DrahomÃ-r Hnyk List of Publications by Year in descending order Source: https://exaly.com/author-pdf/1482672/publications.pdf Version: 2024-02-01 | 109 | 1,847 | 24 h-index | 34 | |----------|----------------|--------------|----------------| | papers | citations | | g-index | | 110 | 110 | 110 | 974 | | all docs | docs citations | times ranked | citing authors | | # | Article | IF | CITATIONS | |----|--|-----|-----------| | 1 | Rearrangement of dicarboranyl methyl cation to icosahedral <scp>C₃8₉H₁₂</scp> ⁺ : An ab initio dynamics view. Journal of Computational Chemistry, 2023, 44, 256-260. | 1.5 | 1 | | 2 | Transformation of various multicenter bondings within bicapped-square antiprismatic motifs: $\langle i \rangle Z \langle i \rangle$ -rearrangement. Dalton Transactions, 2021, 50, 12098-12106. | 1.6 | 4 | | 3 | Thiaborane Icosahedral Barrier Increased by the Functionalization of all Terminal Hydrogens in closo-1-SB11H11. Inorganic Chemistry, 2021, 60, 8428-8431. | 1.9 | 1 | | 4 | Reactions of Experimentally Known Closo-C2B8H10 with Bases. A Computational Study. Crystals, 2020, 10, 896. | 1.0 | 5 | | 5 | Electrophilic Methylation of Decaborane(14): Selective Synthesis of Tetramethylated and Heptamethylated Decaboranes and Their Conjugated Bases. Inorganic Chemistry, 2020, 59, 10540-10547. | 1.9 | 3 | | 6 | Bromination Mechanism of <i>closo</i> â€1,2â€C ₂ B ₁₀ H ₁₂ and the Structure of the Resulting 9â€Brâ€ <i>closo</i> â€1,2â€C ₂ B ₁₀ H ₁₁ Determined by Gas Electron Diffraction. ChemPlusChem, 2020, 85, 2606-2610. | 1.3 | 6 | | 7 | Benchmark Data Sets of Boron Cluster Dihydrogen Bonding for the Validation of Approximate Computational Methods. ChemPhysChem, 2020, 21, 2599-2604. | 1.0 | 4 | | 8 | Faceâ€Fusion of Icosahedral Boron Hydride Increases Affinity to γâ€Cyclodextrin: closo , closo â€{B 21 H 18]
â^' as an Anion with Very Low Free Energy of Dehydration. ChemPhysChem, 2020, 21, 971-976. | 1.0 | 14 | | 9 | The Influence of Halogenated Hypercarbon on Crystal Packing in the Series of 1-Ph-2-X-1,2-dicarba-closo-dodecaboranes (X = F, Cl, Br, I). Molecules, 2020, 25, 1200. | 1.7 | 3 | | 10 | Photochromic System among Boron Hydrides: The Hawthorne Rearrangement. Journal of Physical Chemistry Letters, 2019, 10, 6202-6207. | 2.1 | 13 | | 11 | Thiaboranes on Both Sides of the Icosahedral Barrier: Retaining and Breaking the Barrier with Carbon Functionalities. ChemPlusChem, 2019, 84, 822-827. | 1.3 | 4 | | 12 | A theoretical analysis of the structure and properties of B ₂₆ H ₃₀ isomers. Consequences to the laser and semiconductor doping capabilities of large borane clusters. Physical Chemistry Chemical Physics, 2019, 21, 12916-12923. | 1.3 | 5 | | 13 | Surface termination of MgB ₂ unveiled by a combination of adsorption experiments and theoretical calculations. Physical Chemistry Chemical Physics, 2019, 21, 7313-7320. | 1.3 | 3 | | 14 | Thiaborane clusters with an exoskeletal B–H group. Chemical Communications, 2019, 55, 3375-3378. | 2.2 | 1 | | 15 | Synthesis of <i>closo-</i> 1,2-H ₂ C ₂ B ₈ Me ₈ 8 Me ₈ Me _{X (X = I and OTf) Dicarbaboranes and Their Rearrangement Reactions. Inorganic Chemistry, 2019, 58, 2865-2871.} | 1.9 | 7 | | 16 | Investigation of Thiaborane <i>closo</i> – <i>nido</i> Conversion Pathways Promoted by <i>N</i> -Heterocyclic Carbenes. Inorganic Chemistry, 2019, 58, 2471-2482. | 1.9 | 6 | | 17 | Icosahedral Carbaboranes with Peripheral Hydrogen–Chalcogenide Groups: Structures from Gas
Electron Diffraction and Chemical Shielding in Solution. Chemistry - A European Journal, 2019, 25,
2313-2321. | 1.7 | 16 | | 18 | A systematic examination of classical and multi-center bonding in heteroborane clusters. Physical Chemistry Chemical Physics, 2018, 20, 4666-4675. | 1.3 | 26 | | # | Article | IF | CITATIONS | |----|--|-----|-----------| | 19 | Various types of non-covalent interactions contributing towards crystal packing of halogenated diphospha-dicarbaborane with an open pentagonal belt. New Journal of Chemistry, 2018, 42, 10481-10483. | 1.4 | 1 | | 20 | Quantitative syntheses of permethylated $\langle i \rangle closo \langle i \rangle -1,10-R \langle sub \rangle 2 \langle sub \rangle 2 \langle sub \rangle 8 8$ | 1.7 | 6 | | 21 | Outerly functionalized and non-functionalized boron clusters intercalated into layered hydroxides with different modes of binding: materials for superacid storage. Dalton Transactions, 2018, 47, 11669-11679. | 1.6 | 4 | | 22 | Methyl camouflage in the ten-vertex <i>closo</i> -dicarbaborane(10) series. Isolation of <i>closo</i> -1,6-R ₂ C ₂ B ₈ Me ₈ (R = H and Me) and their monosubstituted analogues. Dalton Transactions, 2018, 47, 11070-11076. | 1.6 | 6 | | 23 | Binary twinned-icosahedral [B $<$ sub $>$ 21 $<$ /sub $>$ H $<$ sub $>$ 18 $<$ /sub $>$] $<$ sup $>$ â $^{^{\circ}}<$ /sup $>$ interacts with cyclodextrins as a precedent for its complexation with other organic motifs. Physical Chemistry Chemical Physics, 2017, 19, 11748-11752. | 1.3 | 26 | | 24 | B–Hâç¯Ï€: a nonclassical hydrogen bond or dispersion contact?. Physical Chemistry Chemical Physics, 2017, 19, 18194-18200. | 1.3 | 32 | | 25 | The behavior of a paramagnetic system in electric and magnetic fields as exemplified by revisiting Li@B ₁₀ H ₁₄ . Physical Chemistry Chemical Physics, 2017, 19, 12229-12236. | 1.3 | 2 | | 26 | Unusual Cage Rearrangements in 10-Vertex <i>nido</i> -5,6-Dicarbaborane Derivatives: An Interplay between Theory and Experiment. Inorganic Chemistry, 2017, 56, 852-860. | 1.9 | 8 | | 27 | A novel stibacarbaborane cluster with adjacent antimony atoms exhibiting unique pnictogen bond formation that dominates its crystal packing. Dalton Transactions, 2017, 46, 13714-13719. | 1.6 | 14 | | 28 | Nuclear Magnetic Shielding of Monoboranes: Calculation and Assessment of $\langle \sup 11 \langle \sup B NMR $ Chemical Shifts in Planar BX $\langle \sup 3 \langle \sup and Tetrahedral BX\langle \sup 4 \langle \sup 3 \langle \sup and Systems $ Journal of Physical Chemistry A, 2017, 121, 9631-9637. | 1.1 | 10 | | 29 | The π Complex of the Hydronium Ion Frozen on the Pathway of Electrophilic Aromatic Substitution. European Journal of Organic Chemistry, 2016, 2016, 4473-4475. | 1.2 | 2 | | 30 | Synthesis, characterisation and some chemistry of C- and B-substituted carboxylic acids of cobalt bis(dicarbollide). Dalton Transactions, 2014, 43, 5106. | 1.6 | 17 | | 31 | Tuning the Photophysical Properties of <i>anti</i> -B ₁₈ H ₂₂ : Efficient Intersystem Crossing between Excited Singlet and Triplet States in New 4,4′-(HS) ₂ - <i>anti</i> -B ₁₈ H ₂₀ Inorganic Chemistry, 2013, 52, 9266-9274. | 1.9 | 35 | | 32 | Expanding the structural chemistry of the weakly coordinating closo-carborane CB11H12 \hat{a} : its monoiodo derivatives with and without C 5v symmetry. Structural Chemistry, 2013, 24, 927-932. | 1.0 | 6 | | 33 | Cationic <i>closo </i> â€earboranes 2. Do computed ¹¹ B and ¹³ C NMR chemical shifts support their experimental availability?. Journal of Computational Chemistry, 2013, 34, 656-661. | 1.5 | 8 | | 34 | The gaseous structure of closo-9,12-(SH)2-1,2-C2B10H10, a modifier of gold surfaces, as determined using electron diffraction and computational methods. Dalton Transactions, 2013, 42, 12015. | 1.6 | 13 | | 35 | Anionic Oligomerization of Li ₂ [B ₁₂ H ₁₂] and Li[CB ₁₁ H ₁₂]: An Experimental and Computational Study. Journal of Physical Chemistry C, 2013, 117, 1495-1501. | 1.5 | 7 | | 36 | Structures of, and Related Consequences of Deprotonation on, Two $\langle i \rangle C \langle i \rangle \langle sub \rangle \langle i \rangle S \langle i \rangle \langle sub \rangle - Symmetric \langle i \rangle A rachno \langle i \rangle Nine-Vertex Heteroboranes, 4,6-X \langle sub \rangle 2 \langle sub \rangle B \langle sub \rangle 7 \langle sub \rangle H \langle sub \rangle 9 \langle sub \rangle (X = CH \langle sub \rangle 2 \langle sub \rangle; S) Studied by Gas Electron Diffraction/Quantum Chemical Calculations and GIAO/NMR. Inorganic Chemistry, 2013, 52, 4502-4508.$ | 1.9 | 11 | | # | Article | IF | Citations | |----|--|-------------------|-------------------| | 37 | Borane Polyhedra as Building Blocks for Unknown but Potentially Isolatable New Molecules $\hat{a}\in$ Extensions based on Computations of the Known B18H22 Isomers. Croatica Chemica Acta, 2013, 86, 485-494. | 0.1 | 7 | | 38 | Distinct Photophysics of the Isomers of B ₁₈ H ₂₂ Explained. Inorganic Chemistry, 2012, 51, 1471-1479. | 1.9 | 45 | | 39 | Why is the antipodal effect in closo-1-SB9H9 so large? A possible explanation based on the geometry from the concerted use of gas electron diffraction and computational methods. Dalton Transactions, 2011, 40, 5734. | 1.6 | 15 | | 40 | Microwave Spectra and Structures of 1,2-(<i>ortho</i>)- and 1,7-(<i>meta</i>)-Carborane, C ₂ B ₁₀ H ₁₂ . Journal of Physical Chemistry A, 2011, 115, 3380-3385. | 1.1 | 19 | | 41 | Does 2-Methylacetophenone Comply with Steric Inhibition of Resonance? A Direct Experimental Proof of Its Nonplanar Conformation from a Joint Ab Initio/Electron Diffraction Analysis. Journal of Organic Chemistry, 2010, 75, 4939-4943. | 1.7 | 4 | | 42 | Charge distribution within hypercarbon-halogenated 1-Ph-2-X-1,2-dicarba-closo-dodecaboranes, ($X = F$,) Tj ETQq Q 246-249. | 0 0 0 rgBT
1.8 | /Overlock 10
6 | | 43 | Revisiting B20H16 by means of a joint computational/experimental NMR approach. Collection of Czechoslovak Chemical Communications, 2010, 75, 1115-1123. | 1.0 | 10 | | 44 | Thiocyanation of closo-Dodecaborate B12H122â^'. A Novel Synthetic Route and Theoretical Elucidation of the Reaction Mechanism. Inorganic Chemistry, 2010, 49, 5040-5048. | 1.9 | 13 | | 45 | An Experimental Solution to the atemissing Hydrogensat-Question Surrounding the Macropolyhedral 19-Vertex Boron Hydride Monoanion [B ₁₉ H ₂₂] ^{â^*} , a Simplification of Its Synthesis, and Its Use As an Intermediate in the First Example of <i>syn</i> -B ₁₈ H _{H₂₂ to <i>anti</i>-B₁₈H₂₂ Isomer} | 1.9 | 16 | | 46 | Interactions of Boranes and Carboranes with Aromatic Systems: CCSD(T) Complete Basis Set Calculations and DFT-SAPT Analysis of Energy Components. Journal of Physical Chemistry A, 2010, 114, 11304-11311. | 1.1 | 31 | | 47 | Ferrocene-like iron bis(dicarbollide), [3-FellI-(1,2-C2B9H11)2]â^'. The first experimental and theoretical refinement of a paramagnetic 11B NMR spectrum. Physical Chemistry Chemical Physics, 2010, 12, 7018. | 1.3 | 25 | | 48 | exo-Substituent effects in halogenated icosahedral (B12H122–) and octahedral (B6H62–) closo-borane skeletons: chemical reactivity studied by experimental and quantum chemical methods. Collection of Czechoslovak Chemical Communications, 2009, 74, 1-27. | 1.0 | 16 | | 49 | Stereochemistry of free boranes and heteroboranes from electron scattering and model chemistries. Dalton Transactions, 2009, , 585-599. | 1.6 | 21 | | 50 | Experimental and computed dipole moments in donor–bridge–acceptor systems with p-phenylene and p-carboranediyl bridges. Collection of Czechoslovak Chemical Communications, 2009, 74, 131-146. | 1.0 | 8 | | 51 | Reductive Degradation ofnido-1-CB8H12into Smaller-Cage Carborane Systems via New Monocarbaboranes [arachno-5-CB8H13]â^andcloso-2-CB6H8. Chemistry - A European Journal, 2008, 14, 6529-6533. | 1.7 | 12 | | 52 | Azatricarbaborane 7- <i>t</i> -Bu- <i>arachno</i> -7,1,5,12-NC ₃ B ₈ H ₁₂ and Parent Tricarbaboranes <i>nido</i> -[5,6,9-C ₃ B ₇ H ₁₀] ⁻ and -5,6,9-C ₃ B ₇ H ₁₁ . Inorganic Chemistry, 2008, 47, 760-762. | 1.9 | 11 | | 53 | The gas-phase structure of 1-selena-closo-dodecaborane(11), 1-SeB ₁₁ H ₁₁ , determined by the concerted use of electron diffraction and computational methods. Dalton Transactions, 2008, , 96-100. | 1.6 | 15 | | 54 | The $[2,5,12\text{-C3B8H15}]$ â anion, the first representative of the eleven-vertex hypho family of tricarbaboranes. Dalton Transactions, 2007, , 1221-1228. | 1.6 | 13 | | # | Article | IF | CITATIONS | |----|--|-----|-----------| | 55 | The molecular structure of N-fluorobis(trifluoromethanesulfonyl)imide, NF(SO2CF3)2, as studied in the gas phase by electron diffraction restrained by ab initio calculations. Dalton Transactions, 2007, , 265-271. | 1.6 | O | | 56 | Interaction of heteroboranes with biomolecules: Part 2. The effect of various metal vertices and exo-substitutions. Physical Chemistry Chemical Physics, 2007, 9, 2085-2093. | 1.3 | 39 | | 57 | Computational Studies of Structures and Properties of Metallaboranes. Part 3:Â Protonated Iron Bis(dicarbollide), [3-Fe-(1,2-C2B9H11)2H] Inorganic Chemistry, 2007, 46, 1771-1777. | 1.9 | 16 | | 58 | A convincing evidence of the S+ charge in SB11H11 and its derivatives. Special Publication - Royal Society of Chemistry, 2007, , 155-158. | 0.0 | 0 | | 59 | The first member of the eleven-vertex azadicarbaborane series, 1,6,9-NC2B8H13, and its N-alkyl derivatives. Dalton Transactions, 2006, , 4664-4671. | 1.6 | 10 | | 60 | New route to 1-thia-closo-dodecaborane(11), closo-1-SB11H11, and its halogenation reactions. The effect of the halogen on the dipole moments and the NMR spectra and the importance of spin–orbit coupling for the11B chemical shifts. Dalton Transactions, 2006, , 1024-1029. | 1.6 | 32 | | 61 | Handles for the dicarbadodecaborane basket based on [arachno-5,10-C2B8H13]â^: Oxygen. Dalton Transactions, 2006, , 2620-2622. | 1.6 | 13 | | 62 | Molecular Structures of arachno-Decaborane Derivatives 6,9-X2B8H10(X = CH2, NH, Se) Including a Gas-Phase Electron-Diffraction Study of 6,9-C2B8H14. Inorganic Chemistry, 2006, 45, 6014-6019. | 1.9 | 15 | | 63 | Molecular Structures of Arachno-Heteroboranes with Decaborane Frameworks: Two Cs-symmetrical Azacarba- and Carbathiaboranes. Inorganic Chemistry, 2006, 45, 8442-8446. | 1.9 | 18 | | 64 | Computational Studies of Structures and Properties of Metallaboranes. 2. Transition-Metal Dicarbollide Complexes. Organometallics, 2006, 25, 2173-2181. | 1.1 | 47 | | 65 | Pentafluoronitrosulfane, SF5NO2. Inorganic Chemistry, 2006, 45, 1783-1788. | 1.9 | 7 | | 66 | Structural Dualism in the Zwitterionic 7-RR′NH-nido-7,8,9-C3B8H10 Tricarbollide Series: An Example of Absolute Tautomerism. Angewandte Chemie - International Edition, 2005, 44, 6222-6226. | 7.2 | 12 | | 67 | Computational Study of Structures and Properties of Metallaboranes: Cobalt Bis(dicarbollide). Chemistry - A European Journal, 2005, 11, 4109-4120. | 1.7 | 65 | | 68 | Diphosphacarbollide Analogues of the C5H5-Anion:Â Isolation of thenido-Di- and Triphosphacarboranes 7,8,9-P2CB8H10, [7,8,9-P2CB8H9]-, [7,8,10-P2CB8H9]-, and 7,8,9,10-P3CB7H8. Inorganic Chemistry, 2005, 44, 5826-5832. | 1.9 | 14 | | 69 | New Ways to a Series of Parent Representatives of the Eight-, Nine-, and Ten-Vertex Monocarbaborane Family. European Journal of Inorganic Chemistry, 2004, 2004, 3605. | 1.0 | 52 | | 70 | Synthesis of the first 11-vertex arachno-dicarbathiaborane anion, [1,6,7-C2SB8H11]â^'. Polyhedron, 2003, 22, 3541-3545. | 1.0 | 10 | | 71 | Azacarbaborane chemistry. Butyl nitrite synthesis of the new eight-, nine- and ten-vertex azacarbaboranes exo- and endo-7-CH3-hypho-7,8-NCB6H11, nido-6,8,9-NC2B7H10, arachno-6,5,9-NC2B7H12 and arachno-6,5,10-C2NB7H12. Dalton Transactions, 2003, , 1326. | 1.6 | 10 | | 72 | Stucture and Conformational Properties of Bis(trifluoromethyl) Peroxydicarbonate, CF3OC(O)Oâ°'OC(O)OCF3. Journal of Physical Chemistry A, 2003, 107, 847-851. | 1.1 | 13 | | # | Article | IF | CITATIONS | |----|---|-----|-----------| | 73 | Structure of 1-Thia-closo-dodecaborane(11), 1-SB11H11, as Determined by Microwave Spectroscopy Complemented by Quantum Chemical Calculations. Inorganic Chemistry, 2003, 42, 3043-3046. | 1.9 | 16 | | 74 | Gas-Phase Structure of $(1,1,1,5,5,5$ -Hexafluoro-2,4-pentanedionato)(\hat{i} -2-1,5-cyclooctadiene)copper(I), Cu(1,5-cod)(hfac), an Important Precursor for Vapor Deposition of Copper. Journal of the American Chemical Society, 2002, 124, 8078-8084. | 6.6 | 10 | | 75 | Two Isomeric Phosphacarboranes 2,1- and 6,1-PCB8H9, the First Representatives of the 10-VertexclosoPhosphacarborane Series. Inorganic Chemistry, 2002, 41, 2817-2819. | 1.9 | 16 | | 76 | The Structure of 1-Thia-closo-decaborane(9), 1-SB9H9, as Determined by Microwave Spectroscopy and Quantum Chemical Calculations. Inorganic Chemistry, 2002, 41, 4574-4578. | 1.9 | 14 | | 77 | was supported by the Alexander-von-Humboldt Stiftung (FRG) (B.Å.), Deutsche
Forschungsgemeinschaft (B. W., O.L.T.), Fonds der Chemischen Industrie (B.W.), and the Ministry of
Education of Czech Republic (Project LN00A028). We also thank the Grant Agency of the Charles
University (Grant No. 203/00/B-CH/PřF) and the Supercomputing Center of the Charles University in | 7.2 | 37 | | 78 | Prague for computer time. Angewandte Chemie - International Edition, 2002, 41, 2126. Phosphaborane chemistry. Syntheses and calculated molecular structures of mono- and di-chloro derivatives of 1,2-diphospha-closo-dodecaborane(10). Dalton Transactions RSC, 2002, , 2954-2959. | 2.3 | 15 | | 79 | Two Forgotten Ten-Vertex arachno Triheteroboranes: arachno-5,6,9-C2SB7H11 and arachno-5,6,9-C3B7H13, Their Molecular Structure Determination by ab initio/NMR Approach and Synthesis of the Thiacarbaborane. Collection of Czechoslovak Chemical Communications, 2002, 67, 813-821. | 1.0 | 11 | | 80 | Phosphacarborane Chemistry. Triphosphacarboranes nido 4-CH3-7,8,9,10-P3CB7H7 and nido-4-CH3-11-Cl-7,8,9,10-P3CB7H6, Analogues of 7,8,9,10-C4B7H11 and the First Examples of Boron Clusters Containing Three Phosphorus Vertexes. Inorganic Chemistry, 2001, 40, 4512-4513. | 1.9 | 19 | | 81 | Monocarbaborane chemistry. Preparation and characterisation of [4-CB8H9]–, the â€~missing' closo-carbaborane anion. Chemical Communications, 2001, , 1756-1757. | 2.2 | 37 | | 82 | Phosphacarborane Chemistry: The 7,8,9,11-, 7,9,8,10- and 7,8,9,10-lsomers ofnido-P2C2B7H9—Diphosphadicarbaborane Analogues of 7,8,9,10-C4B7H11. Chemistry - A European Journal, 2001, 7, 1546-1554. | 1.7 | 27 | | 83 | Charge Distribution Within 1,2-Dicarba-closo-dodecaborane: Dipole Moments of Its Phenyl Derivatives. Collection of Czechoslovak Chemical Communications, 2001, 66, 1375-1379. | 1.0 | 30 | | 84 | Synthesis and molecular structure of 1,12-dicarba-closo-dodecaborane(12)-1,12-dithiol, 1,12-(SH)2-1,12-C2B10H10, in the gaseous phase, determined by electron diffraction and ab initio calculations; geometrical consequences of three-dimensional aromaticity in carbaboranes 1,12-X2-1,12-C2B10H10 â€. Dalton Transactions RSC, 2000, , 4617-4622. | 2.3 | 18 | | 85 | Molecular Structure of 3,3-Diethylpentane (Tetraethylmethane) in the Gas Phase As Determined by Electron Diffraction and ab Initio Calculations. Journal of Organic Chemistry, 1999, 64, 4226-4232. | 1.7 | 24 | | 86 | 4,6-Dicarba-8-thia-arachno-nonaborane(10) Revisited. Theoretical Refinement of Its Structure. Collection of Czechoslovak Chemical Communications, 1999, 64, 993-1000. | 1.0 | 10 | | 87 | 2,4-Ethanotetraborane derivatives. 3.[1] determination of the molecular structure of 2,4-(t-butylethano)tetraborane(10), 2,4-(ButCHCH2)B4H8, in the gas phase by electron diffraction. Journal of Molecular Structure, 1998, 445, 319-334. | 1.8 | 11 | | 88 | Dicarbaheteroborane Chemistry. Representatives of Two Eleven-Vertex Dicarbaazaundecaborane Families: nido-10,7,8-NC2B8H11, Its N-Substituted Derivatives, and arachno-1,8,11-NC2B8H13. Inorganic Chemistry, 1998, 37, 3902-3909. | 1.9 | 25 | | 89 | Parent Tricarbollides [nido-7,8,9-C3B8H11]-, nido-7,8,9-C3B8H12, [nido-7,8,10-C3B8H11]-, and Their Derivatives. Journal of the American Chemical Society, 1997, 119, 7750-7759. | 6.6 | 59 | | 90 | T symmetrical gaseous tetra-tert-butyltetraboratetrahedrane: An electron diffraction study. Polyhedron, 1997, 16, 603-606. | 1.0 | 11 | | # | Article | IF | Citations | |-----|---|-----|------------| | 91 | 1-Phenyl-1,2-dicarba-closo-dodecaborane, 1-Ph-1,2-closo-C2B10H11. Synthesis, Characterization, and Structure As Determined in the Gas Phase by Electron Diffraction, in the Crystalline Phase at 199 K by X-ray Diffraction, and byab InitioComputations. Inorganic Chemistry, 1996, 35, 1701-1708. | 1.9 | 7 2 | | 92 | On the Molecular Structure of 7,8-Dicarba-10-thia-nido-undecaborane(10), the First Gaseous 11-VertexnidoHeteroborane Studied by the Combined Electron Diffraction and ab Initio Approach:Â The NMR Consequence of the Molecular Geometry. The Journal of Physical Chemistry, 1996, 100, 3435-3440. | 2.9 | 25 | | 93 | The Molecular Structures and Conformations of Bis(dichlorosilyl)amine and Bis(dichlorosilyl)methylamine in the Gas Phase: Determination by Electron Diffraction and by ab Initio Calculations. Chemische Berichte, 1995, 128, 807-815. | 0.2 | 10 | | 94 | An electron diffraction, ab initio and vibrational spectroscopic study of 1,2-di-tert-butyldisilane. Journal of Molecular Structure, 1995, 346, 215-229. | 1.8 | 18 | | 95 | New cubane MOCVD precursors for gallium sulphide and gallium selenide: Synthesis of [(Et2MeC)GaS]4 and [(Me2EtC)GaS]4: Structural determinations of [(Et2MeC)GaS]4 by X-ray diffraction and [(tBu)GaSe]4 by electron diffraction. Advanced Materials for Optics and Electronics, 1995, 5, 177-185. | 0.6 | 21 | | 96 | Vapor Phase Laser Photochemistry and Determination by Electron Diffraction of the Molecular Structure of [(tBu)GaS]4: Evidence for the Retention of the Ga4S4 Cubane Core during the MOCVD Growth of Cubic GaS. Organometallics, 1995, 14, 690-697. | 1.1 | 38 | | 97 | The molecular structures of pentaborane(11), B5H11, and hexaborane(12), B6H12, in the gas phase as determined by electron diffraction and ab initio calculations. Polyhedron, 1994, 13, 1453-1466. | 1.0 | 27 | | 98 | Molecular structure of gaseous 1,7-dichloro-1,7-dicarba-closo-dodecaborane(12), 1,7-Cl2-1,7-C2B10H10, as studied by electron diffraction and ab Initio calculations. Journal of the Chemical Society Dalton Transactions, 1994, , 2885-2890. | 1.1 | 13 | | 99 | Molecular Structure of 2,4-Ethanotetraborane(10), B4H8(CH2)2, as Determined by Gas-Phase Electron Diffraction and Ab Initio Computations. Inorganic Chemistry, 1994, 33, 2572-2578. | 1.9 | 22 | | 100 | Molecular structure of 1,2-dicarba-closo-decaborane(10) as studied by the concerted use of electron diffraction and ab initio calculations. Inorganic Chemistry, 1994, 33, 4781-4786. | 1.9 | 32 | | 101 | Molecular structure of 1-aza-closo-dodecaborane(12). Experimental and theoretical refinement. Inorganic Chemistry, 1993, 32, 2442-2445. | 1.9 | 40 | | 102 | Molecular structure of 1-thia-closo-dodecaborane(II) studied by electron diffraction complemented by ab initio calculations. Inorganic Chemistry, 1992, 31, 2464-2467. | 1.9 | 46 | | 103 | Molecular structure of (E)- and (Z)-methylcyanovinyl sulphone in the gas phase and in crystal. Journal of Molecular Structure, 1990, 239, 265-279. | 1.8 | 12 | | 104 | Molecular geometry of (E)- and (Z)- methylcyanovinyl ether. Journal of Molecular Structure, 1990, 239, 281-290. | 1.8 | 3 | | 105 | Molecular structure of trans-methylchlorovinyl sulphone: A molecular orbital constrained electron diffraction reinvestigation. Evidence for intramolecular hydrogen bonding. Journal of Molecular Structure, 1989, 213, 309-316. | 1.8 | 15 | | 106 | Dipole moments and electron distribution of acyl chlorides and acyl bromides. Journal of Physical Organic Chemistry, 1989, 2, 476-483. | 0.9 | 4 | | 107 | Mechanism of the antipodal effect with borane cages. Journal of the Chemical Society Chemical Communications, 1989, , 1859-1861. | 2.0 | 33 | | 108 | Dipole moments of amidines and electron distribution within their functional group. Journal of Molecular Structure, 1988, 178, 147-159. | 1.8 | 24 | | # | Article | IF | CITATIONS | |-----|---|-----|-----------| | 109 | Molecular structure of trans- and cis-methylchlorovinyl sulphone. Journal of Molecular Structure, 1987, 162, 75-86. | 1.8 | 11 |