
## Wei Qiu

## List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1482024/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                         | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | PUMA Regulates Intestinal Progenitor Cell Radiosensitivity and Gastrointestinal Syndrome. Cell Stem Cell, 2008, 2, 576-583.                                                                                                                     | 11.1 | 199       |
| 2  | Chemoprevention by nonsteroidal anti-inflammatory drugs eliminates oncogenic intestinal stem cells<br>via SMAC-dependent apoptosis. Proceedings of the National Academy of Sciences of the United States<br>of America, 2010, 107, 20027-20032. | 7.1  | 93        |
| 3  | PUMA-mediated apoptosis drives chemical hepatocarcinogenesis in mice. Hepatology, 2011, 54, 1249-1258.                                                                                                                                          | 7.3  | 78        |
| 4  | FAK Is required for câ€Met/βâ€cateninâ€driven hepatocarcinogenesis. Hepatology, 2015, 61, 214-226.                                                                                                                                              | 7.3  | 66        |
| 5  | Focal adhesion kinase (FAK) promotes cholangiocarcinoma development and progression via YAP<br>activation. Journal of Hepatology, 2021, 75, 888-899.                                                                                            | 3.7  | 45        |
| 6  | Focal Adhesion Kinase and β atenin Cooperate to Induce Hepatocellular Carcinoma. Hepatology, 2019,<br>70, 1631-1645.                                                                                                                            | 7.3  | 38        |
| 7  | Inhibition of SIRT2 suppresses hepatic fibrosis. American Journal of Physiology - Renal Physiology, 2016,<br>310, G1155-G1168.                                                                                                                  | 3.4  | 35        |
| 8  | Caspase-3 suppresses diethylnitrosamine-induced hepatocyte death, compensatory proliferation and hepatocarcinogenesis through inhibiting p38 activation. Cell Death and Disease, 2018, 9, 558.                                                  | 6.3  | 28        |
| 9  | Targeting EphA2 suppresses hepatocellular carcinoma initiation and progression by dual inhibition of JAK1/STAT3 and AKT signaling. Cell Reports, 2021, 34, 108765.                                                                              | 6.4  | 25        |
| 10 | BID mediates selective killing of APC-deficient cells in intestinal tumor suppression by nonsteroidal<br>antiinflammatory drugs. Proceedings of the National Academy of Sciences of the United States of<br>America, 2014, 111, 16520-16525.    | 7.1  | 24        |
| 11 | ABL1, Overexpressed in Hepatocellular Carcinomas, Regulates Expression of NOTCH1 and Promotes Development of Liver Tumors in Mice. Gastroenterology, 2020, 159, 289-305.e16.                                                                    | 1.3  | 22        |
| 12 | Inhibition of insulinâ€like growth factor 1 receptor enhances the efficacy of sorafenib in inhibiting hepatocellular carcinoma cell growth and survival. Hepatology Communications, 2018, 2, 732-746.                                           | 4.3  | 21        |
| 13 | Integrin subunit beta 8 contributes to lenvatinib resistance in HCC. Hepatology Communications, 2022, 6, 1786-1802.                                                                                                                             | 4.3  | 18        |
| 14 | FAK Kinase Activity Is Required for the Progression of c-MET/β-Catenin-Driven Hepataocellular<br>Carcinoma. Gene Expression, 2016, 17, 79-88.                                                                                                   | 1.2  | 16        |
| 15 | Endothelin-1–Mediated Drug Resistance in <i>EGFR</i> -Mutant Non-Small Cell Lung Carcinoma. Cancer<br>Research, 2020, 80, 4224-4232.                                                                                                            | 0.9  | 12        |
| 16 | FAK deletion accelerates liver regeneration after two-thirds partial hepatectomy. Scientific Reports, 2016, 6, 34316.                                                                                                                           | 3.3  | 10        |
| 17 | Focal Adhesion Kinase Promotes Hepatic Stellate Cell Activation by Regulating Plasma Membrane<br>Localization of TGFβ Receptor 2. Hepatology Communications, 2020, 4, 268-283.                                                                  | 4.3  | 8         |
| 18 | ABL1 is Overexpressed and Activated in Hepatocellular Carcinoma. Journal of Cancer and Tumor<br>International, 2017, 6, 1-8.                                                                                                                    | 0.1  | 5         |

Wei Qiu

| #  | Article                                                                                                                   | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | EPHA2, a promising therapeutic target for hepatocellular carcinoma. Molecular and Cellular<br>Oncology, 2021, 8, 1910009. | 0.7 | 3         |
| 20 | Novel oncogenes and tumor suppressor genes in hepatocellular carcinoma. Liver Research, 2021, 5, 195-203.                 | 1.4 | 3         |
| 21 | REPLY:. Hepatology, 2019, 70, 1495-1496.                                                                                  | 7.3 | Ο         |