
Cheng-Cai Chu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1484079/publications.pdf Version: 2024-02-01

CHENC-CALCHIL

#	Article	IF	CITATIONS
1	Salt tolerance in rice: Physiological responses and molecular mechanisms. Crop Journal, 2022, 10, 13-25.	5.2	94
2	A cryptic inhibitor of cytokinin phosphorelay controls rice grain size. Molecular Plant, 2022, 15, 293-307.	8.3	22
3	<i>Rht24b</i> , an ancient variation of <i>TaGA2oxâ€A9</i> , reduces plant height without yield penalty in wheat. New Phytologist, 2022, 233, 738-750.	7.3	54
4	From Green Super Rice to green agriculture: Reaping the promise of functional genomics research. Molecular Plant, 2022, 15, 9-26.	8.3	44
5	Rice functional genomics: decades' efforts and roads ahead. Science China Life Sciences, 2022, 65, 33-92.	4.9	107
6	Increasing floral visitation and hybrid seed production mediated by beauty mark in <i>Gossypium hirsutum</i> . Plant Biotechnology Journal, 2022, 20, 1274-1284.	8.3	21
7	Nitrogen assimilation in plants: current status and future prospects. Journal of Genetics and Genomics, 2022, 49, 394-404.	3.9	80
8	Crosstalk between the Circadian Clock and Histone Methylation. International Journal of Molecular Sciences, 2022, 23, 6465.	4.1	3
9	Selenium Uptake, Transport, Metabolism, Reutilization, and Biofortification in Rice. Rice, 2022, 15, .	4.0	23
10	OsCPL3 is involved in brassinosteroid signaling by regulating OsGSK2 stability. Journal of Integrative Plant Biology, 2022, 64, 1560-1574.	8.5	7
11	The divergence of brassinosteroid sensitivity between rice subspecies involves natural variation conferring altered internal autoâ€binding of OsBSK2. Journal of Integrative Plant Biology, 2022, 64, 1614-1630.	8.5	6
12	Rice DWARF AND LOW-TILLERING and the homeodomain protein OSH15 interact to regulate internode elongation via orchestrating brassinosteroid signaling and metabolism. Plant Cell, 2022, 34, 3754-3772.	6.6	18
13	Rice catalase OsCATC is degraded by E3 ligase APIP6 to negatively regulate immunity. Plant Physiology, 2022, 190, 1095-1099.	4.8	14
14	Modulation of nitrate-induced phosphate response by the MYB transcription factor RLI1/HINGE1 in the nucleus. Molecular Plant, 2021, 14, 517-529.	8.3	22
15	Rice NINâ€LIKE PROTEIN 4 plays a pivotal role in nitrogen use efficiency. Plant Biotechnology Journal, 2021, 19, 448-461.	8.3	72
16	Posttranslational Modifications: Regulation of Nitrogen Utilization and Signaling. Plant and Cell Physiology, 2021, 62, 543-552.	3.1	17
17	Epigenetic regulation of nitrogen and phosphorus responses in plants. Journal of Plant Physiology, 2021, 258-259, 153363.	3.5	13
18	Genetic architecture underlying light and temperature mediated flowering in <i>Arabidopsis</i> , rice, and temperate cereals. New Phytologist, 2021, 230, 1731-1745.	7.3	57

#	Article	IF	CITATIONS
19	A route to de novo domestication of wild allotetraploid rice. Cell, 2021, 184, 1156-1170.e14.	28.9	259
20	The impact of high-temperature stress on rice: Challenges and solutions. Crop Journal, 2021, 9, 963-976.	5.2	104
21	Engineering of the cytosolic form of phosphoglucose isomerase into chloroplasts improves plant photosynthesis and biomass. New Phytologist, 2021, 231, 315-325.	7.3	12
22	Dual function of clock component <i>OsLHY</i> sets critical day length for photoperiodic flowering in rice. Plant Biotechnology Journal, 2021, 19, 1644-1657.	8.3	33
23	A transceptor–channel complex couples nitrate sensing to calcium signaling in Arabidopsis. Molecular Plant, 2021, 14, 774-786.	8.3	60
24	Exploration of rice yield potential: Decoding agronomic and physiological traits. Crop Journal, 2021, 9, 577-589.	5.2	35
25	Improving the utilization efficiency of nitrogen, phosphorus and potassium: current situation and future perspectives. Scientia Sinica Vitae, 2021, 51, 1415-1423.	0.3	6
26	Synergistic interplay of ABA and BR signal in regulating plant growth and adaptation. Nature Plants, 2021, 7, 1108-1118.	9.3	49
27	Editorial Feature: Meet the PCP Editor—Chengcai Chu. Plant and Cell Physiology, 2021, 62, 923-925.	3.1	0
28	Diversification of plant agronomic traits by genome editing of brassinosteroid signaling family genes in rice. Plant Physiology, 2021, 187, 2563-2576.	4.8	26
29	Overexpression of the rice ORANGE gene OsOR negatively regulates carotenoid accumulation, leads to higher tiller numbers and decreases stress tolerance in Nipponbare rice. Plant Science, 2021, 310, 110962.	3.6	10
30	Genomic basis of geographical adaptation to soil nitrogen in rice. Nature, 2021, 590, 600-605.	27.8	204
31	POLLEN STERILITY, a novel suppressor of cell division, is required for timely tapetal programmed cell death in rice. Science China Life Sciences, 2021, , 1.	4.9	1
32	Nitrogen–phosphorus interplay: old story with molecular tale. New Phytologist, 2020, 225, 1455-1460.	7.3	71
33	Improvement of nutrient use efficiency in rice: current toolbox and future perspectives. Theoretical and Applied Genetics, 2020, 133, 1365-1384.	3.6	58
34	NRT1.1s in plants: functions beyond nitrate transport. Journal of Experimental Botany, 2020, 71, 4373-4379.	4.8	79
35	Nitrogen-Use Divergence Between Indica and Japonica Rice: Variation at Nitrate Assimilation. Molecular Plant, 2020, 13, 6-7.	8.3	39
36	Vascularâ€specific expression of Gastrodia antifungal protein gene significantly enhanced cotton Verticillium wilt resistance. Plant Biotechnology Journal, 2020, 18, 1498-1500.	8.3	11

#	Article	IF	CITATIONS
37	The florigen interactor BdES43 represses flowering in the model temperate grass <i>Brachypodium distachyon</i> . Plant Journal, 2020, 102, 262-275.	5.7	5
38	Alterations in stomatal response to fluctuating light increase biomass and yield of rice under drought conditions. Plant Journal, 2020, 104, 1334-1347.	5.7	26
39	ζ-Carotene Isomerase Suppresses Tillering in Rice through the Coordinated Biosynthesis of Strigolactone and Abscisic Acid. Molecular Plant, 2020, 13, 1784-1801.	8.3	70
40	Strigolactone Signaling: Repressor Proteins Are Transcription Factors. Trends in Plant Science, 2020, 25, 960-963.	8.8	10
41	Gibberellin Metabolism and Signaling: Targets for Improving Agronomic Performance of Crops. Plant and Cell Physiology, 2020, 61, 1902-1911.	3.1	70
42	Natural variations of SLG1 confer high-temperature tolerance in indica rice. Nature Communications, 2020, 11, 5441.	12.8	66
43	Endoplasmic Reticulum-Localized PURINE PERMEASE1 Regulates Plant Height and Grain Weight by Modulating Cytokinin Distribution in Rice. Frontiers in Plant Science, 2020, 11, 618560.	3.6	20
44	ARGONAUTE2 Enhances Grain Length and Salt Tolerance by Activating <i>BIG GRAIN3</i> to Modulate Cytokinin Distribution in Rice. Plant Cell, 2020, 32, 2292-2306.	6.6	91
45	The OsGSK2 Kinase Integrates Brassinosteroid and Jasmonic Acid Signaling by Interacting with OsJAZ4. Plant Cell, 2020, 32, 2806-2822.	6.6	64
46	GSK2 stabilizes OFP3 to suppress brassinosteroid responses in rice. Plant Journal, 2020, 102, 1187-1201.	5.7	55
47	Glycosyltransferase OsUGT90A1 helps protect the plasma membrane during chilling stress in rice. Journal of Experimental Botany, 2020, 71, 2723-2739.	4.8	36
48	Analysis of genetic architecture and favorable allele usage of agronomic traits in a large collection of Chinese rice accessions. Science China Life Sciences, 2020, 63, 1688-1702.	4.9	41
49	Towards understanding the hierarchical nitrogen signalling network in plants. Current Opinion in Plant Biology, 2020, 55, 60-65.	7.1	47
50	S-Nitrosylation Control of ROS and RNS Homeostasis in Plants: The Switching Function of Catalase. Molecular Plant, 2020, 13, 946-948.	8.3	17
51	Analysis of rice root bacterial microbiota of Nipponbare and IR24. Yi Chuan = Hereditas / Zhongguo Yi Chuan Xue Hui Bian Ji, 2020, 42, 506-518.	0.2	1
52	Control of rice preâ€harvest sprouting by glutaredoxinâ€mediated abscisic acid signaling. Plant Journal, 2019, 100, 1036-1051.	5.7	54
53	Mutation of a Nucleotide-Binding Leucine-Rich Repeat Immune Receptor-Type Protein Disrupts Immunity to Bacterial Blight. Plant Physiology, 2019, 181, 1295-1313.	4.8	13
54	<i>Ef-cd</i> locus shortens rice maturity duration without yield penalty. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 18717-18722.	7.1	77

#	Article	IF	CITATIONS
55	The MYB Activator WHITE PETAL1 Associates with MtTT8 and MtWD40-1 to Regulate Carotenoid-Derived Flower Pigmentation in <i>Medicago truncatula</i> . Plant Cell, 2019, 31, 2751-2767.	6.6	102
56	Cytokininâ€dependent regulatory module underlies the maintenance of zinc nutrition in rice. New Phytologist, 2019, 224, 202-215.	7.3	53
57	Fine-Tuning of MiR528 Accumulation Modulates Flowering Time in Rice. Molecular Plant, 2019, 12, 1103-1113.	8.3	67
58	NRT1.1B is associated with root microbiota composition and nitrogen use in field-grown rice. Nature Biotechnology, 2019, 37, 676-684.	17.5	641
59	Genomeâ€wide association study identifies variation of glucosidase being linked to natural variation of the maximal quantum yield of photosystem II. Physiologia Plantarum, 2019, 166, 105-119.	5.2	17
60	The <scp>bZIP</scp> 73 transcription factor controls rice cold tolerance at the reproductive stage. Plant Biotechnology Journal, 2019, 17, 1834-1849.	8.3	123
61	Nitrate–NRT1.1B–SPX4 cascade integrates nitrogen and phosphorus signalling networks in plants. Nature Plants, 2019, 5, 401-413.	9.3	263
62	NRT1.1B improves selenium concentrations in rice grains by facilitating selenomethinone translocation. Plant Biotechnology Journal, 2019, 17, 1058-1068.	8.3	54
63	<i>Big Grain3,</i> encoding a purine permease, regulates grain size via modulating cytokinin transport in rice. Journal of Integrative Plant Biology, 2019, 61, 581-597.	8.5	73
64	Studies on plant responses to environmental change in China: the past and the future. Scientia Sinica Vitae, 2019, 49, 1457-1478.	0.3	5
65	Expression of the Nitrate Transporter Gene <i>OsNRT1.1A/OsNPF6.3</i> Confers High Yield and Early Maturation in Rice. Plant Cell, 2018, 30, 638-651.	6.6	227
66	Root microbiota shift in rice correlates with resident time in the field and developmental stage. Science China Life Sciences, 2018, 61, 613-621.	4.9	204
67	Fine-Tuning of Eui1: Breaking the Bottleneck in Hybrid Rice Seed Production. Molecular Plant, 2018, 11, 643-644.	8.3	1
68	Overexpression of microRNA408 enhances photosynthesis, growth, and seed yield in diverse plants. Journal of Integrative Plant Biology, 2018, 60, 323-340.	8.5	87
69	A Novel QTL qTGW3 Encodes the GSK3/SHAGGY-Like Kinase OsGSK5/OsSK41 that Interacts with OsARF4 to Negatively Regulate Grain Size and Weight in Rice. Molecular Plant, 2018, 11, 736-749.	8.3	201
70	Crop 3D—a LiDAR based platform for 3D high-throughput crop phenotyping. Science China Life Sciences, 2018, 61, 328-339.	4.9	79
71	Parallel selection on a dormancy gene during domestication of crops from multiple families. Nature Genetics, 2018, 50, 1435-1441.	21.4	168
72	Sweet Sorghum Originated through Selection of <i>Dry</i> , a Plant-Specific NAC Transcription Factor Gene. Plant Cell, 2018, 30, 2286-2307.	6.6	55

#	Article	IF	CITATIONS
73	Functional Specificities of Brassinosteroid and Potential Utilization for Crop Improvement. Trends in Plant Science, 2018, 23, 1016-1028.	8.8	153
74	Are we ready to improve phosphorus homeostasis in rice?. Journal of Experimental Botany, 2018, 69, 3515-3522.	4.8	23
75	Endosperm sugar accumulation caused by mutation of <i><scp>PHS</scp>8</i> / <i><scp>ISA</scp>1</i> leads to preâ€harvest sprouting in rice. Plant Journal, 2018, 95, 545-556.	5.7	55
76	Early selection of bZIP73 facilitated adaptation of japonica rice to cold climates. Nature Communications, 2018, 9, 3302.	12.8	155
77	Cold stress tolerance in rice: physiological changes, molecular mechanism, and future prospects. Yi Chuan = Hereditas / Zhongguo Yi Chuan Xue Hui Bian Ji, 2018, 40, 171-185.	0.2	34
78	ROS accumulation and antiviral defence control by microRNA528 in rice. Nature Plants, 2017, 3, 16203.	9.3	189
79	Physiological Analysis of Brassinosteroid Responses and Sensitivity in Rice. Methods in Molecular Biology, 2017, 1564, 23-29.	0.9	8
80	RD26 mediates crosstalk between drought and brassinosteroid signalling pathways. Nature Communications, 2017, 8, 14573.	12.8	202
81	Node-based transporter: Switching phosphorus distribution. Nature Plants, 2017, 3, .	9.3	3
82	Control of secondary cell wall patterning involves xylan deacetylation by a GDSL esterase. Nature Plants, 2017, 3, 17017.	9.3	98
83	High-efficiency breeding of early-maturing rice cultivars via CRISPR/Cas9-mediated genome editing. Journal of Genetics and Genomics, 2017, 44, 175-178.	3.9	104
84	Nitrogen use efficiency in crops: lessons from Arabidopsis and rice. Journal of Experimental Botany, 2017, 68, 2477-2488.	4.8	269
85	Genome-wide Targeted Mutagenesis in Rice Using the CRISPR/Cas9 System. Molecular Plant, 2017, 10, 1242-1245.	8.3	242
86	Arabidopsis WRKY46, WRKY54 and WRKY70 Transcription Factors Are Involved in Brassinosteroid-Regulated Plant Growth and Drought Response. Plant Cell, 2017, 29, tpc.00364.2017.	6.6	286
87	A long noncoding RNA involved in rice reproductive development by negatively regulating osa-miR160. Science Bulletin, 2017, 62, 470-475.	9.0	78
88	Asian wild rice is a hybrid swarm with extensive gene flow and feralization from domesticated rice. Genome Research, 2017, 27, 1029-1038.	5.5	100
89	Leaf Photosynthetic Parameters Related to Biomass Accumulation in a Global Rice Diversity Survey. Plant Physiology, 2017, 175, 248-258.	4.8	85
90	MicroRNAs in crop improvement: fine-tuners for complex traits. Nature Plants, 2017, 3, 17077.	9.3	290

#	Article	IF	CITATIONS
91	Melatonin Regulates Root Architecture by Modulating Auxin Response in Rice. Frontiers in Plant Science, 2017, 8, 134.	3.6	134
92	Assessment of Five Chilling Tolerance Traits and GWAS Mapping in Rice Using the USDA Mini-Core Collection. Frontiers in Plant Science, 2017, 8, 957.	3.6	88
93	Brassinosteroids Regulate OFP1, a DLT Interacting Protein, to Modulate Plant Architecture and Grain Morphology in Rice. Frontiers in Plant Science, 2017, 8, 1698.	3.6	69
94	Significant Improvement of Cotton Verticillium Wilt Resistance by Manipulating the Expression of Gastrodia Antifungal Proteins. Molecular Plant, 2016, 9, 1436-1439.	8.3	86
95	Identification of microRNAs in rice root in response to nitrate and ammonium. Journal of Genetics and Genomics, 2016, 43, 651-661.	3.9	28
96	The Power of Inbreeding: NCS-Based GWAS of Rice Reveals Convergent Evolution during Rice Domestication. Molecular Plant, 2016, 9, 975-985.	8.3	102
97	Rapid stomatal response to fluctuating light: an under-explored mechanism to improve drought tolerance in rice. Functional Plant Biology, 2016, 43, 727.	2.1	68
98	Geneticsâ€based dynamic systems model of canopy photosynthesis: the key to improve light and resource use efficiencies for crops. Food and Energy Security, 2016, 5, 18-25.	4.3	25
99	Control of grain size and rice yield by GL2-mediated brassinosteroid responses. Nature Plants, 2016, 2, 15195.	9.3	342
100	Reply: Brassinosteroid Regulates Gibberellin Synthesis to Promote Cell Elongation in Rice: Critical Comments on Ross and Quittenden's Letter. Plant Cell, 2016, 28, 833-835.	6.6	35
101	Rice HOX12 Regulates Panicle Exsertion by Directly Modulating the Expression of <i>ELONGATED UPPERMOST INTERNODE1</i> . Plant Cell, 2016, 28, 680-695.	6.6	80
102	Crop 3D: a platform based on LiDAR for 3D high-throughputcrop phenotyping. Scientia Sinica Vitae, 2016, 46, 1210-1221.	0.3	6
103	15N-nitrate Uptake Activity and Root-to-shoot Transport Assay in Rice. Bio-protocol, 2016, 6, .	0.4	3
104	Variation in NRT1.1B contributes to nitrate-use divergence between rice subspecies. Nature Genetics, 2015, 47, 834-838.	21.4	527
105	Combinations of <i>Hd2</i> and <i>Hd4</i> genes determine rice adaptability to Heilongjiang Province, northern limit of China. Journal of Integrative Plant Biology, 2015, 57, 698-707.	8.5	53
106	Variations between the photosynthetic properties of elite and landrace Chinese rice cultivars revealed by simultaneous measurements of 820 nm transmission signal and chlorophyll a fluorescence induction. Journal of Plant Physiology, 2015, 177, 128-138.	3.5	35
107	Nitric oxide ameliorates zinc oxide nanoparticles-induced phytotoxicity in rice seedlings. Journal of Hazardous Materials, 2015, 297, 173-182.	12.4	133
108	MicroRNA399 is involved in multiple nutrient starvation responses in rice. Frontiers in Plant Science, 2015, 6, 188.	3.6	59

#	Article	IF	CITATIONS
109	A New Era for Crop Improvement: From Model-Guided Rationale Design to Practical Engineering. Molecular Plant, 2015, 8, 1299-1301.	8.3	2
110	Melatonin delays leaf senescence and enhances salt stress tolerance in rice. Journal of Pineal Research, 2015, 59, 91-101.	7.4	272
111	Towards understanding abscisic acid-mediated leaf senescence. Science China Life Sciences, 2015, 58, 506-508.	4.9	12
112	Ethylene Responses in Rice Roots and Coleoptiles Are Differentially Regulated by a Carotenoid Isomerase-Mediated Abscisic Acid Pathway. Plant Cell, 2015, 27, 1061-1081.	6.6	107
113	Activation of <i>Big Grain1</i> significantly improves grain size by regulating auxin transport in rice. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 11102-11107.	7.1	265
114	Variations in <scp><i>CYP</i></scp> <i>78</i> <scp><i>A</i></scp> <i>13</i> coding region influence grain size and yield in rice. Plant, Cell and Environment, 2015, 38, 800-811.	5.7	102
115	Recent Progress in Molecular Dissection of Nutrient Uptake and Transport in Rice. Scientia Sinica Vitae, 2015, 45, 569-590.	0.3	3
116	OsNAP connects abscisic acid and leaf senescence by fine-tuning abscisic acid biosynthesis and directly targeting senescence-associated genes in rice. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 10013-10018.	7.1	449
117	Os <scp>PT</scp> 2, a phosphate transporter, is involved in the active uptake of selenite in rice. New Phytologist, 2014, 201, 1183-1191.	7.3	255
118	Expression Patterns of ABA and GA Metabolism Genes and Hormone Levels during Rice Seed Development and Imbibition: A Comparison of Dormant and Non-Dormant Rice Cultivars. Journal of Genetics and Genomics, 2014, 41, 327-338.	3.9	69
119	OsbZIP71, a bZIP transcription factor, confers salinity and drought tolerance in rice. Plant Molecular Biology, 2014, 84, 19-36.	3.9	311
120	Brassinosteroid Regulates Cell Elongation by Modulating Gibberellin Metabolism in Rice Â. Plant Cell, 2014, 26, 4376-4393.	6.6	589
121	Understanding the genetic and epigenetic architecture in complex network of rice flowering pathways. Protein and Cell, 2014, 5, 889-898.	11.0	81
122	<i>CYTOKININ OXIDASE/DEHYDROGENASE4</i> Integrates Cytokinin and Auxin Signaling to Control Rice Crown Root Formation Â. Plant Physiology, 2014, 165, 1035-1046.	4.8	182
123	Transformation of LTP gene into Brassica napus to enhance its resistance to Sclerotinia sclerotiorum. Russian Journal of Genetics, 2013, 49, 380-387.	0.6	14
124	NOT2 Proteins Promote Polymerase II–Dependent Transcription and Interact with Multiple MicroRNA Biogenesis Factors in <i>Arabidopsis</i> À À. Plant Cell, 2013, 25, 715-727.	6.6	147
125	H ₂ O ₂ â€induced Leaf Cell Death and the Crosstalk of Reactive Nitric/Oxygen Species ^F . Journal of Integrative Plant Biology, 2013, 55, 202-208.	8.5	74
126	Cross-talk of nitric oxide and reactive oxygen species in plant programed cell death. Frontiers in Plant Science, 2013, 4, 314.	3.6	183

#	Article	IF	CITATIONS
127	The rice <i>GERMINATION DEFECTIVE 1</i> , encoding a B3 domain transcriptional repressor, regulates seed germination and seedling development by integrating <scp>GA</scp> and carbohydrate metabolism. Plant Journal, 2013, 75, 403-416.	5.7	73
128	Direct Modulation of Protein Level in Arabidopsis. Molecular Plant, 2013, 6, 1711-1714.	8.3	11
129	Nitric Oxide and Protein <i>S</i> -Nitrosylation Are Integral to Hydrogen Peroxide-Induced Leaf Cell Death in Rice Â. Plant Physiology, 2012, 158, 451-464.	4.8	290
130	Co-Overexpression <i>FIT</i> with <i>AtbHLH38</i> or <i>AtbHLH39</i> in Arabidopsis-Enhanced Cadmium Tolerance via Increased Cadmium Sequestration in Roots and Improved Iron Homeostasis of Shoots Â. Plant Physiology, 2012, 158, 790-800.	4.8	213
131	The Histone Methyltransferase SDG724 Mediates H3K36me2/3 Deposition at <i>MADS50</i> and <i>RFT1</i> and Promotes Flowering in Rice. Plant Cell, 2012, 24, 3235-3247.	6.6	112
132	OsWRKY30 is activated by MAP kinases to confer drought tolerance in rice. Plant Molecular Biology, 2012, 80, 241-253.	3.9	222
133	Brassinosteroid Signaling and Application in Rice. Journal of Genetics and Genomics, 2012, 39, 3-9.	3.9	54
134	DWARF AND LOW-TILLERING Acts as a Direct Downstream Target of a GSK3/SHAGGY-Like Kinase to Mediate Brassinosteroid Responses in Rice. Plant Cell, 2012, 24, 2562-2577.	6.6	292
135	Activation of the Jasmonic Acid Pathway by Depletion of the Hydroperoxide Lyase OsHPL3 Reveals Crosstalk between the HPL and AOS Branches of the Oxylipin Pathway in Rice. PLoS ONE, 2012, 7, e50089.	2.5	83
136	Insights into salt tolerance from the genome of <i>Thellungiella salsuginea</i> . Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 12219-12224.	7.1	272
137	Roles of DCL4 and DCL3b in rice phased small RNA biogenesis. Plant Journal, 2012, 69, 462-474.	5.7	289
138	Rice RNAâ€dependent RNA polymerase 6 acts in small RNA biogenesis and spikelet development. Plant Journal, 2012, 71, 378-389.	5.7	98
139	RLIN1, encoding a putative coproporphyrinogen III oxidase, is involved inÂlesion initiation in rice. Journal of Genetics and Genomics, 2011, 38, 29-37.	3.9	60
140	Computation-assisted SiteFinding- PCR for isolating flanking sequence tags in rice. BioTechniques, 2011, 51, 421-423.	1.8	9
141	Semiâ€dominant mutations in the CCâ€NB‣RRâ€type <i>R</i> gene, <i>NLS1</i> , lead to constitutive activation of defense responses in rice. Plant Journal, 2011, 66, 996-1007.	on 5.7	82
142	Arsenic biotransformation and volatilization in transgenic rice. New Phytologist, 2011, 191, 49-56.	7.3	116
143	An AT-hook gene is required for palea formation and floral organ number control in rice. Developmental Biology, 2011, 359, 277-288.	2.0	94
144	Involvement of OsNPR1/NH1 in rice basal resistance to blast fungus Magnaporthe oryzae. European Journal of Plant Pathology, 2011, 131, 221-235.	1.7	35

#	Article	IF	CITATIONS
145	Genetic transformation of lipid transfer protein encoding gene in Phalaenopsis amabilis to enhance cold resistance. Euphytica, 2011, 177, 33-43.	1.2	28
146	ZEBRA2, encoding a carotenoid isomerase, is involved in photoprotection in rice. Plant Molecular Biology, 2011, 75, 211-221.	3.9	54
147	OsSDIR1 overexpression greatly improves drought tolerance in transgenic rice. Plant Molecular Biology, 2011, 76, 145-156.	3.9	133
148	Fine mapping of qSTV11 TQ , a major gene conferring resistance to rice stripe disease. Theoretical and Applied Genetics, 2011, 122, 915-923.	3.6	42
149	Comparative proteomics analysis of OsNAS1 transgenic Brassica napus under salt stress. Science Bulletin, 2011, 56, 2343-2350.	1.7	15
150	Phosphate starvation signaling in rice. Plant Signaling and Behavior, 2011, 6, 927-929.	2.4	19
151	<i>LEAF TIP NECROSIS1</i> Plays a Pivotal Role in the Regulation of Multiple Phosphate Starvation Responses in Rice Â. Plant Physiology, 2011, 156, 1101-1115.	4.8	208
152	A Rice Plastidial Nucleotide Sugar Epimerase Is Involved in Galactolipid Biosynthesis and Improves Photosynthetic Efficiency. PLoS Genetics, 2011, 7, e1002196.	3.5	71
153	Nitric oxide: promoter or suppressor of programmed cell death?. Protein and Cell, 2010, 1, 133-142.	11.0	49
154	The Interactions among <i>DWARF10</i> , Auxin and Cytokinin Underlie Lateral Bud Outgrowth in Rice. Journal of Integrative Plant Biology, 2010, 52, 626-638.	8.5	84
155	Up-regulation of <i>LSB1</i> / <i>GDU3</i> affects geminivirus infection by activating the salicylic acid pathway. Plant Journal, 2010, 62, 12-23.	5.7	67
156	The redox switch: dynamic regulation of protein function by cysteine modifications. Physiologia Plantarum, 2010, 138, 360-371.	5.2	178
157	Rice DENSE AND ERECT PANICLE 2 is essential for determining panicle outgrowth and elongation. Cell Research, 2010, 20, 838-849.	12.0	138
158	Roles of DLT in fine modulation on brassinosteroid response in rice. Plant Signaling and Behavior, 2009, 4, 438-439.	2.4	19
159	OsMSRA4.1 and OsMSRB1.1, two rice plastidial methionine sulfoxide reductases, are involved in abiotic stress responses. Planta, 2009, 230, 227-238.	3.2	73
160	OsMT1a, a type 1 metallothionein, plays the pivotal role in zinc homeostasis and drought tolerance in rice. Plant Molecular Biology, 2009, 70, 219-229.	3.9	235
161	DWARF AND LOWâ€TILLERING, a new member of the GRAS family, plays positive roles in brassinosteroid signaling in rice. Plant Journal, 2009, 58, 803-816.	5.7	307
162	Natural variation at the DEP1 locus enhances grain yield in rice. Nature Genetics, 2009, 41, 494-497.	21.4	858

#	Article	IF	CITATIONS
163	S-Nitrosylation of AtSABP3 Antagonizes the Expression of Plant Immunity. Journal of Biological Chemistry, 2009, 284, 2131-2137.	3.4	227
164	Molecular analysis of rice plants harboring a multi-functional T-DNA tagging system. Journal of Genetics and Genomics, 2009, 36, 267-276.	3.9	31
165	Overexpression of a rice OsDREB1F gene increases salt, drought, and low temperature tolerance in both Arabidopsis and rice. Plant Molecular Biology, 2008, 67, 589-602.	3.9	389
166	Excision of a selective marker in transgenic rice using a novel Cre/loxP system controlled by a floral specific promoter. Transgenic Research, 2008, 17, 1035-1043.	2.4	49
167	Mutations of genes in synthesis of the carotenoid precursors of ABA lead to preâ€harvest sprouting and photoâ€oxidation in rice. Plant Journal, 2008, 54, 177-189.	5.7	265
168	Gene expression of jojoba (Simmondsia chinensis) leaves exposed to drying. Environmental and Experimental Botany, 2008, 63, 137-146.	4.2	10
169	Nitric oxide function and signalling in plant disease resistance. Journal of Experimental Botany, 2008, 59, 147-154.	4.8	154
170	Abscisic acid and the pre-harvest sprouting in cereals. Plant Signaling and Behavior, 2008, 3, 1046-1048.	2.4	57
171	Mutation of the Rice <i>Narrow leaf1</i> Gene, Which Encodes a Novel Protein, Affects Vein Patterning and Polar Auxin Transport. Plant Physiology, 2008, 147, 1947-1959.	4.8	232
172	<i>Arabidopsis</i> SDIR1 Enhances Drought Tolerance in Crop Plants. Bioscience, Biotechnology and Biochemistry, 2008, 72, 2251-2254.	1.3	51
173	SDG714, a Histone H3K9 Methyltransferase, Is Involved in Tos17 DNA Methylation and Transposition in Rice. Plant Cell, 2007, 19, 9-22.	6.6	162
174	<i>Oryza sativa Dicer-like4</i> Reveals a Key Role for Small Interfering RNA Silencing in Plant Development. Plant Cell, 2007, 19, 2705-2718.	6.6	136
175	OsWRKY71, a rice transcription factor, is involved in rice defense response. Journal of Plant Physiology, 2007, 164, 969-979.	3.5	346
176	The Arabidopsis Spontaneous Cell Death1 gene, encoding a ζ-carotene desaturase essential for carotenoid biosynthesis, is involved in chloroplast development, photoprotection and retrograde signalling. Cell Research, 2007, 17, 458-470.	12.0	110
177	Aqueous Extract of Inonotus bliquus (Fr.) Pilat (Hymenochaetaceae) Significantly Inhibits the Growth of Sarcoma 180 by Inducing Apoptosis. American Journal of Pharmacology and Toxicology, 2007, 2, 10-17.	0.7	25
178	Oral administration of exopolysaccharide from Aphanothece halophytica (Chroococcales) significantly inhibits influenza virus (H1N1)-induced pneumonia in mice. International Immunopharmacology, 2006, 6, 1093-1099.	3.8	43
179	LEAFY HEAD2, which encodes a putative RNA-binding protein, regulates shoot development of rice. Cell Research, 2006, 16, 267-276.	12.0	24
180	OsGLU1, A Putative Membrane-bound Endo-1,4-ß-D-glucanase from Rice, Affects Plant Internode Elongation. Plant Molecular Biology, 2006, 60, 137-151.	3.9	89

#	Article	IF	CITATIONS
181	GOLD HULL AND INTERNODE2 Encodes a Primarily Multifunctional Cinnamyl-Alcohol Dehydrogenase in Rice. Plant Physiology, 2006, 140, 972-983.	4.8	160
182	EUI1, Encoding a Putative Cytochrome P450 Monooxygenase, Regulates Internode Elongation by Modulating Gibberellin Responses in Rice. Plant and Cell Physiology, 2006, 47, 181-191.	3.1	151
183	OsWRKY03, a rice transcriptional activator that functions in defense signaling pathway upstream of OsNPR1. Cell Research, 2005, 15, 593-603.	12.0	151
184	Down-Regulation of <i>OsGRF1</i> Gene in Rice <i>rhd1</i> Mutant Results in Reduced Heading Date. Journal of Integrative Plant Biology, 2005, 47, 745-752.	8.5	44
185	Effects of potassium iodide on the growth and metabolite accumulation of two planktonic diatoms. Journal of Applied Phycology, 2005, 17, 355-362.	2.8	5
186	Loss of Function of OsDCL1 Affects MicroRNA Accumulation and Causes Developmental Defects in Rice. Plant Physiology, 2005, 139, 296-305.	4.8	233
187	Isolation and expression analysis of salt up-regulated ESTs in upland rice using PCR-based subtractive suppression hybridization method. Plant Science, 2005, 168, 847-853.	3.6	38
188	In plants the alc gene expression system responds more rapidly following induction with acetaldehyde than with ethanol. FEBS Letters, 2003, 535, 136-140.	2.8	46
189	Ethanol Vapor Is an Efficient Inducer of the alc Gene Expression System in Model and Crop Plant Species. Plant Physiology, 2002, 129, 943-948.	4.8	57
190	Expression analysis ofgdcsP promoter from C3-C4 intermediate plantFlaveria anomala in transgenic rice. Science Bulletin, 2001, 46, 1635-1638.	1.7	9
191	Towards Understanding Plant Response to Heavy Metal Stress. , 0, , .		22
192	A NB-ARC-CRRSP Signaling Module Triggers HR-Like Cell Death and Associated Disease Resistance in Rice by Suppressing Antioxidant Defense Systems. SSRN Electronic Journal, 0, , .	0.4	2