on direct flame fuel cells for residential applications. International Journal of Hydrogen Energy, 2014, 39, 5996-6005.	3.8	49
106	Bridging the Charge Accumulation and High Reaction Order for Highâ€Rate Oxygen Evolution and Long Stable Znâ€Air Batteries. Advanced Functional Materials, 2022, 32, .	7.8	49
107	Modeling of direct carbon solid oxide fuel cells withÂH2O and CO2 as gasification agents. International Journal of Hydrogen Energy, 2017, 42, 15641-15651.	3.8	48
108	Performance analysis of a novel SOFC-HCCI engine hybrid system coupled with metal hydride reactor for H2 addition by waste heat recovery. Energy Conversion and Management, 2019, 191, 119-131.	4.4	48

#	Article	IF	CITATIONS
109	Fuel cells that operate at 300° to 500°C. Science, 2020, 369, 138-139.	6.0	48
110	Electrochemical modeling of ammonia-fed solid oxide fuel cells based on proton conducting electrolyte. Journal of Power Sources, 2008, 183, 687-692.	4.0	47
111	A novel layered perovskite electrode for symmetrical solid oxide fuel cells: PrBa(Fe0.8Sc0.2)2O5+δ. Journal of Power Sources, 2017, 363, 16-19.	4.0	46
112	A high performance direct carbon solid oxide fuel cell fueled by Ca-loaded activated carbon. International Journal of Hydrogen Energy, 2017, 42, 21167-21176.	3.8	46
113	Investigation of the electrochemical active thickness of solid oxide fuel cell anode. International Journal of Hydrogen Energy, 2014, 39, 12904-12912.	3.8	45
114	Activation and failure mechanism of La0.6Sr0.4Co0.2Fe0.8O3â^δair electrode in solid oxide electrolyzer cells under high-current electrolysis. International Journal of Hydrogen Energy, 2018, 43, 5437-5450.	3.8	45
115	Syngas/power cogeneration from proton conducting solid oxide fuel cells assisted by dry methane reforming: A thermal-electrochemical modelling study. Energy Conversion and Management, 2018, 167, 37-44.	4.4	44
116	Engineering the interfaces in water-splitting photoelectrodes – an overview of the technique development. Journal of Materials Chemistry A, 2020, 8, 6984-7002.	5.2	44
117	Tailoring charge and mass transport in cation/anion-codoped Ni3N / N-doped CNT integrated electrode toward rapid oxygen evolution for fast-charging zinc-air batteries. Energy Storage Materials, 2021, 39, 11-20.	9 . 5	44
118	Scientometric review of proton-conducting solid oxide fuel cells. International Journal of Hydrogen Energy, 2021, 46, 37406-37428.	3.8	44
119	Insights into the Thermopower of Thermally Regenerative Electrochemical Cycle for Low Grade Heat Harvesting. ACS Energy Letters, 2021, 6, 329-336.	8.8	43
120	Investigation on the electrode design of hybrid Zn-Co3O4/air batteries for performance improvements. Electrochimica Acta, 2018, 283, 1028-1036.	2.6	42
121	Electrochemical performance and effect of moisture on Ba0.5Sr0.5Sc0.175Nb0.025Co0.8O3-δoxide as a promising electrode for proton-conducting solid oxide fuel cells. Applied Energy, 2019, 238, 344-350.	5.1	42
122	An improved electrochemical model for the NH3 fed proton conducting solid oxide fuel cells at intermediate temperatures. Journal of Power Sources, 2008, 185, 233-240.	4.0	41
123	Air-breathing membraneless laminar flow-based fuel cells: Do they breathe enough oxygen?. Applied Energy, 2013, 104, 400-407.	5.1	41
124	Dynamic modeling and operation strategy of an NG-fueled SOFC-WGS-TSA-PEMFC hybrid energy conversion system for fuel cell vehicle by using MATLAB/SIMULINK. Energy, 2019, 175, 567-579.	4.5	41
125	Materials Engineering in Perovskite for Optimized Oxygen Evolution Electrocatalysis in Alkaline Condition. Small, 2021, 17, e2006638.	5.2	41
126	Elementary reaction modeling and experimental characterization of solid oxide fuel-assisted steam electrolysis cells. International Journal of Hydrogen Energy, 2014, 39, 10359-10373.	3.8	39

#	Article	IF	CITATIONS
127	Numerical investigation on impacts on fuel velocity distribution nonuniformity among solid oxide fuel cell unit channels. International Journal of Hydrogen Energy, 2015, 40, 3035-3047.	3.8	39
128	Modeling of a novel SOFC-PEMFC hybrid system coupled with thermal swing adsorption for H2 purification: Parametric and exergy analyses. Energy Conversion and Management, 2018, 174, 802-813.	4.4	39
129	Performance evaluation of a novel photovoltaic-electrochemic hybrid system. Energy Conversion and Management, 2019, 195, 1227-1237.	4.4	39
130	Thermal modelling of ethanol-fuelled Solid Oxide Fuel Cells. Applied Energy, 2019, 237, 476-486.	5.1	39
131	Mathematical modeling and numerical analysis of alkaline zinc-iron flow batteries for energy storage applications. Chemical Engineering Journal, 2021, 405, 126684.	6.6	39
132	Thermo-electrochemical modelling of high temperature methanol-fuelled solid oxide fuel cells. Applied Energy, 2021, 291, 116832.	5.1	39
133	Hydrodynamic focusing in microfluidic membraneless fuel cells: Breaking the trade-off between fuel utilization and current density. International Journal of Hydrogen Energy, 2011, 36, 11075-11084.	3.8	38
134	A model for the delamination kinetics of La0.8Sr0.2MnO3 oxygen electrodes of solid oxide electrolysis cells. International Journal of Hydrogen Energy, 2012, 37, 13914-13920.	3.8	38
135	Experimental and modeling study of high performance direct carbon solid oxide fuel cell with in situ catalytic steam-carbon gasification reaction. Journal of Power Sources, 2018, 382, 135-143.	4.0	38
136	A direct carbon solid oxide fuel cell fueled with char from wheat straw. International Journal of Energy Research, 2019, 43, 2468-2477.	2.2	38
137	Three-dimensional modeling of flow field optimization for co-electrolysis solid oxide electrolysis cell. Applied Thermal Engineering, 2020, 172, 114959.	3.0	38
138	Interfacial La Diffusion in the CeO ₂ /LaFeO ₃ Hybrid for Enhanced Oxygen Evolution Activity. ACS Applied Materials & Samp; Interfaces, 2021, 13, 2799-2806.	4.0	38
139	Performance improvement of a direct carbon solid oxide fuel cell system by combining with a Stirling cycle. Energy, 2017, 140, 979-987.	4.5	37
140	Noble-metal-free catalyst with enhanced hydrogen evolution reaction activity based on granulated Co-doped Ni-Mo phosphide nanorod arrays. Nano Research, 2020, 13, 3321-3329.	5.8	37
141	Numerical study of high temperature proton exchange membrane fuel cell (HT-PEMFC) with a focus on rib design. International Journal of Hydrogen Energy, 2021, 46, 21098-21111.	3.8	37
142	Enhancement of lithium-ion battery thermal management with the divergent-shaped channel cold plate. Journal of Energy Storage, 2021, 42, 103027.	3.9	37
143	The effect of electrolyte type on performance of solid oxide fuel cells running on hydrocarbon fuels. International Journal of Hydrogen Energy, 2013, 38, 2846-2858.	3.8	36
144	The thermal effect in direct carbon solid oxide fuel cells. Applied Thermal Engineering, 2017, 118, 652-662.	3.0	36

#	Article	IF	CITATIONS
145	Improved energy performance of a PEM fuel cell by introducing discontinuous S-shaped and crescent ribs into flowing channels. Energy, 2021, 222, 119920.	4.5	36
146	Integrating chemical kinetics with CFD modeling for autothermal reforming of biogas. International Journal of Hydrogen Energy, 2009, 34, 9076-9086.	3.8	35
147	Evolution of thermal drifting during and after cold start of proton exchange membrane fuel cell by segmented cell technology. International Journal of Hydrogen Energy, 2015, 40, 7370-7381.	3.8	35
148	Nanoporous NiO/Ni(OH) ₂ Plates Incorporated with Carbon Nanotubes as Active Materials of Rechargeable Hybrid Zinc Batteries for Improved Energy Efficiency and High-Rate Capability. Journal of the Electrochemical Society, 2018, 165, A2119-A2126.	1.3	35
149	Optimization of catalyst layer thickness for achieving high performance and low cost of high temperature proton exchange membrane fuel cell. Applied Energy, 2021, 294, 117012.	5.1	35
150	Partial modification of flow-through porous electrodes in microfluidic fuel cell. Energy, 2015, 88, 563-571.	4.5	34
151	Performance evaluation and parametric optimum design of a syngas molten carbonate fuel cell and gas turbine hybrid system. Renewable Energy, 2015, 80, 407-414.	4.3	34
152	Zr doped BaFeO3- \hat{l} as a robust electrode for symmetrical solid oxide fuel cells. International Journal of Hydrogen Energy, 2019, 44, 32164-32169.	3.8	34
153	3D thermo-electro-chemo-mechanical coupled modeling of solid oxide fuel cell with double-sided cathodes. International Journal of Hydrogen Energy, 2020, 45, 904-915.	3.8	34
154	Ni migration of Ni-YSZ electrode in solid oxide electrolysis cell: An integrated model study. Journal of Power Sources, 2021, 516, 230660.	4.0	34
155	Modeling of Direct Carbon-Assisted Solid Oxide Electrolysis Cell (SOEC) for Syngas Production at Two Different Electrodes. Journal of the Electrochemical Society, 2016, 163, F3029-F3035.	1.3	33
156	Performance improvement of a direct carbon solid oxide fuel cell through integrating an Otto heat engine. Energy Conversion and Management, 2018, 165, 761-770.	4.4	33
157	Microporous Layers with Different Decorative Patterns for Polymer Electrolyte Membrane Fuel Cells. ACS Applied Materials & Different Decorative Patterns for Polymer Electrolyte Membrane Fuel Cells.	4.0	33
158	Scientometric review of advancements in the development of high-performance cathode for low and intermediate temperature solid oxide fuel cells: Three decades in retrospect. International Journal of Hydrogen Energy, 2021, 46, 26518-26536.	3.8	33
159	Percolation Theory in Solid Oxide Fuel Cell Composite Electrodes with a Mixed Electronic and Ionic Conductor. Energies, 2013, 6, 1632-1656.	1.6	32
160	Proton conducting intermediate-temperature solid oxide fuel cells using new perovskite type cathodes. Journal of Power Sources, 2014, 260, 197-204.	4.0	32
161	Thermodynamic and Thermo-economic Analysis of Integrated Organic Rankine Cycle for Waste Heat Recovery from Vapor Compression Refrigeration Cycle. Energy Procedia, 2017, 143, 192-198.	1.8	32
162	Review of Liquid-Based Systems to Recover Low-Grade Waste Heat for Electrical Energy Generation. Energy & Energ	2.5	32

#	Article	IF	Citations
163	Highly active and durable catalyst for hydrogen generation by the NaBH4 hydrolysis reaction: CoWB/NF nanodendrite with an acicular array structure. Journal of Alloys and Compounds, 2020, 836, 155429.	2.8	32
164	Structural design of gas diffusion layer for proton exchange membrane fuel cell at varying humidification. Journal of Power Sources, 2020, 467, 228355.	4.0	32
165	Significantly Improving the Durability of Single-Chamber Solid Oxide Fuel Cells: A Highly Active CO ₂ -Resistant Perovskite Cathode. ACS Applied Energy Materials, 2018, 1, 1337-1343.	2.5	31
166	Achieving a stable zinc electrode with ultralong cycle life by implementing a flowing electrolyte. Journal of Power Sources, 2020, 453, 227856.	4.0	31
167	A Highly Reversible Zinc Anode for Rechargeable Aqueous Batteries. ACS Applied Materials & Samp; Interfaces, 2021, 13, 52659-52669.	4.0	31
168	Standardized Procedures Important for Improving Single-Component Ceramic Fuel Cell Technology. ACS Energy Letters, 2017, 2, 2752-2755.	8.8	30
169	Plastic waste fuelled solid oxide fuel cell system for power and carbon nanotube cogeneration. International Journal of Hydrogen Energy, 2019, 44, 1867-1876.	3.8	30
170	An efficient and durable perovskite electrocatalyst for oxygen reduction in solid oxide fuel cells. Chemical Engineering Journal, 2020, 396, 125237.	6.6	30
171	Boronâ€Mediated Grain Boundary Engineering Enables Simultaneous Improvement of Thermoelectric and Mechanical Properties in Nâ€₹ype Bi ₂ Te ₃ . Small, 2021, 17, e2104067.	5.2	30
172	Modelling of finger-like channelled anode support for SOFCs application. Science Bulletin, 2016, 61, 1324-1332.	4.3	29
173	Reconstruction of solid oxide fuel cell electrode microstructure and analysis of its effective conductivity. Science Bulletin, 2016, 61, 78-85.	4.3	29
174	Growth of Al and Co co-doped NiO nanosheets on carbon cloth as the air electrode for Zn-air batteries with high cycling stability. Electrochimica Acta, 2018, 290, 21-29.	2.6	29
175	Porous Co3O4 nanoplates as the active material for rechargeable Zn-air batteries with high energy efficiency and cycling stability. Energy, 2019, 166, 1241-1248.	4.5	29
176	Three-dimensional simulation of solid oxide fuel cell with metal foam as cathode flow distributor. International Journal of Hydrogen Energy, 2020, 45, 6897-6911.	3.8	29
177	Experimental validation for enhancement of PEMFC cold start performance: Based on the optimization of micro porous layer. Applied Energy, 2021, 300, 117306.	5.1	29
178	Materials development and prospective for protonic ceramic fuel cells. International Journal of Energy Research, 2022, 46, 2212-2240.	2.2	29
179	Thermodynamic assessment of an integrated molten carbonate fuel cell and absorption refrigerator hybrid system for combined power and cooling applications. International Journal of Refrigeration, 2016, 70, 1-12.	1.8	28
180	Combined methane reforming by carbon dioxide and steam in proton conducting solid oxide fuel cells for syngas/power co-generation. International Journal of Hydrogen Energy, 2019, 44, 15313-15321.	3.8	28

#	Article	IF	Citations
181	Modeling of all-porous solid oxide fuel cells with a focus on the electrolyte porosity design. Applied Energy, 2019, 235, 602-611.	5.1	28
182	Robust non-Pt noble metal-based nanomaterials for electrocatalytic hydrogen generation. Applied Physics Reviews, 2020, 7, .	5.5	28
183	Rational design of spinel oxides as bifunctional oxygen electrocatalysts for rechargeable Zn-air batteries. Chemical Physics Reviews, 2020, 1, .	2.6	28
184	Microstructure-tuned cobalt oxide electrodes for high-performance Zn–Co batteries. Electrochimica Acta, 2020, 353, 136535.	2.6	28
185	Ultrafine ruthenium-iridium alloy nanoparticles well-dispersed on N-rich carbon frameworks as efficient hydrogen-generation electrocatalysts. Chemical Engineering Journal, 2021, 417, 128105.	6.6	28
186	Influence of Occupant Behavior for Building Energy Conservation: A Systematic Review Study of Diverse Modeling and Simulation Approach. Buildings, 2021, 11, 41.	1.4	28
187	Autothermal reforming of methane over an integrated solid oxide fuel cell reactor for power and syngas co-generation. Journal of Power Sources, 2021, 513, 230536.	4.0	28
188	A computational study of bifunctional oxygen electrode in air-breathing reversible microfluidic fuel cells. International Journal of Hydrogen Energy, 2011, 36, 9231-9241.	3.8	27
189	Modelling of One-Step Methanation Process Combining SOECs and Fischer-Tropsch-like Reactor. Journal of the Electrochemical Society, 2016, 163, F3001-F3008.	1.3	27
190	Syngas production from CO 2 /CH 4 rich combustion in a porous media burner: Experimental characterization and elementary reaction model. Fuel, 2017, 199, 413-419.	3.4	27
191	Unlocking the nature of the co-doping effect on the ionic conductivity of CeO2-based electrolyte. Ceramics International, 2019, 45, 3977-3985.	2.3	27
192	Dynamic modeling and operation strategy of natural gas fueled SOFC-Engine hybrid power system with hydrogen addition by metal hydride for vehicle applications. ETransportation, 2020, 5, 100074.	6.8	27
193	3D non-isothermal dynamic simulation of high temperature proton exchange membrane fuel cell in the start-up process. International Journal of Hydrogen Energy, 2021, 46, 2577-2593.	3.8	27
194	Unravel the influences of Ni substitution on Co-based electrodes for rechargeable alkaline Zn–Co batteries. Journal of Power Sources, 2021, 483, 229192.	4.0	27
195	A mini-review of noble-metal-free electrocatalysts for overall water splitting in non-alkaline electrolytes. Materials Reports Energy, 2021, 1, 100024.	1.7	27
196	Tailoring structural properties of carbon via implanting optimal co nanoparticles in nâ€rich carbon cages toward highâ€efficiency oxygen electrocatalysis for rechargeable znâ€air batteries. , 2022, 4, 576-585.		27
197	2D segment model for a solid oxide fuel cell with a mixed ionic and electronic conductor as electrolyte. International Journal of Hydrogen Energy, 2015, 40, 5160-5168.	3.8	26
198	Local resolved investigation of hydrogen crossover in polymer electrolyte fuel cell. Energy, 2017, 128, 357-365.	4.5	26

#	Article	IF	Citations
199	High-throughput, super-resolution 3D reconstruction of nano-structured solid oxide fuel cell electrodes and quantification of microstructure-property relationships. Journal of Power Sources, 2019, 427, 112-119.	4.0	26
200	Techno-economic evaluation and technology roadmap of the MWe-scale SOFC-PEMFC hybrid fuel cell system for clean power generation. Journal of Cleaner Production, 2020, 255, 120225.	4.6	26
201	Efficiently optimizing the oxygen catalytic properties of the birnessite type manganese dioxide for zinc-air batteries. Journal of Alloys and Compounds, 2021, 852, 157012.	2.8	26
202	Validation methodology for PEM fuel cell three-dimensional simulation. International Journal of Heat and Mass Transfer, 2022, 189, 122705.	2.5	26
203	Micro-Scale Modeling of a Functionally Graded Ni-YSZ Anode. Chemical Engineering and Technology, 2007, 30, 587-592.	0.9	25
204	Local Nonâ€Equilibrium Thermal Effects in Solid Oxide Fuel Cells with Various Fuels. Energy Technology, 2013, 1, 35-41.	1.8	25
205	A feasible way to handle the heat management of direct carbon solid oxide fuel cells. Applied Energy, 2018, 226, 881-890.	5.1	25
206	The Synergistic Effect Accelerates the Oxygen Reduction/Evolution Reaction in a Zn-Air Battery. Frontiers in Chemistry, 2019, 7, 524.	1.8	25
207	Core Effect on the Performance of N/P Codoped Carbon Encapsulating Noble-Metal Phosphide Nanostructures for Hydrogen Evolution Reaction. ACS Applied Energy Materials, 2019, 2, 2645-2653.	2.5	25
208	Investigation on the Discharge and Charge Behaviors of Li-CO ₂ Batteries with Carbon Nanotube Electrodes. ACS Sustainable Chemistry and Engineering, 2020, 8, 9742-9750.	3.2	25
209	Sm0.5Sr0.5CoO3–Ce1.8Sm0.2O1.9 electrodes enhanced by Sm0.5Sr0.5CoO3 impregnation for proton conductor based solid oxide fuel cells. International Journal of Hydrogen Energy, 2014, 39, 2685-2691.	3.8	24
210	On the tortuosity factor of solid phase in solid oxide fuel cell electrodes. International Journal of Hydrogen Energy, 2015, 40, 665-669.	3.8	24
211	Nickel-substituted Ba _{0.5} Sr _{0.5} Co _{0.8} Fe _{0.2} O _{3â^Î} : a highly active perovskite oxygen electrode for reduced-temperature solid oxide fuel cells. Journal of Materials Chemistry A. 2019. 7, 12343-12349.	5.2	24
212	Coal pretreatment and Ag-infiltrated anode for high-performance hybrid direct coal fuel cell. Applied Energy, 2020, 260, 114197.	5.1	24
213	Performance evaluation and optimization of a perovskite solar cell-thermoelectric generator hybrid system. Energy, 2020, 201, 117665.	4.5	24
214	Building information modeling (BIM), System dynamics (SD), and Agent-based modeling (ABM): Towards an integrated approach. Ain Shams Engineering Journal, 2021, 12, 4261-4274.	3.5	24
215	All-in-one and bipolar-membrane-free acid-alkaline hydrogel electrolytes for flexible high-voltage Zn-air batteries. Chemical Engineering Journal, 2022, 430, 132718.	6.6	24
216	A data-driven digital-twin model and control of high temperature proton exchange membrane electrolyzer cells. International Journal of Hydrogen Energy, 2022, 47, 8687-8699.	3.8	24

#	Article	IF	CITATIONS
217	Nanoengineered, Mo-Doped, Ni ₃ S ₂ Electrocatalyst with Increased Ni–S Coordination for Oxygen Evolution in Alkaline Seawater. Energy & Energy & 2022, 36, 2910-2917.	2.5	24
218	Modeling of a planar solid oxide fuel cell based on proton-conducting electrolyte. International Journal of Energy Research, 2010, 34, 1027-1041.	2.2	23
219	Microstructural Insights into Dual-Phase Infiltrated Solid Oxide Fuel Cell Electrodes. Journal of the Electrochemical Society, 2013, 160, F834-F839.	1.3	23
220	Three-Dimensional Lattice Boltzmann Simulation of Liquid Water Transport in Porous Layer of PEMFC. Entropy, 2016, 18, 17.	1.1	23
221	Solar photocatalytic energy conversion. Science Bulletin, 2017, 62, 597-598.	4.3	23
222	A hybrid system using Brayton cycle to harvest the waste heat from a direct carbon solid oxide fuel cell. Applied Thermal Engineering, 2019, 160, 113992.	3.0	23
223	Low carbon fuel production from combined solid oxide CO2 co-electrolysis and Fischer-Tropsch synthesis system: A modelling study. Applied Energy, 2019, 242, 911-918.	5.1	23
224	Sulfur-tolerant Fe-doped La0·3Sr0·7TiO3 perovskite as anode of direct carbon solid oxide fuel cells. Energy, 2020, 211, 118958.	4.5	23
225	Dynamic behaviour and control strategy of high temperature proton exchange membrane electrolyzer cells (HT-PEMECs) for hydrogen production. International Journal of Hydrogen Energy, 2020, 45, 26613-26622.	3.8	23
226	Energetic, exergetic and ecological evaluations of a hybrid system based on a phosphoric acid fuel cell and an organic Rankine cycle. Energy, 2021, 217, 119365.	4.5	23
227	Enabling thermal-neutral electrolysis for CO2-to-fuel conversions with a hybrid deep learning strategy. Energy Conversion and Management, 2021, 230, 113827.	4.4	23
228	A novel design of solid oxide electrolyser integrated with magnesium hydride bed for hydrogen generation and storage â€" A dynamic simulation study. Applied Energy, 2017, 200, 260-272.	5.1	22
229	Techno-economic feasibility of solar water heating system: Overview and meta-analysis. Sustainable Energy Technologies and Assessments, 2018, 30, 164-173.	1.7	22
230	High-Performance Quasi-Solid-State Supercapacitor Based on CuO Nanoparticles with Commercial-Level Mass Loading on Ceramic Material La _{1-<i>x</i>} Sr _{<i>x</i>} CoO _{3-Î} as Cathode. ACS Applied Energy Materials, 2019, 2, 1480-1488.	2.5	22
231	Enhancing the cycle life of Li-S batteries by designing a free-standing cathode with excellent flexible, conductive, and catalytic properties. Electrochimica Acta, 2019, 298, 421-429.	2.6	22
232	A rational design of FeNi alloy nanoparticles and carbonate-decorated perovskite as a highly active and coke-resistant anode for solid oxide fuel cells. Chemical Engineering Journal, 2022, 430, 132615.	6.6	22
233	Photo-assisted non-aqueous lithium-oxygen batteries: Progress and prospects. Renewable and Sustainable Energy Reviews, 2020, 127, 109877.	8.2	22
234	In Situ Anchoring Co–N–C Nanoparticles on Co ₄ N Nanosheets toward Ultrastable Flexible Selfâ€Supported Bifunctional Oxygen Electrocatalyst Enables Recyclable Zn–Air Batteries Over 10 000 Cycles and Fast Charging. Small, 2022, 18, e2105887.	5. 2	22

#	Article	IF	CITATIONS
235	Modeling of Parasitic Hydrogen Evolution Effects in an Aluminumâ^'Air Cell. Energy &	2.5	21
236	Density-induced asymmetric pair of Dean vortices and its effects on mass transfer in a curved microchannel with two-layer laminar stream. Chemical Engineering Journal, 2011, 171, 216-223.	6.6	21
237	Modeling of Proton-Conducting Solid Oxide Fuel Cells Fueled with Syngas. Energies, 2014, 7, 4381-4396.	1.6	21
238	Exploring oxygen electrocatalytic activity and pseudocapacitive behavior of Co3O4 nanoplates in alkaline solutions. Electrochimica Acta, 2019, 310, 86-95.	2.6	21
239	Low or No subsidy? Proposing a regional power grid based wind power feed-in tariff benchmark price mechanism in China. Energy Policy, 2020, 146, 111758.	4.2	21
240	Detailed optimization of multiwall carbon nanotubes doped microporous layer in polymer electrolyte membrane fuel cells for enhanced performance. Applied Energy, 2020, 274, 115214.	5.1	21
241	Thermal effects in H2O and CO2 assisted direct carbon solid oxide fuel cells. International Journal of Hydrogen Energy, 2020, 45, 12459-12475.	3.8	21
242	Modelling of high temperature direct methanol solid oxide fuel cells. International Journal of Energy Research, 2021, 45, 3097-3112.	2.2	21
243	New interconnector designs for electrical performance enhancement of solid oxide fuel cells: A 3D modelling study. Journal of Power Sources, 2022, 533, 231373.	4.0	21
244	Influence of interior layouts on occupant energy-saving behaviour in buildings: An integrated approach using Agent-Based Modelling, System Dynamics and Building Information Modelling. Renewable and Sustainable Energy Reviews, 2022, 161, 112382.	8.2	21
245	Importance of pressure gradient in solid oxide fuel cell electrodes for modeling study. Journal of Power Sources, 2008, 183, 668-673.	4.0	20
246	Cobalt free SrFe 0.95 Nb 0.05 O 3â^'δ cathode material for proton-conducting solid oxide fuel cells with BaZr 0.1 Ce 0.7 Y 0.2 O 3â^'δ electrolyte. Materials Letters, 2017, 200, 75-78.	1.3	20
247	High performance of protonic solid oxide fuel cell with BaCo0.7Fe0.22Sc0.08O3â^'Î' electrode. International Journal of Hydrogen Energy, 2017, 42, 25021-25025.	3.8	20
248	Thermal Modeling and Management of Solid Oxide Fuel Cells Operating with Internally Reformed Methane. Journal of Thermal Science, 2018, 27, 203-212.	0.9	20
249	The thermal effects of all porous solid oxide fuel cells. Journal of Power Sources, 2019, 440, 227102.	4.0	20
250	Cu-modified Ni foams as three-dimensional outer anodes for high-performance hybrid direct coal fuel cells. Chemical Engineering Journal, 2021, 410, 128239.	6.6	20
251	Mn-based spinels evolved from layered manganese dioxides at mild temperature for the robust flexible quasi-solid-state zinc-air batteries. Chemical Engineering Journal, 2021, 417, 129179.	6.6	20
252	Electrolytic effect in solid oxide fuel cells running on steam/methane mixture. Journal of Power Sources, 2011, 196, 2027-2036.	4.0	19

#	Article	IF	CITATIONS
253	Chemical and transport behaviors in a microfluidic reformer with catalytic-support membrane for efficient hydrogen production and purification. International Journal of Hydrogen Energy, 2012, 37, 2614-2622.	3.8	19
254	An analysis on the effectiveness and determinants of the wind power Feed-in-Tariff policy at China's national-level and regional-grid-level. Sustainable Energy Technologies and Assessments, 2019, 34, 87-96.	1.7	19
255	Synthesis of Fe ₂ O ₃ Nanoparticle-Decorated N-Doped Reduced Graphene Oxide as an Effective Catalyst for Zn-Air Batteries. Journal of the Electrochemical Society, 2019, 166, A616-A622.	1.3	19
256	Methanol to power through high-efficiency hybrid fuel cell system: Thermodynamic, thermo-economic, and techno-economic (3T) analyses in Northwest China. Energy Conversion and Management, 2021, 232, 113899.	4.4	19
257	Achieving exceptional activity and durability toward oxygen reduction based on a cobalt-free perovskite for solid oxide fuel cells. Journal of Energy Chemistry, 2021, 62, 653-659.	7.1	19
258	Constructing the Tripleâ€Phase Boundaries of Integrated Air Electrodes for Highâ€Performance Zn–Air Batteries. Advanced Materials Interfaces, 2021, 8, 2101256.	1.9	19
259	Effects of cathode thickness and microstructural properties on the performance of protonic ceramic fuel cell (PCFC): A 3D modelling study. International Journal of Hydrogen Energy, 2022, 47, 4047-4061.	3.8	19
260	Coupling deep learning and multi-objective genetic algorithms to achieve high performance and durability of direct internal reforming solid oxide fuel cell. Applied Energy, 2022, 315, 119046.	5.1	19
261	Modelling the triple phase boundary length in infiltrated SOFC electrodes. International Journal of Hydrogen Energy, 2017, 42, 28836-28851.	3.8	18
262	Anilineâ€grafting graphene oxide/polyaniline composite prepared via interfacial polymerization with high capacitive performance. International Journal of Energy Research, 2019, 43, 7693.	2.2	18
263	High-throughput 3D reconstruction of stochastic heterogeneous microstructures in energy storage materials. Npj Computational Materials, 2019, 5, .	3.5	18
264	Energy upcycle in anaerobic treatment: Ammonium, methane, and carbon dioxide reformation through a hybrid electrodeionization–solid oxide fuel cell system. Energy Conversion and Management, 2017, 140, 157-166.	4.4	17
265	Integration of reversible solid oxide cells with methane synthesis (ReSOC-MS) in grid stabilization: A dynamic investigation. Applied Energy, 2019, 250, 558-567.	5.1	17
266	Thermal Stress Analysis of Solid Oxide Fuel Cell with Z-type and Serpentine-Type Channels Considering Pressure Drop. Journal of the Electrochemical Society, 2020, 167, 044517.	1.3	17
267	Building information modeling (BIM) incorporated green building analysis: an application of local construction materials and sustainable practice in the built environment. Journal of Building Pathology and Rehabilitation, 2021, 6, 1 .	0.7	17
268	Is steam addition necessary for the landfill gas fueled solid oxide fuel cells?. International Journal of Hydrogen Energy, 2013, 38, 16373-16386.	3.8	16
269	New developments and challenges of solid oxide fuel cell (SOFC)-based technologies. International Journal of Energy Research, 2018, 42, 4526-4531.	2.2	16
270	Ni-doped A-site-deficient La0.7Sr0.3Cr0.5Mn0.5O3-Î' perovskite as anode of direct carbon solid oxide fuel cells. International Journal of Hydrogen Energy, 2020, 45, 21873-21880.	3.8	16

#	Article	IF	CITATIONS
271	Thermal aging stability of infiltrated solid oxide fuel cell electrode microstructures: A three-dimensional kinetic Monte Carlo simulation. Journal of Power Sources, 2015, 299, 578-586.	4.0	15
272	Multifold Nanostructuring and Atomicâ€Scale Modulation of Cobalt Phosphide to Significantly Boost Hydrogen Production. Chemistry - A European Journal, 2018, 24, 13800-13806.	1.7	15
273	Toward the rational design of cathode and electrolyte materials for aprotic Li O ₂ batteries: A numerical investigation. International Journal of Energy Research, 2020, 44, 496-507.	2.2	15
274	Investigation on cold start of polymer electrolyte membrane fuel cells stacks with diverse cathode flow fields. International Journal of Hydrogen Energy, 2021, 46, 5580-5592.	3.8	15
275	Coupling properties and parametric optimization of a photovoltaic panel driven thermoelectric refrigerators system. Energy, 2021, 220, 119798.	4.5	15
276	Multi-perspective analysis of CO poisoning in high-temperature proton exchange membrane fuel cell stack via numerical investigation. Renewable Energy, 2021, 180, 313-328.	4.3	15
277	Cost evaluation and sensitivity analysis of the alkaline zinc-iron flow battery system for large-scale energy storage applications. Journal of Energy Storage, 2021, 44, 103327.	3.9	15
278	Mathematical analysis of SOFC based on co-ionic conducting electrolyte. Acta Mechanica Sinica/Lixue Xuebao, 2013, 29, 388-394.	1.5	14
279	Oxygen permeation modeling for Zr0.84Y0.16O1.92–La0.8Sr0.2Cr0.5Fe0.5O3â~' asymmetric membrane made by phase-inversion. Journal of Membrane Science, 2015, 491, 90-98.	4.1	14
280	Why a more uniform fuel/oxygen distribution is critical for fuel cell stack performance improvement. International Journal of Energy Research, 2018, 42, 4259-4262.	2.2	14
281	Numerical modeling of a cogeneration system based on a direct carbon solid oxide fuel cell and a thermophotovoltaic cell. Energy Conversion and Management, 2018, 171, 279-286.	4.4	14
282	Dynamic modeling of a NG-fueled SOFC-PEMFC hybrid system coupled with TSA process for fuel cell vehicle. Energy Procedia, 2019, 158, 2215-2224.	1.8	14
283	Localised electrochemical impedance spectroscopy investigation of polymer electrolyte membrane fuel cells using Print circuit board based interference-free system. Applied Energy, 2019, 254, 113712.	5.1	14
284	Electrochemical fields within 3D reconstructed microstructures of mixed ionic and electronic conducting devices. Journal of Power Sources, 2016, 331, 167-179.	4.0	13
285	Thermodynamic analysis and performance optimization of solid oxide fuel cell and refrigerator hybrid system based on H2 and CO. Applied Thermal Engineering, 2016, 108, 347-352.	3.0	13
286	Numerical investigation of a non-aqueous lithium-oxygen battery based on lithium superoxide as the discharge product. Applied Energy, 2017, 203, 254-266.	5.1	13
287	Robust Anodeâ€Supported Cells with Fast Oxygen Release Channels for Efficient and Stable CO ₂ Electrolysis at Ultrahigh Current Densities. Small, 2021, 17, e2007211.	5.2	13
288	A simple but effective design to enhance the performance and durability of direct carbon solid oxide fuel cells. Applied Energy, 2021, 287, 116586.	5.1	13

#	Article	IF	CITATIONS
289	Investigation of real-time changes and recovery of proton exchange membrane fuel cell in voltage reversal. Energy Conversion and Management, 2021, 236, 114037.	4.4	13
290	Radiative cooling-assisted thermoelectric refrigeration and power systems: Coupling properties and parametric optimization. Energy, 2022, 242, 122546.	4.5	13
291	Dynamic hierarchical modeling and control strategy of high temperature proton exchange electrolyzer cell system. International Journal of Hydrogen Energy, 2022, 47, 22302-22315.	3.8	13
292	Enhanced capacitive performance of nickel oxide on porous LaO·7SrO·3CoO3·Î´ ceramic substrate for electrochemical capacitors. International Journal of Hydrogen Energy, 2018, 43, 19589-19599.	3.8	12
293	La0.8Sr0.2MnO3 based perovskite with A-site deffiencies as high performance bifunctional electrocatalyst for oxygen reduction and evolution reaction in alkaline. Energy Procedia, 2019, 158, 5804-5810.	1.8	12
294	Parametric optimization of a coupled system integrating solid oxide fuel cell and graphene thermionic energy converter. Journal of Power Sources, 2020, 478, 228797.	4.0	12
295	Harvesting waste heat produced in solid oxide fuel cell using near-field thermophotovoltaic cell. Journal of Power Sources, 2020, 452, 227831.	4.0	12
296	Recent Developments of Preintercalated Cathodes for Rechargeable Aqueous Znâ€ion Batteries. Energy Technology, 2021, 9, 2000829.	1.8	12
297	Optimizing the charging protocol to address the self-discharge issues in rechargeable alkaline Zn-Co batteries. Applied Energy, 2022, 308, 118366.	5.1	12
298	Modeling and analysis of water vapor dynamics in high-temperature proton exchange membrane fuel cell coupling gas-crossover phenomena. International Journal of Hydrogen Energy, 2022, 47, 18504-18517.	3.8	12
299	A Sintering Kinetics Model for Ceramic Dualâ€Phase Composite. Journal of the American Ceramic Society, 2014, 97, 2580-2589.	1.9	11
300	Modeling of solid oxide fuel cells. Science Bulletin, 2016, 61, 1311-1312.	4.3	11
301	Evaluation of the waste heat and residual fuel from the solid oxide fuel cell and system power optimization. International Journal of Heat and Mass Transfer, 2017, 115, 1166-1173.	2.5	11
302	Oxygen Reduction Reaction Mechanism of Nitrogen-Doped Graphene Derived from Ionic Liquid. Energy Procedia, 2017, 142, 1319-1326.	1.8	11
303	The energy performance improvement of a PEM fuel cell with various chaotic flowing channels. International Journal of Energy Research, 2019, 43, 5460-5478.	2.2	11
304	Modelling of a hybrid system for on-site power generation from solar fuels. Applied Energy, 2019, 240, 709-718.	5.1	11
305	An overview on the status quo of onshore and offshore wind power development and wind power enterprise localization in China. International Journal of Green Energy, 2019, 16, 1646-1664.	2.1	11
306	Threeâ€dimensional Modeling and Performance Optimization of Proton Conducting Solid Oxide Electrolysis Cellâ–´. Fuel Cells, 2020, 20, 701-711.	1.5	11

#	Article	lF	CITATIONS
307	An innovative thermal management method for cooling loop of electric driving system for durable and high efficiency electric vehicle. Applied Thermal Engineering, 2021, 195, 117176.	3.0	11
308	Elucidating the mechanism of discharge performance improvement in zinc-air flow batteries: A combination of experimental and modeling investigations. Journal of Energy Storage, 2021, 40, 102779.	3.9	11
309	Effect of engineered lattice contraction and expansion on the performance and CO2 tolerance of Ba0.5Sr0.5Co0.7Fe0.3O3-δfunctional material for intermediate temperature solid oxide fuel cells. Ceramics International, 2022, 48, 21416-21427.	2.3	11
310	Effects of methane steam reforming on the mechanical stability of solid oxide fuel cell stack. Applied Energy, 2022, 322, 119464.	5.1	11
311	Self-supported metal sulfide electrode for flexible quasi-solid-state zinc-air batteries. Journal of Alloys and Compounds, 2021, 878, 160434.	2.8	10
312	A hybrid system integrating solid oxide fuel cell and thermo-radiative-photovoltaic cells for energy cascade utilization. Journal of Power Sources, 2021, 512, 230538.	4.0	10
313	Regulating the Interfacial Electron Density of La _{0.8} Sr _{0.2} Mn _{0.5} Co _{0.5} O ₃ /RuO _{<i>x</i>} for Efficient and Low-Cost Bifunctional Oxygen Electrocatalysts and Rechargeable Zn-Air Batteries. ACS Applied Materials & Samp: Interfaces, 2021, 13, 61098-61106.	sub> 4.0	10
314	Ethylene and power cogeneration from proton ceramic fuel cells (PCFC): A thermo-electrochemical modelling study. Journal of Power Sources, 2022, 536, 231503.	4.0	10
315	On the source terms of species equations in fuel cell modeling. International Journal of Hydrogen Energy, 2009, 34, 9543-9544.	3.8	9
316	Modeling and analysis of an aluminum-water electrochemical generator for simultaneous production of electricity and hydrogen. International Journal of Energy Research, 2011, 35, 44-51.	2.2	9
317	Dimensional analysis of Niâ€NiO grains at anode/electrolyte interface for <scp>SOFC</scp> during redox reaction. International Journal of Applied Ceramic Technology, 2017, 14, 543-549.	1.1	9
318	Investigation on the Strategies for Discharge Capacity Improvement of Aprotic Li-CO ₂ Batteries. Energy & Strategies for Discharge Capacity Improvement of Aprotic Li-CO ₂	2.5	9
319	Morphology and performance evolution of anode microstructure in solid oxide fuel cell: A model-based quantitative analysis. Applications in Energy and Combustion Science, 2021, 5, 100016.	0.9	9
320	Modeling and optimization of high temperature proton exchange membrane electrolyzer cells. International Journal of Green Energy, 2022, 19, 919-930.	2.1	9
321	Modeling of vanadium redox flow battery and electrode optimization with different flow fields. E-Prime, 2021, 1, 100001.	2.1	9
322	Multi-objective optimizations of solid oxide co-electrolysis with intermittent renewable power supply via multi-physics simulation and deep learning strategy. Energy Conversion and Management, 2022, 258, 115560.	4.4	9
323	Novel battery thermal management system with different shapes of pin fins. International Journal of Energy Research, 2022, 46, 5997-6011.	2.2	9
324	Thermodynamic Analysis of Methane-fueled Solid Oxide Fuel Cells Considering CO Electrochemical Oxidation. Chinese Journal of Chemical Engineering, 2014, 22, 1033-1037.	1.7	8

#	Article	IF	CITATIONS
325	Cation-Substitution-Tuned Oxygen Electrocatalyst of Spinel Cobaltite MCo ₂ O ₄ (M = Fe, Co, and Ni) Hexagonal Nanoplates for Rechargeable Zn-Air Batteries. Journal of the Electrochemical Society, 2019, 166, A3448-A3455.	1.3	8
326	Coupled and optimized properties of a hybrid system integrating electrochemical cycles with perovskite solar cell. International Journal of Energy Research, 2021, 45, 18846-18856.	2.2	8
327	Reconstruction and optimization of LSCF cathode microstructure based on Kinetic Monte Carlo method and Lattice Boltzmann method. Chemical Engineering Journal, 2022, 436, 132144.	6.6	8
328	Structural Engineering of Cobaltâ€Free Perovskite Enables Efficient and Durable Oxygen Reduction in Solid Oxide Fuel Cells. Small Methods, 2022, 6, e2200292.	4.6	8
329	New nitrogen-doped graphitic carbon nanosheets with rich structural defects and hierarchical nanopores as efficient metal-free electrocatalysts for oxygen reduction reaction in Zn-Air batteries. Chemical Engineering Science, 2022, 259, 117816.	1.9	8
330	Threeâ€Dimensional Computational Fluid Dynamics Modeling of a Planar Solid Oxide Fuel Cell. Chemical Engineering and Technology, 2009, 32, 1484-1493.	0.9	7
331	2D Segment Model for a Bi-Layer Electrolyte Solid Oxide Fuel Cell. Journal of the Electrochemical Society, 2015, 162, F340-F347.	1.3	7
332	Configuration design and parametric optimum selection of a self-supporting PEMFC. Energy Conversion and Management, 2020, 225, 113391.	4.4	7
333	Thermally Regenerative CO ₂ -Induced pH-Gradient Cell for Waste-to-Energy Conversion. ACS Energy Letters, 2021, 6, 3221-3227.	8.8	7
334	Modeling of Electrochemistry and Heat/Mass Transfer in a Tubular Solid Oxide Steam Electrolyzer for Hydrogen Production. Chemical Engineering and Technology, 2008, 31, 1319-1327.	0.9	6
335	Three-dimensional Modeling of Internal Reforming SOFC with a Focus on the Interconnect Size Effect. ECS Transactions, 2015, 68, 2317-2338.	0.3	6
336	Feasibility study on applications of solar chimney and earth tube systems for BEAM/LEED assessment. International Journal of Energy Research, 2016, 40, 1207-1220.	2.2	6
337	A Highly Active Perovskite Cathode for Lowâ€√emperature Solid Oxide Fuel Cells: BaCo _{0.7} Fe _{0.22} Sc _{0.08} O _{3–} <i>_{í′}</i> Advanced Sustainable Systems, 2017, 1, 1700005.	2.7	6
338	Integration of Reversible Solid Oxide Cells with methane synthesis (ReSOC-MS) in grid stabilization. Energy Procedia, 2019, 158, 2077-2084.	1.8	6
339	Modeling of a combined CH4-assisted solid oxide co-electrolysis and Fischer-Tropsch synthesis system for low-carbon fuel production. Energy Procedia, 2019, 158, 1666-1671.	1.8	6
340	Investigation on the electrochemical performance of hybrid zinc batteries through numerical analysis. Electrochimica Acta, 2021, 375, 137967.	2.6	6
341	Sustainable water–energy–environment nexus. Environmental Science and Pollution Research, 2021, 28, 40049-40052.	2.7	6
342	Numerical study of tripleâ€phase boundary length in highâ€temperature proton exchange membrane fuel cell. International Journal of Energy Research, 2022, 46, 1998-2010.	2.2	6

#	Article	IF	CITATIONS
343	Mathematical modeling and numerical analysis of the discharge process of an alkaline zinc-cobalt battery. Journal of Energy Storage, 2020, 30, 101432.	3.9	6
344	Microscale-decoupled charge-discharge reaction sites for an air electrode with abundant triple-phase boundary and enhanced cycle stability of Zn-Air batteries. Journal of Power Sources, 2022, 525, 231108.	4.0	6
345	Modelling of solid oxide fuel cells with internal glycerol steam reforming. International Journal of Hydrogen Energy, 2022, 47, 15012-15023.	3.8	5
346	Achieving high energy efficiency of alkaline hybrid zinc battery by using the optimized Co–Mn spinel cathode. International Journal of Hydrogen Energy, 2022, 47, 27470-27480.	3.8	5
347	Theoretical analysis and optimum integration strategy of the PEM fuel cell and internal combustion engine hybrid system for vehicle applications. International Journal of Energy Research, 2015, 39, n/a-n/a.	2.2	4
348	Mechanistic modeling of NO electrochemical reduction in a micro-tubular cell: Effects of CO2/H2O components and electrochemical promotion. Chemical Engineering Journal, 2015, 280, 1-8.	6.6	4
349	An Inquisition of Envelope Fabric for Building Energy Performance Using Prominent BIM-BPS Toolsâ€"A Case Study in Sub-Tropical Climate. IOP Conference Series: Earth and Environmental Science, 2019, 354, 012129.	0.2	4
350	Mechanism analysis of the effect of different gas manifold positions on proton exchange membrane fuel cell cold start performance. International Journal of Energy Research, 2021, 45, 13429-13441.	2.2	4
351	Numerical study of vapor behavior in high temperature PEM fuel cell under key material and operating parameters. International Journal of Green Energy, 2022, 19, 707-718.	2.1	4
352	Multiâ€Functional Hydrogels for Flexible Zincâ€Based Batteries Working under Extreme Conditions (Adv.) Tj ETC	Qq0 <u>0</u> 0 rg	BT <u>/</u> Overlock
353	Coating-by-parts method for experimental study of internal mechanisms of water gas shift fuel processor. International Journal of Energy Research, 2011, 35, 31-39.	2.2	3
354	Global sensitivity analysis of uncertain parameters based on 2D modeling of solid oxide fuel cell. International Journal of Energy Research, 2019, 43, 8697-8715.	2.2	3
355	In operando monitoring of reaction-diffusion streamlines and uncovering of electrochemo-structural interactions in electrodes. Journal of Materials Chemistry A, 2019, 7, 10256-10263.	5.2	3
356	The relationship between energy consumption and gross domestic product in Hong Kong (1992–2015): Evidence from sectoral analysis and implications on future energy policy. Energy and Environment, 2020, 31, 215-236.	2.7	3
357	Performance potential of a new molten hydroxide direct carbon fuel cell–based tripleâ€cycle system for clean and efficient coal use. International Journal of Energy Research, 2022, 46, 14491-14504.	2.2	3
358	Sustainable development of energy, water, and environment systems. Environmental Science and Pollution Research, 2020, 27, 12839-12841.	2.7	2
359	è^åäºæ¢è†œç‡ƒæ−™ç"µæ±å†∙å⁼动ç"ç©¶åŠç−ç•¥ä¼~åŒ−现状. Chinese Science Bulletin, 2022, , .	0.4	2
360	Dynamic behavior of high-temperature CO2/H2O co-electrolysis coupled with real fluctuating renewable power. Sustainable Energy Technologies and Assessments, 2022, 52, 102344.	1.7	2

#	Article	IF	CITATIONS
361	Performance Analysis of a Proton Exchange Membrane Fuel Cell Based Syngas. Entropy, 2019, 21, 85.	1.1	1
362	High-temperature electrolysis and co-electrolysis. , 2021, , 51-73.		1
363	Local Non-Equilibrium Thermal Effects in Solid Oxide Fuel Cells with Various Fuels. Energy Technology, 2013, 1, 35-41.	1.8	1
364	Methane carbon dioxide reforming for hydrogen production in a compact reformer - a modeling study. Advances in Energy Research, 2013, 1, 53-78.	0.4	1
365	pH-sensitive Thermally Regenerative Cell (pH-TRC) with Circulating Hydrogen for Long Discharging Time and High-Power Output. Chemical Engineering Journal, 2022, , 137772.	6.6	1
366	2D CFD Modeling of Ammonia Fueled Solid Oxide Fuel Cells With Proton Conducting Electrolyte. , 2010, , .		0
367	Effective Conductivity of Solid Oxide Fuel Cell Electrodes. ECS Transactions, 2015, 68, 2057-2066.	0.3	0
368	Environmental impact assessment in Hong Kong: a comparison study and lessons learnt. Impact Assessment and Project Appraisal, 2016, 34, 254-260.	1.0	0
369	Special issue on "Innovations in Fuel cells― International Journal of Energy Research, 2019, 43, 2422-2422.	2.2	0
370	Numerical simulation of hybrid systems based on solid oxide fuel cells., 2021,, 91-127.		0
371	Building Layout Influence on Occupant's Energy Consumption Behaviour: An Agent-Based Modeling Approach. , 2022, 15, .		O