Agostino Merico

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1483158/publications.pdf

Version: 2024-02-01

186265 265206 2,176 58 28 42 citations h-index g-index papers 61 61 61 2999 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Emiliania huxleyi: bloom observations and the conditions that induce them., 2004,, 75-97.		198
2	Extinction and dawn of the modern world in the Carnian (Late Triassic). Science Advances, 2020, 6, .	10.3	116
3	Eocene/Oligocene ocean de-acidification linked to Antarctic glaciation by sea-level fall. Nature, 2008, 452, 979-982.	27.8	95
4	Mechanisms shaping size structure and functional diversity of phytoplankton communities in the ocean. Scientific Reports, 2015, 5, 8918.	3.3	92
5	Multiple negative carbon-isotope excursions during the Carnian Pluvial Episode (Late Triassic). Earth-Science Reviews, 2018, 185, 732-750.	9.1	81
6	A trait-based approach for downscaling complexity in plankton ecosystem models. Ecological Modelling, 2009, 220, 3001-3010.	2.5	78
7	Nitrate: phosphate ratios and <i>Emiliania huxleyi</i> blooms. Limnology and Oceanography, 2005, 50, 1020-1024.	3.1	77
8	Modelling phytoplankton succession on the Bering Sea shelf: role of climate influences and trophic interactions in generating Emiliania huxleyi blooms 1997–2000. Deep-Sea Research Part I: Oceanographic Research Papers, 2004, 51, 1803-1826.	1.4	76
9	The long-term legacy of plastic mass production. Science of the Total Environment, 2020, 746, 141115.	8.0	73
10	Environmental and anthropogenic factors structuring waterbird habitats of tropical coastal lagoons: Implications for management. Biological Conservation, 2015, 186, 12-21.	4.1	70
11	Optimalityâ€based modeling of planktonic organisms. Limnology and Oceanography, 2011, 56, 2080-2094.	3.1	67
12	Analysis of satellite imagery forEmiliania huxleyiblooms in the Bering Sea before 1997. Geophysical Research Letters, 2003, 30, .	4.0	56
13	Importance of resuspended sediment dynamics for the phytoplankton spring bloom in a coastal marine ecosystem. Journal of Sea Research, 2009, 62, 214-228.	1.6	54
14	The cause of bright waters in the Bering Sea in winter. Continental Shelf Research, 2003, 23, 1579-1596.	1.8	49
15	Effect of seafloor depth on phytoplankton blooms in high-nitrate, low-chlorophyll (HNLC) regions. Journal of Geophysical Research, 2005, 110, n/a-n/a.	3.3	49
16	Is there any relationship between phytoplankton seasonal dynamics and the carbonate system?. Journal of Marine Systems, 2006, 59, 120-142.	2.1	48
17	Suitable Environmental Ranges for Potential Coral Reef Habitats in the Tropical Ocean. PLoS ONE, 2015, 10, e0128831.	2.5	48
18	Factors controlling the summer Emiliania huxleyi bloom in the Black Sea: A modeling study. Journal of Marine Systems, 2006, 59, 173-188.	2.1	45

#	Article	IF	CITATIONS
19	Incidence of marine debris in seabirds feeding at different water depths. Marine Pollution Bulletin, 2017, 119, 68-73.	5.0	45
20	Biogeographical patterns of phytoplankton community size structure in the oceans. Global Ecology and Biogeography, 2013, 22, 1060-1070.	5.8	44
21	Flexible phytoplankton functional type (FlexPFT) model: size-scaling of traits and optimal growth. Journal of Plankton Research, 2016, 38, 977-992.	1.8	43
22	Vulnerability of global coral reef habitat suitability to ocean warming, acidification and eutrophication. Global Change Biology, 2020, 26, 5646-5660.	9.5	41
23	Traits Shared by Marine Megafauna and Their Relationships With Ecosystem Functions and Services. Frontiers in Marine Science, 2019, 6, .	2.5	39
24	Phytoplankton size diversity and ecosystem function relationships across oceanic regions. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20180621.	2.6	38
25	A statistical analysis of climate variability and ecosystem response in the German Bight. Ocean Dynamics, 2008, 58, 169-186.	2.2	37
26	Phytoplankton size-diversity mediates an emergent trade-off in ecosystem functioning for rare versus frequent disturbances. Scientific Reports, 2016, 6, 34170.	3.3	36
27	Leaving misleading legacies behind in plankton ecosystem modelling. Journal of Plankton Research, 2014, 36, 613-620.	1.8	33
28	Severity of ocean acidification following the end-Cretaceous asteroid impact. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 6556-6561.	7.1	31
29	Modelling coral polyp calcification in relation to ocean acidification. Biogeosciences, 2012, 9, 4441-4454.	3.3	29
30	Sustaining diversity in trait-based models of phytoplankton communities. Frontiers in Ecology and Evolution, 2014, 2, .	2.2	29
31	The slow demise of Easter Island: insights from a modeling investigation. Frontiers in Ecology and Evolution, 2015, 3, .	2.2	29
32	Density and composition of surface and buried plastic debris in beaches of Senegal. Science of the Total Environment, 2020, 737, 139633.	8.0	27
33	Carbon and nutrient mixed layer dynamics in the Norwegian Sea. Biogeosciences, 2008, 5, 1395-1410.	3.3	26
34	A glimpse into the future composition of marine phytoplankton communities. Frontiers in Marine Science, 2014, 1 , .	2.5	25
35	Anthropogenic debris accumulated in nests of seabirds in an uninhabited island in West Africa. Biological Conservation, 2019, 236, 586-592.	4.1	25
36	Quantifying the relative importance of transcellular and paracellular ion transports to coral polyp calcification. Frontiers in Earth Science, 2015, 2, .	1.8	22

#	Article	IF	CITATIONS
37	The impact of Indonesian peatland degradation on downstream marine ecosystems and the global carbon cycle. Global Change Biology, 2016, 22, 325-337.	9.5	22
38	Stranding Events of Kogia Whales along the Brazilian Coast. PLoS ONE, 2016, 11, e0146108.	2.5	21
39	Confidence intervals and sample size for estimating the prevalence of plastic debris in seabird nests. Environmental Pollution, 2020, 263, 114394.	7.5	17
40	Human Adaptive Behavior in Common Pool Resource Systems. PLoS ONE, 2012, 7, e52763.	2.5	14
41	Assessment of trace elements, POPs, 210Po and stable isotopes (15N and 13C) in a rare filter-feeding shark: The megamouth. Marine Pollution Bulletin, 2015, 95, 402-406.	5.0	13
42	Mortality of seabirds migrating across the tropical Atlantic in relation to oceanographic processes. Animal Conservation, 2020, 23, 307-319.	2.9	13
43	PhytoSFDM version 1.0.0: Phytoplankton Size and Functional Diversity Model. Geoscientific Model Development, 2016, 9, 4071-4085.	3.6	12
44	Interspecific variation of essential and non-essential trace elements in sympatric seabirds. Environmental Pollution, 2018, 242, 470-479.	7.5	12
45	Sizing-up nutrient uptake kinetics: combining a physiological trade-off with size-scaling of phytoplankton traits. Marine Ecology - Progress Series, 2014, 511, 33-39.	1.9	12
46	Rise of calcispheres during the Carnian Pluvial Episode (Late Triassic). Global and Planetary Change, 2021, 200, 103453.	3.5	11
47	Phenological shifts of three interacting zooplankton groups in relation to climate change. Global Change Biology, 2010, 16, 3144-3153.	9.5	8
48	A Trait-Based Model for Describing the Adaptive Dynamics of Coral-Algae Symbiosis. Frontiers in Ecology and Evolution, 2017, 5, .	2.2	7
49	Models of Easter Island Human-Resource Dynamics: Advances and Gaps. Frontiers in Ecology and Evolution, 2017, 5, .	2.2	7
50	Tipping points and user-resource system collapse in a simple model of evolutionary dynamics. Ecological Complexity, 2013, 13, 46-52.	2.9	6
51	Massive coral tissue ablations in reefs of Pacific Costa Rica. Galaxea, 2014, 16, 13-14.	0.7	5
52	Sundaland Peat Carbon Dynamics and Its Contribution to the Holocene Atmospheric CO ₂ Concentration. Global Biogeochemical Cycles, 2018, 32, 704-719.	4.9	5
53	Extraction Behaviour and Income Inequalities Resulting from a Common Pool Resource Exploitation. Sustainability, 2019, 11, 536.	3.2	5
54	Effects of cooperation and different characteristics of Marine Protected Areas in a simulated small-scale fishery. Ecological Complexity, 2020, 44, 100876.	2.9	4

AGOSTINO MERICO

#	Article	IF	CITATION
55	A carbonate platform associated with shallow cold methane seeps in Golfo Dulce, Pacific Costa Rica. Galaxea, 2015, 17, 13-14.	0.7	4
56	OGUMIâ€"A new mobile application to conduct common-pool resource experiments in continuous time. PLoS ONE, 2017, 12, e0178951.	2.5	3
57	Modelling the acclimation capacity of coral reefs to a warming ocean. PLoS Computational Biology, 2022, 18, e1010099.	3.2	1
58	Communication Among Harvesters Leads to Sustainable Fishing Behaviour in a Continuous Time Common Pool Resource Experiment. Frontiers in Marine Science, 2021, 8, .	2.5	0