List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1482915/publications.pdf Version: 2024-02-01

		1238	911
455	67,172	110	241
papers	citations	h-index	g-index
491	491	491	42304
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Reduced Replication of Highly Pathogenic Avian Influenza Virus in Duck Endothelial Cells Compared to Chicken Endothelial Cells Is Associated with Stronger Antiviral Responses. Viruses, 2022, 14, 165.	3.3	11
2	Tropism of Highly Pathogenic Avian Influenza H5 Viruses from the 2020/2021 Epizootic in Wild Ducks and Geese. Viruses, 2022, 14, 280.	3.3	16
3	Pathology and virology of natural highly pathogenic avian influenza H5N8 infection in wild Common buzzards (Buteo buteo). Scientific Reports, 2022, 12, 920.	3.3	15
4	Contribution of Neuraminidase to the Efficacy of Seasonal Split Influenza Vaccines in the Ferret Model. Journal of Virology, 2022, 96, jvi0195921.	3.4	8
5	Optimizing environmental safety and cell-killing potential of oncolytic Newcastle Disease virus with modifications of the V, F and HN genes. PLoS ONE, 2022, 17, e0263707.	2.5	2
6	Defining the risk of SARS-CoV-2 variants on immune protection. Nature, 2022, 605, 640-652.	27.8	117
7	HIGHLY PATHOGENIC AVIAN INFLUENZA VIRUS (H5N8) OUTBREAK IN A WILD BIRD RESCUE CENTER, THE NETHERLANDS: CONSEQUENCES AND RECOMMENDATIONS. Journal of Zoo and Wildlife Medicine, 2022, 53, 41-49.	0.6	1
8	Antigenic cartography of SARS-CoV-2 reveals that Omicron BA.1 and BA.2 are antigenically distinct. Science Immunology, 2022, 7, .	11.9	89
9	Robustness of the Ferret Model for Influenza Risk Assessment Studies: a Cross-Laboratory Exercise. MBio, 2022, 13, .	4.1	12
10	Pulmonary lesions following inoculation with the SARS-CoV-2 Omicron BA.1 (B.1.1.529) variant in Syrian golden hamsters. Emerging Microbes and Infections, 2022, 11, 1778-1786.	6.5	7
11	Comparison between intratumoral and intravenously administered oncolytic virus therapy with Newcastle disease virus in a xenograft murine model for pancreatic adenocarcinoma. Heliyon, 2022, 8, e09915.	3.2	2
12	Insertions of codons encoding basic amino acids in H7 hemagglutinins of influenza A viruses occur by recombination with RNA at hotspots near snoRNA binding sites. Rna, 2021, 27, 123-132.	3.5	10
13	Highly Pathogenic Avian Influenza Viruses at the Wild–Domestic Bird Interface in Europe: Future Directions for Research and Surveillance. Viruses, 2021, 13, 212.	3.3	121
14	Economic evaluation of whole genome sequencing for pathogen identification and surveillance – results of case studies in Europe and the Americas 2016 to 2019. Eurosurveillance, 2021, 26, .	7.0	25
15	SARS-CoV and SARS-CoV-2 are transmitted through the air between ferrets over more than one meter distance. Nature Communications, 2021, 12, 1653.	12.8	120
16	Diversity and Reassortment Rate of Influenza A Viruses in Wild Ducks and Gulls. Viruses, 2021, 13, 1010.	3.3	11
17	Analysis of the Evolution of Pandemic Influenza A(H1N1) Virus Neuraminidase Reveals Entanglement of Different Phenotypic Characteristics. MBio, 2021, 12,	4.1	11
18	Secondary substitutions in the hemagglutinin and neuraminidase genes associated with neuraminidase inhibitor resistance are rare in the Influenza Resistance Information Study (IRIS). Antiviral Research, 2021, 189, 105060.	4.1	2

RON A M FOUCHIER

#	Article	IF	CITATIONS
19	Small quantities of respiratory syncytial virus RNA only in large droplets around infants hospitalized with acute respiratory infections. Antimicrobial Resistance and Infection Control, 2021, 10, 100.	4.1	3
20	Comparison of three air samplers for the collection of four nebulized respiratory viruses ― Collection of respiratory viruses from air –. Indoor Air, 2021, 31, 1874-1885.	4.3	17
21	Seasonal coronavirus–specific B cells with limited SARS-CoV-2 cross-reactivity dominate the IgG response in severe COVID-19. Journal of Clinical Investigation, 2021, 131, .	8.2	49
22	The next phase of SARS-CoV-2 surveillance: real-time molecular epidemiology. Nature Medicine, 2021, 27, 1518-1524.	30.7	178
23	Characterization of changes in the hemagglutinin that accompanied the emergence of H3N2/1968 pandemic influenza viruses. PLoS Pathogens, 2021, 17, e1009566.	4.7	5
24	Glycan remodeled erythrocytes facilitate antigenic characterization of recent A/H3N2 influenza viruses. Nature Communications, 2021, 12, 5449.	12.8	35
25	Whole genome sequencing of human metapneumoviruses from clinical specimens using MinION nanopore technology. Virus Research, 2021, 302, 198490.	2.2	3
26	Emergence and spread of novel H5N8, H5N5 and H5N1 clade 2.3.4.4 highly pathogenic avian influenza in 2020. Emerging Microbes and Infections, 2021, 10, 148-151.	6.5	125
27	ANTIBODIES AGAINST INFLUENZA VIRUS TYPES A AND B IN CANADIAN SEALS. Journal of Wildlife Diseases, 2021, 57, 808-819.	0.8	3
28	Cross-Reactivity Conferred by Homologous and Heterologous Prime-Boost A/H5 Influenza Vaccination Strategies in Humans: A Literature Review. Vaccines, 2021, 9, 1465.	4.4	4
29	Viral Kinetics and Resistance Development in Children Treated with Neuraminidase Inhibitors: The Influenza Resistance Information Study (IRIS). Clinical Infectious Diseases, 2020, 71, 1186-1194.	5.8	16
30	Hemagglutinin Traits Determine Transmission of Avian A/H10N7 Influenza Virus between Mammals. Cell Host and Microbe, 2020, 28, 602-613.e7.	11.0	20
31	Immunometabolism pathways as the basis for innovative anti-viral strategies (INITIATE): A Marie Sklodowska-Curie innovative training network. Virus Research, 2020, 287, 198094.	2.2	2
32	Determinants of the efficacy of viro-immunotherapy: A review. Cytokine and Growth Factor Reviews, 2020, 56, 124-132.	7.2	1
33	COVIDâ€19 vaccines: the importance of transparency and factâ€based education. British Journal of Clinical Pharmacology, 2020, 86, 2107-2110.	2.4	13
34	Genesis and spread of multiple reassortants during the 2016/2017 H5 avian influenza epidemic in Eurasia. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 20814-20825.	7.1	63
35	How the COVID-19 pandemic highlights the necessity of animal research. Current Biology, 2020, 30, R1014-R1018.	3.9	26
36	Diverse variola virus (smallpox) strains were widespread in northern Europe in the Viking Age. Science, 2020, 369, .	12.6	108

#	Article	IF	CITATIONS
37	High Immunogenicity to Influenza Vaccination in Crohn's Disease Patients Treated with Ustekinumab. Vaccines, 2020, 8, 455.	4.4	35
38	Enterotropism of highly pathogenic avian influenza virus H5N8 from the 2016/2017 epidemic in some wild bird species. Veterinary Research, 2020, 51, 117.	3.0	23
39	2020 taxonomic update for phylum Negarnaviricota (Riboviria: Orthornavirae), including the large orders Bunyavirales and Mononegavirales. Archives of Virology, 2020, 165, 3023-3072.	2.1	184
40	Phenotypic Effects of Substitutions within the Receptor Binding Site of Highly Pathogenic Avian Influenza H5N1 Virus Observed during Human Infection. Journal of Virology, 2020, 94, .	3.4	8
41	Genetic and antigenic characterization of influenza A/H5N1 viruses isolated from patients in Indonesia, 2008–2015. Virus Genes, 2020, 56, 417-429.	1.6	4
42	Virus subtype-specific suppression of MAVS aggregation and activation by PB1-F2 protein of influenza A (H7N9) virus. PLoS Pathogens, 2020, 16, e1008611.	4.7	21
43	Pandemic potential of highly pathogenic avian influenza clade 2.3.4.4 A(H5) viruses. Reviews in Medical Virology, 2020, 30, e2099.	8.3	70
44	SARS-CoV-2 is transmitted via contact and via the air between ferrets. Nature Communications, 2020, 11, 3496.	12.8	395
45	Influenza A viruses are transmitted via the air from the nasal respiratory epithelium of ferrets. Nature Communications, 2020, 11, 766.	12.8	130
46	Comparison of sequencing methods and data processing pipelines for whole genome sequencing and minority single nucleotide variant (mSNV) analysis during an influenza A/H5N8 outbreak. PLoS ONE, 2020, 15, e0229326.	2.5	1
47	Outbreak Severity of Highly Pathogenic Avian Influenza A(H5N8) Viruses Is Inversely Correlated to Polymerase Complex Activity and Interferon Induction. Journal of Virology, 2020, 94, .	3.4	10
48	Phylogeography and Antigenic Diversity of Low-Pathogenic Avian Influenza H13 and H16 Viruses. Journal of Virology, 2020, 94, .	3.4	16
49	Comparative pathogenesis of COVID-19, MERS, and SARS in a nonhuman primate model. Science, 2020, 368, 1012-1015.	12.6	802
50	Characterizing Emerging Canine H3 Influenza Viruses. PLoS Pathogens, 2020, 16, e1008409.	4.7	29
51	A30â€ f Avian influenza viruses in wild birds: Virus evolution in a multi-host ecosystem. Virus Evolution, 2019, 5, .	4.9	0
52	Conserved structural RNA domains in regions coding for cleavage site motifs in hemagglutinin genes of influenza viruses. Virus Evolution, 2019, 5, vez034.	4.9	15
53	Susceptibility of Chickens to Low Pathogenic Avian Influenza (LPAI) Viruses of Wild Bird– and Poultry–Associated Subtypes. Viruses, 2019, 11, 1010.	3.3	14
54	Antigenic Change in Human Influenza A(H2N2) Viruses Detected by Using Human Plasma from Aged and Younger Adult Individuals. Viruses, 2019, 11, 978.	3.3	3

#	Article	IF	CITATIONS
55	Circulation of low pathogenic avian influenza (LPAI) viruses in wild birds and poultry in the Netherlands, 2006–2016. Scientific Reports, 2019, 9, 13681.	3.3	18
56	Evidence of the Presence of Low Pathogenic Avian Influenza A Viruses in Wild Waterfowl in 2018 in South Africa. Pathogens, 2019, 8, 163.	2.8	8
57	Taxonomy of the order Mononegavirales: second update 2018. Archives of Virology, 2019, 164, 1233-1244.	2.1	70
58	The Molecular Basis for Antigenic Drift of Human A/H2N2 Influenza Viruses. Journal of Virology, 2019, 93, .	3.4	22
59	Taxonomy of the order Mononegavirales: update 2019. Archives of Virology, 2019, 164, 1967-1980.	2.1	224
60	Co-circulation of genetically distinct highly pathogenic avian influenza A clade 2.3.4.4 (H5N6) viruses in wild waterfowl and poultry in Europe and East Asia, 2017–18. Virus Evolution, 2019, 5, vez004.	4.9	63
61	Genetic analysis identifies potential transmission of low pathogenic avian influenza viruses between poultry farms. Transboundary and Emerging Diseases, 2019, 66, 1653-1664.	3.0	8
62	Antigenic Drift of the Influenza A(H1N1)pdm09 Virus Neuraminidase Results in Reduced Effectiveness of A/California/7/2009 (H1N1pdm09)-Specific Antibodies. MBio, 2019, 10, .	4.1	57
63	ICTV Virus Taxonomy Profile: Paramyxoviridae. Journal of General Virology, 2019, 100, 1593-1594.	2.9	194
64	Co-circulation of influenza A(H1N1)pdm09 and influenza A(H3N2) viruses, World Health Organization (WHO) European Region, October 2018 to February 2019. Eurosurveillance, 2019, 24, .	7.0	17
65	Epistatic interactions can moderate the antigenic effect of substitutions in haemagglutinin of influenza H3N2 virus. Journal of General Virology, 2019, 100, 773-777.	2.9	13
66	Wild ducks excrete highly pathogenic avian influenza virus H5N8 (2014–2015) without clinical or pathological evidence of disease. Emerging Microbes and Infections, 2018, 7, 1-10.	6.5	62
67	Induction of Cross-Clade Antibody and T-Cell Responses by a Modified Vaccinia Virus Ankara–Based Influenza A(H5N1) Vaccine in a Randomized Phase 1/2a Clinical Trial. Journal of Infectious Diseases, 2018, 218, 614-623.	4.0	25
68	The roles of migratory and resident birds in local avian influenza infection dynamics. Journal of Applied Ecology, 2018, 55, 2963-2975.	4.0	24
69	NAction! How Can Neuraminidase-Based Immunity Contribute to Better Influenza Virus Vaccines?. MBio, 2018, 9, .	4.1	192
70	Taxonomy of the order Mononegavirales: update 2018. Archives of Virology, 2018, 163, 2283-2294.	2.1	153
71	H1N1pdm09 Influenza Virus and Its Descendants Lack Extra-epitopic Amino Acid Residues Associated With Reduced Recognition by M158-66-Specific CD8+ T Cells. Journal of Infectious Diseases, 2018, 218, 581-585.	4.0	6
72	Transmission routes of respiratory viruses among humans. Current Opinion in Virology, 2018, 28, 142-151.	5.4	440

#	Article	IF	CITATIONS
73	Problems of classification in the family Paramyxoviridae. Archives of Virology, 2018, 163, 1395-1404.	2.1	30
74	Effects of pre-existing orthopoxvirus-specific immunity on the performance of Modified Vaccinia virus Ankara-based influenza vaccines. Scientific Reports, 2018, 8, 6474.	3.3	18
75	Variation at Extra-epitopic Amino Acid Residues Influences Suppression of Influenza Virus Replication by M1 58-66 Epitope-Specific CD8 + T Lymphocytes. Journal of Virology, 2018, 92, .	3.4	5
76	Armed oncolytic viruses: A kick-start for anti-tumor immunity. Cytokine and Growth Factor Reviews, 2018, 41, 28-39.	7.2	110
77	Ferrets as Models for Influenza Virus Transmission Studies and Pandemic Risk Assessments. Emerging Infectious Diseases, 2018, 24, 965-971.	4.3	56
78	Where do all the subtypes go? Temporal dynamics of H8–H12 influenza A viruses in waterfowl. Virus Evolution, 2018, 4, vey025.	4.9	23
79	Avian Influenza Viruses in Wild Birds: Virus Evolution in a Multihost Ecosystem. Journal of Virology, 2018, 92, .	3.4	83
80	Ancient human parvovirus B19 in Eurasia reveals its long-term association with humans. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 7557-7562.	7.1	64
81	Influenza. Nature Reviews Disease Primers, 2018, 4, 3.	30.5	880
82	Human Clade 2.3.4.4 A/H5N6 Influenza Virus Lacks Mammalian Adaptation Markers and Does Not Transmit via the Airborne Route between Ferrets. MSphere, 2018, 3, .	2.9	42
83	Receptor-binding properties of influenza viruses isolated from gulls. Virology, 2018, 522, 37-45.	2.4	33
84	Influenza A/H3N2 virus infection in immunocompromised ferrets and emergence of antiviral resistance. PLoS ONE, 2018, 13, e0200849.	2.5	15
85	Ancient hepatitis B viruses from the Bronze Age to the Medieval period. Nature, 2018, 557, 418-423.	27.8	155
86	Dominant influenza A(H3N2) and B/Yamagata virus circulation in EU/EEA, 2016/17 and 2017/18 seasons, respectively. Eurosurveillance, 2018, 23, .	7.0	56
87	Case of seasonal reassortant A(H1N2) influenza virus infection, the Netherlands, March 2018. Eurosurveillance, 2018, 23, .	7.0	10
88	Local amplification of highly pathogenic avian influenza H5N8 viruses in wild birds in the Netherlands, 2016 to 2017. Eurosurveillance, 2018, 23, .	7.0	57
89	An Epizootiological Report of the Re-emergence and Spread of a Lineage of Virulent Newcastle Disease Virus into Eastern Europe. Transboundary and Emerging Diseases, 2017, 64, 1001-1007.	3.0	31
90	Editorial overview: Intraspecies transmission of viruses: Human-to-human transmission. Current Opinion in Virology, 2017, 22, v-vii.	5.4	1

#	Article	IF	CITATIONS
91	Taxonomy of the order Mononegavirales: update 2017. Archives of Virology, 2017, 162, 2493-2504.	2.1	173
92	Recovery of a Paramyxovirus, the Human Metapneumovirus, from Cloned cDNA. Methods in Molecular Biology, 2017, 1602, 125-139.	0.9	2
93	Ecology and Evolution of Avian Influenza Viruses. , 2017, , 621-640.		22
94	Global epidemiology of non-influenza RNA respiratory viruses: data gaps and a growing need for surveillance. Lancet Infectious Diseases, The, 2017, 17, e320-e326.	9.1	92
95	Modified Vaccinia Virus Ankara Preferentially Targets Antigen Presenting Cells In Vitro, Ex Vivo and In Vivo. Scientific Reports, 2017, 7, 8580.	3.3	34
96	Mutations Driving Airborne Transmission of A/H5N1 Virus in Mammals Cause Substantial Attenuation in Chickens only when combined. Scientific Reports, 2017, 7, 7187.	3.3	16
97	A compensatory mutagenesis study of a conserved hairpin in the M gene segment of influenza A virus shows its role in virus replication. RNA Biology, 2017, 14, 1606-1616.	3.1	14
98	Mechanisms and risk factors for mutation from low to highly pathogenic avian influenza virus. EFSA Supporting Publications, 2017, 14, 1287E.	0.7	17
99	Report about HPAI introduction into Europe, HPAI detection in wild birds and HPAI spread between European holdings in the period 2005â€2015. EFSA Supporting Publications, 2017, 14, 1284E.	0.7	2
100	LPAI detection in wild birds and LPAI spread between European holdings in the period 2005â€2015. EFSA Supporting Publications, 2017, 14, 1286E.	0.7	0
101	Risk for Low Pathogenicity Avian Influenza Virus on Poultry Farms, the Netherlands, 2007–2013. Emerging Infectious Diseases, 2017, 23, 1510-1516.	4.3	34
102	Delineating morbillivirus entry, dissemination and airborne transmission by studying in vivo competition of multicolor canine distemper viruses in ferrets. PLoS Pathogens, 2017, 13, e1006371.	4.7	37
103	No evidence that migratory geese disperse avian influenza viruses from breeding to wintering ground. PLoS ONE, 2017, 12, e0177790.	2.5	9
104	Deaths among Wild Birds during Highly Pathogenic Avian Influenza A(H5N8) Virus Outbreak, the Netherlands. Emerging Infectious Diseases, 2017, 23, 2050-2054.	4.3	76
105	ICTV Virus Taxonomy Profile: Pneumoviridae. Journal of General Virology, 2017, 98, 2912-2913.	2.9	215
106	Neuraminidase-mediated haemagglutination of recent human influenza A(H3N2) viruses is determined by arginine 150 flanking the neuraminidase catalytic site. Journal of General Virology, 2017, 98, 1274-1281.	2.9	34
107	Discordant detection of avian influenza virus subtypes in time and space between poultry and wild birds; Towards improvement of surveillance programs. PLoS ONE, 2017, 12, e0173470.	2.5	43
108	Lack of virological and serological evidence for continued circulation of highly pathogenic avian influenza H5N8 virus in wild birds in the Netherlands, 14 November 2014 to 31 January 2016. Eurosurveillance, 2016, 21, .	7.0	30

#	Article	IF	CITATIONS
109	Subtype-specific structural constraints in the evolution of influenza A virus hemagglutinin genes. Scientific Reports, 2016, 6, 38892.	3.3	27
110	Taxonomy of the order Mononegavirales: update 2016. Archives of Virology, 2016, 161, 2351-2360.	2.1	407
111	Antiviral Activity of Favipiravir (T-705) against a Broad Range of Paramyxoviruses <i>In Vitro</i> and against Human Metapneumovirus in Hamsters. Antimicrobial Agents and Chemotherapy, 2016, 60, 4620-4629.	3.2	39
112	Multiple Natural Substitutions in Avian Influenza A Virus PB2 Facilitate Efficient Replication in Human Cells. Journal of Virology, 2016, 90, 5928-5938.	3.4	47
113	Increased Protein Degradation Improves Influenza Virus Nucleoprotein-Specific CD8 ⁺ T Cell Activation <i>In Vitro</i> but Not in C57BL/6 Mice. Journal of Virology, 2016, 90, 10209-10219.	3.4	7
114	Role for migratory wild birds in the global spread of avian influenza H5N8. Science, 2016, 354, 213-217.	12.6	362
115	Possibility and Challenges of Conversion of Current Virus Species Names to Linnaean Binomials. Systematic Biology, 2016, 66, syw096.	5.6	17
116	Hampered performance of migratory swans: intra- and inter-seasonal effects of avian influenza virus. Integrative and Comparative Biology, 2016, 56, 317-329.	2.0	21
117	Antigenic Cartography of H9 Avian Influenza Virus and Its Application to Vaccine Selection. Avian Diseases, 2016, 60, 218-225.	1.0	14
118	Influenza virus damages the alveolar barrier by disrupting epithelial cell tight junctions. European Respiratory Journal, 2016, 47, 954-966.	6.7	158
119	Amino Acid Substitutions That Affect Receptor Binding and Stability of the Hemagglutinin of Influenza A/H7N9 Virus. Journal of Virology, 2016, 90, 3794-3799.	3.4	44
120	Differential Recognition of Influenza A Viruses by M1 _{58–66} Epitope-Specific CD8 ⁺ T Cells Is Determined by Extraepitopic Amino Acid Residues. Journal of Virology, 2016, 90, 1009-1022.	3.4	23
121	Spatiotemporal Analysis of the Genetic Diversity of Seal Influenza A(H10N7) Virus, Northwestern Europe. Journal of Virology, 2016, 90, 4269-4277.	3.4	28
122	Influenza A virus transmission via respiratory aerosols or droplets as it relates to pandemic potential. FEMS Microbiology Reviews, 2016, 40, 68-85.	8.6	86
123	Antigenic Maps of Influenza A(H3N2) Produced With Human Antisera Obtained After Primary Infection. Journal of Infectious Diseases, 2016, 213, 31-38.	4.0	35
124	Influenza A (H10N7) Virus Causes Respiratory Tract Disease in Harbor Seals and Ferrets. PLoS ONE, 2016, 11, e0159625.	2.5	16
125	Severe acute respiratory infection caused by swine influenza virus in a child necessitating extracorporeal membrane oxygenation (ECMO), the Netherlands, October 2016. Eurosurveillance, 2016, 21, .	7.0	19
126	The global antigenic diversity of swine influenza A viruses. ELife, 2016, 5, e12217.	6.0	146

#	Article	IF	CITATIONS
127	Recombinant Immunomodulating Lentogenic or Mesogenic Oncolytic Newcastle Disease Virus for Treatment of Pancreatic Adenocarcinoma. Viruses, 2015, 7, 2980-2998.	3.3	33
128	Avian Influenza A(H10N7) Virus–Associated Mass Deaths among Harbor Seals. Emerging Infectious Diseases, 2015, 21, 720-722.	4.3	92
129	Low Virulence and Lack of Airborne Transmission of the Dutch Highly Pathogenic Avian Influenza Virus H5N8 in Ferrets. PLoS ONE, 2015, 10, e0129827.	2.5	40
130	Reply to "Comments on Fouchier's Calculation of Risk and Elapsed Time for Escape of a Laboratory-Acquired Infection from His Laboratory― MBio, 2015, 6, .	4.1	6
131	Adaptation of Pandemic H2N2 Influenza A Viruses in Humans. Journal of Virology, 2015, 89, 2442-2447.	3.4	29
132	Minor differences in body condition and immune status between avian influenza virusâ€infected and noninfected mallards: a sign of coevolution?. Ecology and Evolution, 2015, 5, 436-449.	1.9	31
133	Pathogenesis of Infection with 2009 Pandemic H1N1 Influenza Virus in Isogenic Guinea Pigs after Intranasal or Intratracheal Inoculation. American Journal of Pathology, 2015, 185, 643-650.	3.8	13
134	Studies on Influenza Virus Transmission between Ferrets: the Public Health Risks Revisited. MBio, 2015, 6, .	4.1	24
135	How a virus travels the world. Science, 2015, 347, 616-617.	12.6	156
136	Identification of Amino Acid Substitutions Supporting Antigenic Change of Influenza A(H1N1)pdm09 Viruses. Journal of Virology, 2015, 89, 3763-3775.	3.4	73
137	Human Influenza A Virus–Specific CD8+ T-Cell Response Is Long-lived. Journal of Infectious Diseases, 2015, 212, 81-85.	4.0	49
138	Weak negative associations between avian influenza virus infection and movement behaviour in a key host species, the mallard Anas platyrhynchos. Oikos, 2015, 124, 1293-1303.	2.7	32
139	H10N8 and H6N1 Maintain Avian Receptor Binding. Cell Host and Microbe, 2015, 17, 292-294.	11.0	5
140	Influenza A virus evolution and spatio-temporal dynamics in Eurasian wild birds: a phylogenetic and phylogeographical study of whole-genome sequence data. Journal of General Virology, 2015, 96, 2050-2060.	2.9	23
141	Cidofovir Gel as Treatment of Follicular Spicules in Multiple Myeloma. JAMA Dermatology, 2015, 151, 82.	4.1	8
142	Optimization of an enzyme-linked lectin assay suitable for rapid antigenic characterization of the neuraminidase of human influenza A(H3N2) viruses. Journal of Virological Methods, 2015, 217, 55-63.	2.1	36
143	A Single Immunization With Modified Vaccinia Virus Ankara-Based Influenza Virus H7 Vaccine Affords Protection in the Influenza A(H7N9) Pneumonia Ferret Model. Journal of Infectious Diseases, 2015, 211, 791-800.	4.0	29
144	Antibody Titer Has Positive Predictive Value for Vaccine Protection against Challenge with Natural Antigenic-Drift Variants of H5N1 High-Pathogenicity Avian Influenza Viruses from Indonesia. Journal of Virology, 2015, 89, 3746-3762.	3.4	80

#	Article	IF	CITATIONS
145	Induction of Influenza (H5N8) Antibodies by Modified Vaccinia Virus Ankara H5N1 Vaccine. Emerging Infectious Diseases, 2015, 21, 1086-1088.	4.3	16
146	Asymptomatic Middle East Respiratory Syndrome Coronavirus Infection in Rabbits. Journal of Virology, 2015, 89, 6131-6135.	3.4	73
147	Heterosubtypic immunity to H7N9 influenza virus in isogenic guinea pigs after infection with pandemic H1N1 virus. Vaccine, 2015, 33, 6977-6982.	3.8	5
148	Virus replication kinetics and pathogenesis of infection with H7N9 influenza virus in isogenic guinea pigs upon intratracheal inoculation. Vaccine, 2015, 33, 6983-6987.	3.8	1
149	Dengue viruses cluster antigenically but not as discrete serotypes. Science, 2015, 349, 1338-1343.	12.6	195
150	Long-Term Effect of Serial Infections with H13 and H16 Low-Pathogenic Avian Influenza Viruses in Black-Headed Gulls. Journal of Virology, 2015, 89, 11507-11522.	3.4	36
151	The Cause of Follicular Spicules in Multiple Myeloma—Reply. JAMA Dermatology, 2015, 151, 458.	4.1	2
152	Gain-of-function experiments: time for a real debate. Nature Reviews Microbiology, 2015, 13, 58-64.	28.6	49
153	Assessment of the antiviral properties of recombinant surfactant protein D against influenza B virus in vitro. Virus Research, 2015, 195, 43-46.	2.2	10
154	Influenza B virus-specific CD8+ T-lymphocytes strongly cross-react with viruses of the opposing influenza B lineage. Journal of General Virology, 2015, 96, 2061-2073.	2.9	41
155	Optimisations and Challenges Involved in the Creation of Various Bioluminescent and Fluorescent Influenza A Virus Strains for In Vitro and In Vivo Applications. PLoS ONE, 2015, 10, e0133888.	2.5	26
156	Wild bird surveillance around outbreaks of highly pathogenic avian influenza A(H5N8) virus in the Netherlands, 2014, within the context of global flyways. Eurosurveillance, 2015, 20, .	7.0	89
157	Migratory Birds Reinforce Local Circulation of Avian Influenza Viruses. PLoS ONE, 2014, 9, e112366.	2.5	35
158	RNA structural constraints in the evolution of the influenza A virus genome NP segment. RNA Biology, 2014, 11, 942-952.	3.1	40
159	Role of receptor binding specificity in influenza A virus transmission and pathogenesis. EMBO Journal, 2014, 33, 1614-1614.	7.8	4
160	Epidemiology of Influenza A Virus among Black-headed Gulls, the Netherlands, 2006–2010. Emerging Infectious Diseases, 2014, 20, 138-141.	4.3	49
161	Circulation of Reassortant Influenza A(H7N9) Viruses in Poultry and Humans, Guangdong Province, China, 2013. Emerging Infectious Diseases, 2014, 20, 2034-2040.	4.3	41
162	Antigenic Variation of Clade 2.1 H5N1 Virus Is Determined by a Few Amino Acid Substitutions Immediately Adjacent to the Receptor Binding Site. MBio, 2014, 5, e01070-14.	4.1	57

#	Article	IF	CITATIONS
163	Juveniles and migrants as drivers for seasonal epizootics of avian influenza virus. Journal of Animal Ecology, 2014, 83, 266-275.	2.8	121
164	Long-term variation in influenza A virus prevalence and subtype diversity in migratory mallards in northern Europe. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20140098.	2.6	103
165	Phylogeny of Spanish swine influenza viruses isolated from respiratory disease outbreaks and evolution of swine influenza virus within an endemically infected farm. Veterinary Microbiology, 2014, 170, 266-277.	1.9	11
166	Role of receptor binding specificity in influenza A virus transmission and pathogenesis. EMBO Journal, 2014, 33, 823-841.	7.8	340
167	MERS: emergence of a novel human coronavirus. Current Opinion in Virology, 2014, 5, 58-62.	5.4	170
168	Host adaptation and transmission of influenza A viruses in mammals. Emerging Microbes and Infections, 2014, 3, 1-10.	6.5	132
169	Excessive production and extreme editing of human metapneumovirus defective interfering RNA is associated with type I IFN induction. Journal of General Virology, 2014, 95, 1625-1633.	2.9	40
170	Determinants of virulence of influenza A virus. European Journal of Clinical Microbiology and Infectious Diseases, 2014, 33, 479-490.	2.9	77
171	Genomewide Analysis of Reassortment and Evolution of Human Influenza A(H3N2) Viruses Circulating between 1968 and 2011. Journal of Virology, 2014, 88, 2844-2857.	3.4	137
172	Recombinant porcine surfactant protein D inhibits influenza A virus replication ex vivo. Virus Research, 2014, 181, 22-26.	2.2	11
173	Pathogenesis of influenza-induced acute respiratory distress syndrome. Lancet Infectious Diseases, The, 2014, 14, 57-69.	9.1	412
174	Human Cytotoxic T Lymphocytes Directed to Seasonal Influenza A Viruses Cross-React with the Newly Emerging H7N9 Virus. Journal of Virology, 2014, 88, 1684-1693.	3.4	101
175	Antibody landscapes after influenza virus infection or vaccination. Science, 2014, 346, 996-1000.	12.6	379
176	Safety and immunogenicity of a modified-vaccinia-virus-Ankara-based influenza A H5N1 vaccine: a randomised, double-blind phase 1/2a clinical trial. Lancet Infectious Diseases, The, 2014, 14, 1196-1207.	9.1	82
177	An optimized enzyme-linked lectin assay to measure influenza A virus neuraminidase inhibition antibody titers in human sera. Journal of Virological Methods, 2014, 210, 7-14.	2.1	159
178	Emergence of the Virulence-Associated PB2 E627K Substitution in a Fatal Human Case of Highly Pathogenic Avian Influenza Virus A(H7N7) Infection as Determined by Illumina Ultra-Deep Sequencing. Journal of Virology, 2014, 88, 1694-1702.	3.4	64
179	Adenosine Deaminase Acts as a Natural Antagonist for Dipeptidyl Peptidase 4-Mediated Entry of the Middle East Respiratory Syndrome Coronavirus. Journal of Virology, 2014, 88, 1834-1838.	3.4	141
180	Novel G3/DT adjuvant promotes the induction of protective T cells responses after vaccination with a seasonal trivalent inactivated split-virion influenza vaccine. Vaccine, 2014, 32, 5614-5623.	3.8	13

#	Article	IF	CITATIONS
181	Avian Influenza Virus Transmission to Mammals. Current Topics in Microbiology and Immunology, 2014, 385, 137-155.	1.1	57
182	Different responses of human pancreatic adenocarcinoma cell lines to oncolytic Newcastle disease virus infection. Cancer Gene Therapy, 2014, 21, 24-30.	4.6	30
183	Intravenously injected Newcastle disease virus in non-human primates is safe to use for oncolytic virotherapy. Cancer Gene Therapy, 2014, 21, 463-471.	4.6	19
184	Identification, Characterization, and Natural Selection of Mutations Driving Airborne Transmission of A/H5N1 Virus. Cell, 2014, 157, 329-339.	28.9	237
185	Serological Evidence for Non-Lethal Exposures of Mongolian Wild Birds to Highly Pathogenic Avian Influenza H5N1 Virus. PLoS ONE, 2014, 9, e113569.	2.5	18
186	Epidemiological and genetic investigations of human-to-human transmission of zoonotic influenza viruses. Eurosurveillance, 2014, 19, .	7.0	5
187	Limited airborne transmission of H7N9 influenza A virus between ferrets. Nature, 2013, 501, 560-563.	27.8	182
188	Gain-of-function experiments on H7N9. Nature, 2013, 500, 150-151.	27.8	24
189	Transmission of influenza A/H5N1 viruses in mammals. Virus Research, 2013, 178, 15-20.	2.2	56
190	Transmission studies resume for avian flu. Nature, 2013, 493, 609-609.	27.8	18
191	Substitutions Near the Receptor Binding Site Determine Major Antigenic Change During Influenza Virus Evolution. Science, 2013, 342, 976-979.	12.6	500
192	Low pathogenic avian influenza A(H7N9) virus causes high mortality in ferrets upon intratracheal challenge: A model to study intervention strategies. Vaccine, 2013, 31, 4995-4999.	3.8	41
193	Novel Avian-Origin Influenza A (H7N9) Virus Attaches to Epithelium in Both Upper and Lower Respiratory Tract of Humans. American Journal of Pathology, 2013, 183, 1137-1143.	3.8	52
194	Age distribution of cases caused by different influenza viruses. Lancet Infectious Diseases, The, 2013, 13, 646-647.	9.1	10
195	264. Cytokine, 2013, 63, 305-306.	3.2	0
196	Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC. Nature, 2013, 495, 251-254.	27.8	1,731
197	Commentary: Middle East Respiratory Syndrome Coronavirus (MERS-CoV): Announcement of the Coronavirus Study Group. Journal of Virology, 2013, 87, 7790-7792.	3.4	1,012
198	Transmission Studies Resume for Avian Flu. Science, 2013, 339, 520-521.	12.6	34

#	Article	IF	CITATIONS
199	Efficient Replication of the Novel Human Betacoronavirus EMC on Primary Human Epithelium Highlights Its Zoonotic Potential. MBio, 2013, 4, e00611-12.	4.1	183
200	Recurring Influenza B Virus Infections in Seals. Emerging Infectious Diseases, 2013, 19, 511-512.	4.3	74
201	Heterosubtypic Immunity to Influenza A Virus Infections in Mallards May Explain Existence of Multiple Virus Subtypes. PLoS Pathogens, 2013, 9, e1003443.	4.7	70
202	Gain-of-Function Experiments on H7N9. Science, 2013, 341, 612-613.	12.6	24
203	Replication of 2 Subtypes of Low-Pathogenicity Avian Influenza Virus of Duck and Gull Origins in Experimentally Infected Mallard Ducks. Veterinary Pathology, 2013, 50, 548-559.	1.7	26
204	Infection of the Upper Respiratory Tract with Seasonal Influenza A(H3N2) Virus Induces Protective Immunity in Ferrets against Infection with A(H1N1)pdm09 Virus after Intranasal, but Not Intratracheal, Inoculation. Journal of Virology, 2013, 87, 4293-4301.	3.4	42
205	Human T-cells directed to seasonal influenza A virus cross-react with 2009 pandemic influenza A (H1N1) and swine-origin triple-reassortant H3N2 influenza viruses. Journal of General Virology, 2013, 94, 583-592.	2.9	52
206	<i>In Vitro</i> Assessment of the Immunological Significance of a Human Monoclonal Antibody Directed to the Influenza A Virus Nucleoprotein. Vaccine Journal, 2013, 20, 1333-1337.	3.1	38
207	Small Hydrophobic Protein of Human Metapneumovirus Does Not Affect Virus Replication and Host Gene Expression In Vitro. PLoS ONE, 2013, 8, e58572.	2.5	19
208	Binding of DC-SIGN to the Hemagglutinin of Influenza A Viruses Supports Virus Replication in DC-SIGN Expressing Cells. PLoS ONE, 2013, 8, e56164.	2.5	41
209	Avian Influenza Virus Surveillance in Wild Birds in Georgia: 2009–2011. PLoS ONE, 2013, 8, e58534.	2.5	42
210	Reassortment between Avian H5N1 and Human Influenza Viruses Is Mainly Restricted to the Matrix and Neuraminidase Gene Segments. PLoS ONE, 2013, 8, e59889.	2.5	36
211	Guiding outbreak management by the use of influenza A(H7Nx) virus sequence analysis. Eurosurveillance, 2013, 18, 20460.	7.0	20
212	Pigs, Poultry, and Pandemic Influenza: How Zoonotic Pathogens Threaten Human Health. Advances in Experimental Medicine and Biology, 2012, 719, 59-66.	1.6	28
213	Tissue tropism and pathology of natural influenza virus infection in black-headed gulls (<i>Chroicocephalus ridibundus</i>). Avian Pathology, 2012, 41, 547-553.	2.0	32
214	Egyptian H5N1 Influenza Viruses—Cause for Concern?. PLoS Pathogens, 2012, 8, e1002932.	4.7	44
215	Pause on Avian Flu Transmission Research. Science, 2012, 335, 400-401.	12.6	58
216	Receptor-Binding Profiles of H7 Subtype Influenza Viruses in Different Host Species. Journal of Virology, 2012, 86, 4370-4379.	3.4	96

#	Article	IF	CITATIONS
217	Pause on avian flu transmission studies. Nature, 2012, 481, 443-443.	27.8	46
218	Human Coronavirus EMC Does Not Require the SARS-Coronavirus Receptor and Maintains Broad Replicative Capability in Mammalian Cell Lines. MBio, 2012, 3, .	4.1	180
219	Restricted Data on Influenza H5N1 Virus Transmission. Science, 2012, 335, 662-663.	12.6	72
220	The Multibasic Cleavage Site in H5N1 Virus Is Critical for Systemic Spread along the Olfactory and Hematogenous Routes in Ferrets. Journal of Virology, 2012, 86, 3975-3984.	3.4	126
221	The Future of Research and Publication on Altered H5N1 Viruses. Journal of Infectious Diseases, 2012, 205, 1628-1631.	4.0	24
222	Pathogenesis of influenza virus infections: the good, the bad and the ugly. Current Opinion in Virology, 2012, 2, 276-286.	5.4	119
223	Annual influenza vaccination affects the development of heterosubtypic immunity. Vaccine, 2012, 30, 7407-7410.	3.8	35
224	The number and position of N-linked glycosylation sites in the hemagglutinin determine differential recognition of seasonal and 2009 pandemic H1N1 influenza virus by porcine surfactant protein D. Virus Research, 2012, 169, 301-305.	2.2	17
225	Genomic Characterization of a Newly Discovered Coronavirus Associated with Acute Respiratory Distress Syndrome in Humans. MBio, 2012, 3, .	4.1	766
226	The fight over flu. Nature, 2012, 481, 257-259.	27.8	23
227	The Pause on Avian H5N1 Influenza Virus Transmission Research Should Be Ended. MBio, 2012, 3, .	4.1	15
228	Swine influenza virus infection dynamics in two pig farms; results of a longitudinal assessment. Veterinary Research, 2012, 43, 24.	3.0	56
229	Isolation of a Novel Coronavirus from a Man with Pneumonia in Saudi Arabia. New England Journal of Medicine, 2012, 367, 1814-1820.	27.0	4,688
230	Avian Influenza A Virus in Wild Birds in Highly Urbanized Areas. PLoS ONE, 2012, 7, e38256.	2.5	20
231	Genetic evolution of the neuraminidase of influenza A (H3N2) viruses from 1968 to 2009 and its correspondence to haemagglutinin evolution. Journal of General Virology, 2012, 93, 1996-2007.	2.9	57
232	Use of influenza A viruses expressing reporter genes to assess the frequency of double infections in vitro. Journal of General Virology, 2012, 93, 1645-1648.	2.9	13
233	Host behaviour and physiology underpin individual variation in avian influenza virus infection in migratory Bewick's swans. Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 529-534.	2.6	42
234	Airborne Transmission of Influenza A/H5N1 Virus Between Ferrets. Science, 2012, 336, 1534-1541.	12.6	1,416

#	Article	IF	CITATIONS
235	The Potential for Respiratory Droplet–Transmissible A/H5N1 Influenza Virus to Evolve in a Mammalian Host. Science, 2012, 336, 1541-1547.	12.6	286
236	Course of pandemic influenza A(H1N1) 2009 virus infection in Dutch patients. Influenza and Other Respiratory Viruses, 2012, 6, e16-20.	3.4	5
237	A Family-Wide RT-PCR Assay for Detection of Paramyxoviruses and Application to a Large-Scale Surveillance Study. PLoS ONE, 2012, 7, e34961.	2.5	50
238	Disease Dynamics and Bird Migration—Linking Mallards Anas platyrhynchos and Subtype Diversity of the Influenza A Virus in Time and Space. PLoS ONE, 2012, 7, e35679.	2.5	53
239	Detection of a novel human coronavirus by real-time reverse-transcription polymerase chain reaction. Eurosurveillance, 2012, 17, .	7.0	465
240	Ecology and Evolution of Avian Influenza Viruses. , 2011, , 729-749.		3
241	Pathogenesis of Influenza A/H5N1 Virus Infection in Ferrets Differs between Intranasal and Intratracheal Routes of Inoculation. American Journal of Pathology, 2011, 179, 30-36.	3.8	95
242	PS1-103 Pancreatic adenocarcinoma: Understanding differences in interferon pathways to optimize oncolytic virotherapy. Cytokine, 2011, 56, 43-44.	3.2	0
243	Cross-protective immunity against influenza pH1N1 2009 viruses induced by seasonal influenza A (H3N2) virus is mediated by virus-specific T-cells. Journal of General Virology, 2011, 92, 2339-2349.	2.9	108
244	Use of GFP-expressing influenza viruses for the detection of influenza virus A/H5N1 neutralizing antibodies. Vaccine, 2011, 29, 3424-3430.	3.8	21
245	H7 avian influenza virus vaccines protect chickens against challenge with antigenically diverse isolates. Vaccine, 2011, 29, 7424-7429.	3.8	53
246	Redundancy of the influenza A virus-specific cytotoxic T lymphocyte response in HLA-B*2705 transgenic mice limits the impact of a mutation in the immunodominant NP383–391 epitope on influenza pathogenesis. Virus Research, 2011, 155, 123-130.	2.2	6
247	Immune responses to influenza virus infection. Virus Research, 2011, 162, 19-30.	2.2	270
248	Predicting â€`airborne' influenza viruses: (trans-) mission impossible?. Current Opinion in Virology, 2011, 1, 635-642.	5.4	82
249	Assessment of the Antiviral Properties of Recombinant Porcine SP-D against Various Influenza A Viruses In Vitro. PLoS ONE, 2011, 6, e25005.	2.5	28
250	Reconstructing an annual cycle of interaction: natural infection and antibody dynamics to avian influenza along a migratory flyway. Oikos, 2011, 120, 748-755.	2.7	71
251	Possible Increased Pathogenicity of Pandemic (H1N1) 2009 Influenza Virus upon Reassortment. Emerging Infectious Diseases, 2011, 17, 200-208.	4.3	67
252	REPLICATION OF LOW PATHOGENIC AVIAN INFLUENZA VIRUS IN NATURALLY INFECTED MALLARD DUCKS (ANAS PLATYRHYNCHOS) CAUSES NO MORPHOLOGIC LESIONS. Journal of Wildlife Diseases, 2011, 47, 401-409.	0.8	61

#	Article	IF	CITATIONS
253	Human Metapneumovirus: Lessons Learned over the First Decade. Clinical Microbiology Reviews, 2011, 24, 734-754.	13.6	167
254	Insertion of a multibasic cleavage site in the haemagglutinin of human influenza H3N2 virus does not increase pathogenicity in ferrets. Journal of General Virology, 2011, 92, 1410-1415.	2.9	32
255	Towards universal influenza vaccines?. Philosophical Transactions of the Royal Society B: Biological Sciences, 2011, 366, 2766-2773.	4.0	51
256	Residues of the Human Metapneumovirus Fusion (F) Protein Critical for Its Strain-Related Fusion Phenotype: Implications for the Virus Replication Cycle. Journal of Virology, 2011, 85, 12650-12661.	3.4	22
257	Efficacy of Vaccination with Different Combinations of MF59-Adjuvanted and Nonadjuvanted Seasonal and Pandemic Influenza Vaccines against Pandemic H1N1 (2009) Influenza Virus Infection in Ferrets. Journal of Virology, 2011, 85, 2851-2858.	3.4	46
258	Prevalence of Antibodies against Seasonal Influenza A and B Viruses in Children in Netherlands. Vaccine Journal, 2011, 18, 469-476.	3.1	155
259	Characterization of the Human CD8 ⁺ T Cell Response following Infection with 2009 Pandemic Influenza H1N1 Virus. Journal of Virology, 2011, 85, 12057-12061.	3.4	47
260	Discordant antigenic drift of neuraminidase and hemagglutinin in H1N1 and H3N2 influenza viruses. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 20748-20753.	7.1	188
261	Comparative Analysis of Avian Influenza Virus Diversity in Poultry and Humans during a Highly Pathogenic Avian Influenza A (H7N7) Virus Outbreak. Journal of Virology, 2011, 85, 10598-10604.	3.4	34
262	Evaluation of the Antiviral Response to Zanamivir Administered Intravenously for Treatment of Critically III Patients With Pandemic Influenza A (H1N1) Infection. Journal of Infectious Diseases, 2011, 204, 777-782.	4.0	40
263	Antigenic and Genetic Evolution of Equine Influenza A (H3N8) Virus from 1968 to 2007. Journal of Virology, 2011, 85, 12742-12749.	3.4	89
264	Annual Vaccination against Influenza Virus Hampers Development of Virus-Specific CD8 ⁺ T Cell Immunity in Children. Journal of Virology, 2011, 85, 11995-12000.	3.4	84
265	Vaccination against Seasonal Influenza A/H3N2 Virus Reduces the Induction of Heterosubtypic Immunity against Influenza A/H5N1 Virus Infection in Ferrets. Journal of Virology, 2011, 85, 2695-2702.	3.4	94
266	Multidrug Resistant 2009 A/H1N1 Influenza Clinical Isolate with a Neuraminidase I223R Mutation Retains Its Virulence and Transmissibility in Ferrets. PLoS Pathogens, 2011, 7, e1002276.	4.7	39
267	Use of Antigenic Cartography in Vaccine Seed Strain Selection. Avian Diseases, 2010, 54, 220-223.	1.0	54
268	Pandemic 2009 H1N1 Influenza Virus Causes Diffuse Alveolar Damage in Cynomolgus Macaques. Veterinary Pathology, 2010, 47, 1040-1047.	1.7	34
269	Evaluation of a modified vaccinia virus Ankara (MVA)-based candidate pandemic influenza A/H1N1 vaccine in the ferret model. Journal of General Virology, 2010, 91, 2745-2752.	2.9	38
270	Introduction of Virulence Markers in PB2 of Pandemic Swine-Origin Influenza Virus Does Not Result in Enhanced Virulence or Transmission. Journal of Virology, 2010, 84, 3752-3758.	3.4	126

#	Article	IF	CITATIONS
271	Vaccination with whole inactivated virus vaccine affects the induction of heterosubtypic immunity against influenza virus A/H5N1 and immunodominance of virus-specific CD8+ T-cell responses in mice. Journal of General Virology, 2010, 91, 1743-1753.	2.9	59
272	Dynamics and ecological consequences of avian influenza virus infection in greater white-fronted geese in their winter staging areas. Proceedings of the Royal Society B: Biological Sciences, 2010, 277, 2041-2048.	2.6	56
273	Virulence-Associated Substitution D222G in the Hemagglutinin of 2009 Pandemic Influenza A(H1N1) Virus Affects Receptor Binding. Journal of Virology, 2010, 84, 11802-11813.	3.4	197
274	Quantifying Antigenic Relationships among the Lyssaviruses. Journal of Virology, 2010, 84, 11841-11848.	3.4	83
275	A Single Immunization with CoVaccine HT-Adjuvanted H5N1 Influenza Virus Vaccine Induces Protective Cellular and Humoral Immune Responses in Ferrets. Journal of Virology, 2010, 84, 7943-7952.	3.4	37
276	<i>In Vitro</i> Assessment of Attachment Pattern and Replication Efficiency of H5N1 Influenza A Viruses with Altered Receptor Specificity. Journal of Virology, 2010, 84, 6825-6833.	3.4	146
277	Molecular Determinants of Adaptation of Highly Pathogenic Avian Influenza H7N7 Viruses to Efficient Replication in the Human Host. Journal of Virology, 2010, 84, 1597-1606.	3.4	148
278	Insertion of a Multibasic Cleavage Motif into the Hemagglutinin of a Low-Pathogenic Avian Influenza H6N1 Virus Induces a Highly Pathogenic Phenotype. Journal of Virology, 2010, 84, 7953-7960.	3.4	73
279	Surveillance of Wild Birds for Avian Influenza Virus. Emerging Infectious Diseases, 2010, 16, 1827-1834.	4.3	110
280	Intranasal Delivery of an IgA Monoclonal Antibody Effective against Sublethal H5N1 Influenza Virus Infection in Mice. Vaccine Journal, 2010, 17, 1363-1370.	3.1	36
281	Evaluation of a rapid molecular algorithm for detection of pandemic influenza A (H1N1) 2009 virus and screening for a key oseltamivir resistance (H275Y) substitution in neuraminidase. Journal of Clinical Virology, 2010, 47, 34-37.	3.1	67
282	Repository of Eurasian influenza A virus hemagglutinin and neuraminidase reverse genetics vectors and recombinant viruses. Vaccine, 2010, 28, 5803-5809.	3.8	15
283	Severity of Pneumonia Due to New H1N1 Influenza Virus in Ferrets Is Intermediate between That Due to Seasonal H1N1 Virus and Highly Pathogenic Avian Influenza H5N1 Virus. Journal of Infectious Diseases, 2010, 201, 993-999.	4.0	121
284	Influenza Virus RNA Structure: Unique and Common Features. International Reviews of Immunology, 2010, 29, 533-556.	3.3	43
285	Seasonal and Pandemic Human Influenza Viruses Attach Better to Human Upper Respiratory Tract Epithelium than Avian Influenza Viruses. American Journal of Pathology, 2010, 176, 1614-1618.	3.8	146
286	Differential RNA silencing suppression activity of NS1 proteins from different influenza A virus strains. Journal of General Virology, 2009, 90, 1916-1922.	2.9	51
287	Fusion protein is the main determinant of metapneumovirus host tropism. Journal of General Virology, 2009, 90, 1408-1416.	2.9	27
288	Pathogenesis and Transmission of Swine-Origin 2009 A(H1N1) Influenza Virus in Ferrets. Science, 2009, 325, 481-483.	12.6	544

#	Article	IF	CITATIONS
289	Pathology and Virus Distribution in Chickens Naturally Infected with Highly Pathogenic Avian Influenza A Virus (H7N7) During the 2003 Outbreak in The Netherlands. Veterinary Pathology, 2009, 46, 971-976.	1.7	21
290	Recombinant Modified Vaccinia Virus Ankara Expressing the Hemagglutinin Gene Confers Protection against Homologous and Heterologous H5N1 Influenza Virus Infections in Macaques. Journal of Infectious Diseases, 2009, 199, 405-413.	4.0	71
291	Effects of influenza A virus infection on migrating mallard ducks. Proceedings of the Royal Society B: Biological Sciences, 2009, 276, 1029-1036.	2.6	174
292	Does influenza A affect body condition of wild mallard ducks, or <i>vice versa</i> ? A reply to Flint and Franson. Proceedings of the Royal Society B: Biological Sciences, 2009, 276, 2347-2349.	2.6	19
293	Continuing progress towards a unified nomenclature for the highly pathogenic H5N1 avian influenza viruses: divergence of clade 2·2 viruses. Influenza and Other Respiratory Viruses, 2009, 3, 59-62.	3.4	102
294	Influenza virus CTL epitopes, remarkably conserved and remarkably variable. Vaccine, 2009, 27, 6363-6365.	3.8	58
295	Avian influenza virus: Of virus and bird ecology. Vaccine, 2009, 27, 6340-6344.	3.8	93
296	Preclinical evaluation of a modified vaccinia virus Ankara (MVA)-based vaccine against influenza A/H5N1 viruses. Vaccine, 2009, 27, 6296-6299.	3.8	38
297	Infection of mice with a human influenza A/H3N2 virus induces protective immunity against lethal infection with influenza A/H5N1 virus. Vaccine, 2009, 27, 4983-4989.	3.8	90
298	The novel adjuvant CoVaccineHTâ,,¢ increases the immunogenicity of cell-culture derived influenza A/H5N1 vaccine and induces the maturation of murine and human dendritic cells in vitro. Vaccine, 2009, 27, 6833-6839.	3.8	19
299	Preparing the outbreak assistance laboratory network in the Netherlands for the detection of the influenza virus A(H1N1) variant. Journal of Clinical Virology, 2009, 45, 179-184.	3.1	26
300	Antigenic and Genetic Characteristics of Swine-Origin 2009 A(H1N1) Influenza Viruses Circulating in Humans. Science, 2009, 325, 197-201.	12.6	2,127
301	Practical Considerations for High-Throughput Influenza A Virus Surveillance Studies of Wild Birds by Use of Molecular Diagnostic Tests. Journal of Clinical Microbiology, 2009, 47, 666-673.	3.9	126
302	Vaccination against Human Influenza A/H3N2 Virus Prevents the Induction of Heterosubtypic Immunity against Lethal Infection with Avian Influenza A/H5N1 Virus. PLoS ONE, 2009, 4, e5538.	2.5	89
303	MVA-Based H5N1 Vaccine Affords Cross-Clade Protection in Mice against Influenza A/H5N1 Viruses at Low Doses and after Single Immunization. PLoS ONE, 2009, 4, e7790.	2.5	45
304	Outbreaks of highly pathogenic avian influenza in Europe: the risks associated with wild birds. OIE Revue Scientifique Et Technique, 2009, 28, 69-92.	1.2	47
305	Epidemiology of low pathogenic avian influenza viruses in wild birds. OIE Revue Scientifique Et Technique, 2009, 28, 49-58.	1.2	91
306	Gene Segment Reassortment Between American and Asian Lineages of Avian Influenza Virus from Waterfowl in the Beringia Area. Vector-Borne and Zoonotic Diseases, 2008, 8, 783-790.	1.5	54

#	Article	IF	CITATIONS
307	The challenges of eliciting neutralizing antibodies to HIV-1 and to influenza virus. Nature Reviews Microbiology, 2008, 6, 143-155.	28.6	298
308	Evolutionary dynamics of human and avian metapneumoviruses. Journal of General Virology, 2008, 89, 2933-2942.	2.9	89
309	Emerging influenza. Journal of Clinical Virology, 2008, 41, 1-6.	3.1	72
310	Vaccination approaches to combat human metapneumovirus lower respiratory tract infections. Journal of Clinical Virology, 2008, 41, 49-52.	3.1	28
311	Immunogenicity and efficacy of two candidate human metapneumovirus vaccines in cynomolgus macaques. Vaccine, 2008, 26, 4224-4230.	3.8	45
312	Pathogenicity of highly pathogenic avian influenza virus in mammals. Vaccine, 2008, 26, D54-D58.	3.8	48
313	Influenza vaccine strain selection and recent studies on the global migration of seasonal influenza viruses. Vaccine, 2008, 26, D31-D34.	3.8	208
314	The Global Circulation of Seasonal Influenza A (H3N2) Viruses. Science, 2008, 320, 340-346.	12.6	628
315	Low-pH-Induced Membrane Fusion Mediated by Human Metapneumovirus F Protein Is a Rare, Strain-Dependent Phenomenon. Journal of Virology, 2008, 82, 8891-8895.	3.4	65
316	Cross-Recognition of Avian H5N1 Influenza Virus by Human Cytotoxic T-Lymphocyte Populations Directed to Human Influenza A Virus. Journal of Virology, 2008, 82, 5161-5166.	3.4	210
317	Specificity and functional interaction of the polymerase complex proteins of human and avian metapneumoviruses. Journal of General Virology, 2008, 89, 975-983.	2.9	13
318	Wild Ducks as Long-Distance Vectors of Highly Pathogenic Avian Influenza Virus (H5N1). Emerging Infectious Diseases, 2008, 14, 600-607.	4.3	374
319	Epidemiology of Avian Influenza. Monographs in Virology, 2008, , 1-10.	0.6	10
320	Generation of temperature-sensitive human metapneumovirus strains that provide protective immunity in hamsters. Journal of General Virology, 2008, 89, 1553-1562.	2.9	37
321	Spatial, Temporal, and Species Variation in Prevalence of Influenza A Viruses in Wild Migratory Birds. PLoS Pathogens, 2007, 3, e61.	4.7	591
322	Molecular and antigenic evolution and geographical spread of H5N1 highly pathogenic avian influenza viruses in western Africa. Journal of General Virology, 2007, 88, 2297-2306.	2.9	106
323	Experimental infection of macaques with human metapneumovirus induces transient protective immunity. Journal of General Virology, 2007, 88, 1251-1259.	2.9	47
324	Antigenic and Genetic Evolution of Swine Influenza A (H3N2) Viruses in Europe. Journal of Virology, 2007, 81, 4315-4322.	3.4	169

#	Article	IF	CITATIONS
325	The Molecular Basis of the Pathogenicity of the Dutch Highly Pathogenic Human Influenza A H7N7 Viruses. Journal of Infectious Diseases, 2007, 196, 258-265.	4.0	129
326	Assessment of the extent of variation in influenza A virus cytotoxic T-lymphocyte epitopes by using virus-specific CD8+ T-cell clones. Journal of General Virology, 2007, 88, 530-535.	2.9	48
327	A reverse-genetics system for Influenza A virus using T7 RNA polymerase. Journal of General Virology, 2007, 88, 1281-1287.	2.9	61
328	Primary influenza A virus infection induces cross-protective immunity against a lethal infection with a heterosubtypic virus strain in mice. Vaccine, 2007, 25, 612-620.	3.8	201
329	An amino acid substitution in the influenza A virus hemagglutinin associated with escape from recognition by human virus-specific CD4+ T-cells. Virus Research, 2007, 126, 282-287.	2.2	15
330	Attachment of infectious influenza A viruses of various subtypes to live mammalian and avian cells as measured by flow cytometry. Virus Research, 2007, 129, 175-181.	2.2	33
331	Vaccination against highly pathogenic avian influenza H5N1 virus in zoos using an adjuvanted inactivated H5N2 vaccine. Vaccine, 2007, 25, 3800-3808.	3.8	36
332	Human and Avian Influenza Viruses Target Different Cells in the Lower Respiratory Tract of Humans and Other Mammals. American Journal of Pathology, 2007, 171, 1215-1223.	3.8	473
333	Surveillance of Influenza Virus A in Migratory Waterfowl in Northern Europe. Emerging Infectious Diseases, 2007, 13, 404-411.	4.3	214
334	Genetic Characterization of HPAI (H5N1) Viruses from Poultry and Wild Vultures, Burkina Faso. Emerging Infectious Diseases, 2007, 13, 611-613.	4.3	47
335	Influenza virus-specific cytotoxic T lymphocytes: a correlate of protection and a basis for vaccine development. Current Opinion in Biotechnology, 2007, 18, 529-536.	6.6	111
336	The loss of immunodominant epitopes affects interferon-Î ³ production and lytic activity of the human influenza virus-specific cytotoxic T lymphocyte response <i>in vitro</i> . Clinical and Experimental Immunology, 2007, 148, 296-306.	2.6	32
337	Rapid sequencing of the non-coding regions of influenza A virus. Journal of Virological Methods, 2007, 139, 85-89.	2.1	24
338	An improved plaque reduction virus neutralization assay for human metapneumovirus. Journal of Virological Methods, 2007, 143, 169-174.	2.1	41
339	Recombinant Modified Vaccinia Virus Ankara–Based Vaccine Induces Protective Immunity in Mice against Infection with Influenza Virus H5N1. Journal of Infectious Diseases, 2007, 195, 1598-1606.	4.0	82
340	Immunization of Syrian golden hamsters with F subunit vaccine of human metapneumovirus induces protection against challenge with homologous or heterologous strains. Journal of General Virology, 2007, 88, 2702-2709.	2.9	48
341	Hampered Foraging and Migratory Performance in Swans Infected with Low-Pathogenic Avian Influenza A Virus. PLoS ONE, 2007, 2, e184.	2.5	195
342	Global Patterns of Influenza A Virus in Wild Birds. Science, 2006, 312, 384-388.	12.6	1,619

#	Article	IF	CITATIONS
343	Influenza A Virus (H5N1) Infection in Cats Causes Systemic Disease with Potential Novel Routes of Virus Spread within and between Hosts. American Journal of Pathology, 2006, 168, 176-183.	3.8	252
344	Fitness costs limit escape from cytotoxic T lymphocytes by influenza A viruses. Vaccine, 2006, 24, 6594-6596.	3.8	67
345	High prevalence of influenza A virus in ducks caught during spring migration through Sweden. Vaccine, 2006, 24, 6734-6735.	3.8	25
346	Towards improved influenza A virus surveillance in migrating birds. Vaccine, 2006, 24, 6729-6733.	3.8	64
347	Evidence for specific packaging of the influenza A virus genome from conditionally defective virus particles lacking a polymerase gene. Vaccine, 2006, 24, 6647-6650.	3.8	29
348	Opinion of the Scientific Panel Animal Health and Welfare (AHAW) related with the Migratory Birds and their Possible Role in the Spread of Highly Pathogenic Avian Influenza. EFSA Journal, 2006, 4, 357.	1.8	23
349	Mounting evidence for the presence of influenza A virus in the avifauna of the Antarctic region. Antarctic Science, 2006, 18, 353-356.	0.9	36
350	Feline friend or potential foe?. Nature, 2006, 440, 741-742.	27.8	42
351	Multiple introductions of H5N1 in Nigeria. Nature, 2006, 442, 37-37.	27.8	137
352	H5N1 Virus Attachment to Lower Respiratory Tract. Science, 2006, 312, 399-399.	12.6	573
353	The Hypervariable Immunodominant NP 418-426 Epitope from the Influenza A Virus Nucleoprotein Is Recognized by Cytotoxic T Lymphocytes with High Functional Avidity. Journal of Virology, 2006, 80, 6024-6032.	3.4	25
354	Isolation and Characterization of Monoclonal Antibodies Which Neutralize Human Metapneumovirus In Vitro and In Vivo. Journal of Virology, 2006, 80, 7799-7806.	3.4	88
355	Newer respiratory virus infections: human metapneumovirus, avian influenza virus, and human coronaviruses. Current Opinion in Infectious Diseases, 2005, 18, 141-146.	3.1	77
356	Functional profile of human influenza virus-specific cytotoxic T lymphocyte activity is influenced by interleukin-2 concentration and epitope specificity. Clinical and Experimental Immunology, 2005, 142, 45-52.	2.6	12
357	Global task force for influenza. Nature, 2005, 435, 419-420.	27.8	50
358	Multiple gene segment reassortment between Eurasian and American lineages of influenza A virus (H6N2) in Guillemot (Uria aalge). Archives of Virology, 2005, 150, 1685-1692.	2.1	62
359	Mallards and Highly Pathogenic Avian Influenza Ancestral Viruses, Northern Europe. Emerging Infectious Diseases, 2005, 11, 1545-1551.	4.3	187
360	Protection of Mice against Lethal Infection with Highly Pathogenic H7N7 Influenza A Virus by Using a Recombinant Low-Pathogenicity Vaccine Strain. Journal of Virology, 2005, 79, 12401-12407.	3.4	76

#	Article	IF	CITATIONS
361	Functional Constraints of Influenza A Virus Epitopes Limit Escape from Cytotoxic T Lymphocytes. Journal of Virology, 2005, 79, 11239-11246.	3.4	89
362	Full restoration of viral fitness by multiple compensatory co-mutations in the nucleoprotein of influenza A virus cytotoxic T-lymphocyte escape mutants. Journal of General Virology, 2005, 86, 1801-1805.	2.9	52
363	Characterization of a Novel Influenza A Virus Hemagglutinin Subtype (H16) Obtained from Black-Headed Gulls. Journal of Virology, 2005, 79, 2814-2822.	3.4	1,274
364	PUBLIC HEALTH: Pathogen Surveillance in Animals. Science, 2005, 309, 1680-1681.	12.6	210
365	A host-range restricted parainfluenza virus type 3 (PIV3) expressing the human metapneumovirus (hMPV) fusion protein elicits protective immunity in African green monkeys. Vaccine, 2005, 23, 1657-1667.	3.8	79
366	Highly pathogenic avian influenza (H7N7): Vaccination of zoo birds and transmission to non-poultry species. Vaccine, 2005, 23, 5743-5750.	3.8	43
367	Antigenic and Genetic Variability of Human Metapneumoviruses. Emerging Infectious Diseases, 2004, 10, 658-666.	4.3	329
368	Avian Influenza H5N1 in Tigers and Leopards. Emerging Infectious Diseases, 2004, 10, 2189-2191.	4.3	405
369	The aetiology of SARS: Koch's postulates fulfilled. Philosophical Transactions of the Royal Society B: Biological Sciences, 2004, 359, 1081-1082.	4.0	43
370	Recovery of Human Metapneumovirus Genetic Lineages A and B from Cloned cDNA. Journal of Virology, 2004, 78, 8264-8270.	3.4	92
371	Functional Compensation of a Detrimental Amino Acid Substitution in a Cytotoxic-T-Lymphocyte Epitope of Influenza A Viruses by Comutations. Journal of Virology, 2004, 78, 8946-8949.	3.4	39
372	Identification of small-animal and primate models for evaluation of vaccine candidates for human metapneumovirus (hMPV) and implications for hMPV vaccine design. Journal of General Virology, 2004, 85, 1655-1663.	2.9	110
373	A Mutation in the HLA-B * 2705-Restricted NP 383-391 Epitope Affects the Human Influenza A Virus-Specific Cytotoxic T-Lymphocyte Response In Vitro. Journal of Virology, 2004, 78, 5216-5222.	3.4	72
374	Real-Time Reverse Transcriptase PCR Assay for Detection of Human Metapneumoviruses from All Known Genetic Lineages. Journal of Clinical Microbiology, 2004, 42, 981-986.	3.9	284
375	Clinical impact and diagnosis of human metapneumovirus infection. Pediatric Infectious Disease Journal, 2004, 23, S25-S32.	2.0	251
376	Recognition of Homo- and Heterosubtypic Variants of Influenza A Viruses by Human CD8+ T Lymphocytes. Journal of Immunology, 2004, 172, 2453-2460.	0.8	121
377	A previously undescribed coronavirus associated with respiratory disease in humans. Proceedings of the United States of America, 2004, 101, 6212-6216.	7.1	518
378	Preferential HLA Usage in the Influenza Virus-Specific CTL Response. Journal of Immunology, 2004, 172, 4435-4443.	0.8	48

#	Article	IF	CITATIONS
379	Pegylated interferon-α protects type 1 pneumocytes against SARS coronavirus infection in macaques. Nature Medicine, 2004, 10, 290-293.	30.7	371
380	Avian H5N1 Influenza in Cats. Science, 2004, 306, 241-241.	12.6	374
381	Mapping the Antigenic and Genetic Evolution of Influenza Virus. Science, 2004, 305, 371-376.	12.6	1,527
382	Avian influenza A virus (H7N7) associated with human conjunctivitis and a fatal case of acute respiratory distress syndrome. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 1356-1361.	7.1	953
383	Sequence variation in the influenza A virus nucleoprotein associated with escape from cytotoxic T lymphocytes. Virus Research, 2004, 103, 97-100.	2.2	94
384	Efficient generation and growth of influenza virus A/PR/8/34 from eight cDNA fragments. Virus Research, 2004, 103, 155-161.	2.2	171
385	Human airway epithelial cells present antigen to influenza virus-specific CD8+ CTL inefficiently after incubation with viral protein together with ISCOMATRIX®. Vaccine, 2004, 22, 2769-2775.	3.8	10
386	Experimental Human Metapneumovirus Infection of Cynomolgus Macaques (Macaca fascicularis) Results in Virus Replication in Ciliated Epithelial Cells and Pneumocytes with Associated Lesions throughout the Respiratory Tract. American Journal of Pathology, 2004, 164, 1893-1900.	3.8	145
387	Highly pathogenic avian influenza virus A(H7N7) infection of humans and human-to-human transmission during avian influenza outbreak in the Netherlands. International Congress Series, 2004, 1263, 65-68.	0.2	5
388	Recognition of influenza virus epitope variants by human CTL. International Congress Series, 2004, 1263, 145-148.	0.2	1
389	Avian Influenza A virus in ducks migrating through Sweden. International Congress Series, 2004, 1263, 771-772.	0.2	4
390	Transmission of H7N7 avian influenza A virus to human beings during a large outbreak in commercial poultry farms in the Netherlands. Lancet, The, 2004, 363, 587-593.	13.7	731
391	Laboratory tests for SARS: powerful or peripheral?. Cmaj, 2004, 170, 63-4.	2.0	1
392	Endogenous Retroviruses in Swine Cell Lines and Evaluation of Possible Transmission to Primate Cellular Systems. Veterinary Research Communications, 2003, 27, 363-365.	1.6	0
393	Emerging viral infections in a rapidly changing world. Current Opinion in Biotechnology, 2003, 14, 641-646.	6.6	71
394	Koch's postulates fulfilled for SARS virus. Nature, 2003, 423, 240-240.	27.8	726
395	SARS virus infection of cats and ferrets. Nature, 2003, 425, 915-915.	27.8	542
396	Human metapneumovirus in the community. Lancet, The, 2003, 361, 890-891.	13.7	104

#	Article	IF	CITATIONS
397	Newly discovered coronavirus as the primary cause of severe acute respiratory syndrome. Lancet, The, 2003, 362, 263-270.	13.7	956
398	Animal influenza virus surveillance. Vaccine, 2003, 21, 1754-1757.	3.8	53
399	Characterization of a Novel Coronavirus Associated with Severe Acute Respiratory Syndrome. Science, 2003, 300, 1394-1399.	12.6	2,238
400	Identification of a Novel Coronavirus in Patients with Severe Acute Respiratory Syndrome. New England Journal of Medicine, 2003, 348, 1967-1976.	27.0	3,971
401	Influenza A Virus Surveillance in Wild Birds in Northern Europe in 1999 and 2000. Avian Diseases, 2003, 47, 857-860.	1.0	85
402	A Primate Model to Study the Pathogenesis of Influenza A (H5N1) Virus Infection. Avian Diseases, 2003, 47, 931-933.	1.0	54
403	Effects of Human Metapneumovirus and Respiratory Syncytial Virus Antigen Insertion in Two 3′ Proximal Genome Positions of Bovine/Human Parainfluenza Virus Type 3 on Virus Replication and Immunogenicity. Journal of Virology, 2003, 77, 10819-10828.	3.4	90
404	Prevalence and Clinical Symptoms of Human Metapneumovirus Infection in Hospitalized Patients. Journal of Infectious Diseases, 2003, 188, 1571-1577.	4.0	370
405	SARS virus infection of cats and ferrets. Nature, 2003, 425, 915-915.	27.8	45
406	The Magnitude and Specificity of Influenza A Virus-Specific Cytotoxic T-Lymphocyte Responses in Humans Is Related to HLA-A and -B Phenotype. Journal of Virology, 2002, 76, 582-590.	3.4	118
407	Sequence Variation in a Newly Identified HLA-B35-Restricted Epitope in the Influenza A Virus Nucleoprotein Associated with Escape from Cytotoxic T Lymphocytes. Journal of Virology, 2002, 76, 2567-2572.	3.4	103
408	Analysis of the Genomic Sequence of a Human Metapneumovirus. Virology, 2002, 295, 119-132.	2.4	382
409	Influenza A Virus Specific T Cell Immunity in Humans during Aging. Virology, 2002, 299, 100-108.	2.4	60
410	Antigenic and molecular heterogeneity in recent swine influenza A(H1N1) virus isolates with possible implications for vaccination policy. Vaccine, 2001, 19, 4452-4464.	3.8	33
411	Modeling the effects of updating the influenza vaccine on the efficacy of repeated vaccination. International Congress Series, 2001, 1219, 655-660.	0.2	5
412	PCR-based influenza A virus surveillance in European birds. International Congress Series, 2001, 1219, 275-282.	0.2	0
413	Infection of grey seals and harbour seals with influenza B virus. International Congress Series, 2001, 1219, 225-231.	0.2	4
414	Inhibition of influenza virus replication by nitric oxide. International Congress Series, 2001, 1219, 551-555.	0.2	4

#	Article	IF	CITATIONS
415	HIV-1 Infection Requires a Functional Integrase NLS. Molecular Cell, 2001, 7, 1025-1035.	9.7	189
416	Antigen processing for MHC class I restricted presentation of exogenous influenza A virus nucleoprotein by B-lymphoblastoid cells. Clinical and Experimental Immunology, 2001, 125, 423-431.	2.6	17
417	Antigenic and Genetic Characterization of Swine Influenza A (H1N1) Viruses Isolated from Pneumonia Patients in The Netherlands. Virology, 2001, 282, 301-306.	2.4	46
418	A newly discovered human pneumovirus isolated from young children with respiratory tract disease. Nature Medicine, 2001, 7, 719-724.	30.7	1,821
419	Pathogenesis of Influenza A (H5N1) Virus Infection in a Primate Model. Journal of Virology, 2001, 75, 6687-6691.	3.4	230
420	Influenza Virus: a Master of Metamorphosis. Journal of Infection, 2000, 40, 218-228.	3.3	100
421	Antigenic Drift in the Influenza A Virus (H3N2) Nucleoprotein and Escape from Recognition by Cytotoxic T Lymphocytes. Journal of Virology, 2000, 74, 6800-6807.	3.4	164
422	Influenza B Virus in Seals. Science, 2000, 288, 1051-1053.	12.6	316
423	Detection of Influenza A Viruses from Different Species by PCR Amplification of Conserved Sequences in the Matrix Gene. Journal of Clinical Microbiology, 2000, 38, 4096-4101.	3.9	378
424	Inhibition of Influenza Virus Replication by Nitric Oxide. Journal of Virology, 1999, 73, 8880-8883.	3.4	107
425	Nuclear Import of Human Immunodeficiency Virus Type-1 Preintegration Complexes. Advances in Virus Research, 1999, 52, 275-299.	2.1	103
426	Vif and the p55 ^{Gag} Polyprotein of Human Immunodeficiency Virus Type 1 Are Present in Colocalizing Membrane-Free Cytoplasmic Complexes. Journal of Virology, 1999, 73, 2667-2674.	3.4	58
427	Mutational Analysis of the Human Immunodeficiency Virus Type 1 Vif Protein. Journal of Virology, 1999, 73, 2675-2681.	3.4	61
428	The regulation of primate immunodeficiency virus infectivity by Vif is cell species restricted: a role for Vif in determining virus host range and cross-species transmission. EMBO Journal, 1998, 17, 1259-1267.	7.8	131
429	Virion Incorporation of Human Immunodeficiency Virus Type-1 Vif Is Determined by Intracellular Expression Level and May Not Be Necessary for Function. Virology, 1998, 248, 182-187.	2.4	37
430	Evidence for a newly discovered cellular anti-HIV-1 phenotype. Nature Medicine, 1998, 4, 1397-1400.	30.7	249
431	Interaction of the Human Immunodeficiency Virus Type 1 Vpr Protein with the Nuclear Pore Complex. Journal of Virology, 1998, 72, 6004-6013.	3.4	168
432	HIV-1 infection of non-dividing cells: evidence that the amino-terminal basic region of the viral matrix protein is important for Gag processing but not for post-entry nuclear import. EMBO Journal, 1997, 16, 4531-4539.	7.8	327

#	Article	IF	CITATIONS
433	Syncytium-inducing HIV-1 variants replicate equally well in all types of T-helper cell clones. Aids, 1996, 10, 1598-1600.	2.2	9
434	Broader Tropism and Higher Cytopathicity for CD4+T Cells of a Syncytium-Inducing Compared to a Non-Syncytium-Inducing HIV-1 Isolate as a Mechanism for Accelerated CD4+T Cell Declinein Vivo. Virology, 1996, 219, 87-95.	2.4	56
435	Molecular determinants of human immunodeficiency virus type I phenotype variability. European Journal of Clinical Investigation, 1996, 26, 175-185.	3.4	7
436	Biological Phenotype of HIV Type 2 Isolates Correlates with V3 Genotype. AIDS Research and Human Retroviruses, 1996, 12, 821-828.	1.1	45
437	Temporal Relationship between Elongation of the HIV Type 1 Glycoprotein 120 V2 Domain and the Conversion toward a Syncytium-Inducing Phenotype. AIDS Research and Human Retroviruses, 1995, 11, 1473-1478.	1.1	25
438	Completion of Nucleotide Sequences of Non-Syncytium-Inducing and Syncytium-Inducing HIV Type 1 Variants Isolated from the Same Patient. AIDS Research and Human Retroviruses, 1995, 11, 1537-1538.	1.1	18
439	Envelope V2 configuration and HIV-1 phenotype: clarification. Science, 1995, 268, 115-115.	12.6	24
440	Simple determination of human immunodeficiency virus type 1 syncytium-inducing V3 genotype by PCR. Journal of Clinical Microbiology, 1995, 33, 906-911.	3.9	108
441	Productive HIV-1 infection of macrophages restricted to the cell fraction with proliferative capacity EMBO Journal, 1994, 13, 5929-5936.	7.8	84
442	Changing Virus-Host Interactions in the Course of HIV-1 Infection. Immunological Reviews, 1994, 140, 35-72.	6.0	161
443	HIV-1 macrophage tropism is determined at multiple levels of the viral replication cycle Journal of Clinical Investigation, 1994, 94, 1806-1814.	8.2	49
444	Relation of phenotype evolution of HIV-1 to envelope V2 configuration. Science, 1993, 260, 1513-1516.	12.6	267
445	Early Replication Steps but Not Cell Type-Specific Signalling of the Viral Long Terminal Repeat Determine HIV-1 Monocytotropism. AIDS Research and Human Retroviruses, 1993, 9, 669-675.	1.1	21
446	Phenotype-associated env gene variation among eight related human immunodeficiency virus type 1 clones: evidence for in vivo recombination and determinants of cytotropism outside the V3 domain. Journal of Virology, 1992, 66, 6175-6180.	3.4	119
447	Variant-specific monoclonal and group-specific polyclonal human immunodeficiency virus type 1 neutralizing antibodies raised with synthetic peptides from the gp120 third variable domain. Journal of Virology, 1992, 66, 1823-1831.	3.4	76
448	Phenotype-associated sequence variation in the third variable domain of the human immunodeficiency virus type 1 gp120 molecule. Journal of Virology, 1992, 66, 3183-3187.	3.4	781
449	A specific marker, pat, for studying the fate of introduced bacteria and their DNA in soil using a combination of detection techniques. Plant and Soil, 1991, 138, 49-60.	3.7	56
450	Phenotypic heterogeneity in a panel of infectious molecular human immunodeficiency virus type 1 clones derived from a single individual. Journal of Virology, 1991, 65, 1968-1975.	3.4	115

#	Article	IF	CITATIONS
451	Analysis of the junctions between human immunodeficiency virus type 1 proviral DNA and human DNA. Journal of Virology, 1990, 64, 5626-5627.	3.4	50
452	Rudimentary phosvitin domains in a minor chicken vitellogenin gene. Biochemistry, 1989, 28, 2572-2577.	2.5	21
453	Antigenic Cartography of Human and Swine Influenza A (H3N2) Viruses. Novartis Foundation Symposium, 0, , 32-44.	1.1	1
454	Human Metapneumovirus. , 0, , 51-68.		0
455	Tissue tropism and pathology of natural influenza virus infection in black-headed gulls (<i>Chroicocephalus ridibundus</i>). Avian Pathology, 0, , .	2.0	0