Liisa M Pelttari

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1481355/publications.pdf

Version: 2024-02-01

361413 395702 1,918 33 20 33 citations h-index g-index papers 33 33 33 4572 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Identification of 12 new susceptibility loci for different histotypes of epithelial ovarian cancer. Nature Genetics, 2017, 49, 680-691.	21.4	356
2	Identification of six new susceptibility loci for invasive epithelial ovarian cancer. Nature Genetics, 2015, 47, 164-171.	21.4	221
3	<i>PALB2</i> , <i>CHEK2</i> and <i>ATM</i> rare variants and cancer risk: data from COGS. Journal of Medical Genetics, 2016, 53, 800-811.	3.2	174
4	Exome sequencing identifies FANCM as a susceptibility gene for triple-negative breast cancer. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 15172-15177.	7.1	162
5	RAD51C is a susceptibility gene for ovarian cancer. Human Molecular Genetics, 2011, 20, 3278-3288.	2.9	124
6	Association of vitamin D levels and risk of ovarian cancer: a Mendelian randomization study. International Journal of Epidemiology, 2016, 45, 1619-1630.	1.9	111
7	Ovarian and Breast Cancer Risks Associated With Pathogenic Variants in <i>RAD51C</i> and <i>RAD51D</i> . Journal of the National Cancer Institute, 2020, 112, 1242-1250.	6.3	106
8	Adult body mass index and risk of ovarian cancer by subtype: a Mendelian randomization study. International Journal of Epidemiology, 2016, 45, 884-895.	1.9	71
9	Shared genetics underlying epidemiological association between endometriosis and ovarian cancer. Human Molecular Genetics, 2015, 24, 5955-5964.	2.9	68
10	Cis-eQTL analysis and functional validation of candidate susceptibility genes for high-grade serous ovarian cancer. Nature Communications, 2015, 6, 8234.	12.8	63
11	Common Genetic Variation In Cellular Transport Genes and Epithelial Ovarian Cancer (EOC) Risk. PLoS ONE, 2015, 10, e0128106.	2.5	44
12	A Finnish founder mutation in <i>RAD51D</i> : analysis in breast, ovarian, prostate, and colorectal cancer: Table 1. Journal of Medical Genetics, 2012, 49, 429-432.	3.2	41
13	CHEK2 c.1100delC mutation is associated with an increased risk for male breast cancer in Finnish patient population. BMC Cancer, 2017, 17, 620.	2.6	29
14	Network-Based Integration of GWAS and Gene Expression Identifies a <i>HOX</i> Centric Network Associated with Serous Ovarian Cancer Risk. Cancer Epidemiology Biomarkers and Prevention, 2015, 24, 1574-1584.	2.5	28
15	FANCM mutation c.5791C>T is a risk factor for triple-negative breast cancer in the Finnish population. Breast Cancer Research and Treatment, 2017, 166, 217-226.	2.5	26
16	RAD51B in Familial Breast Cancer. PLoS ONE, 2016, 11, e0153788.	2.5	26
17	Common Genetic Variation in Circadian Rhythm Genes and Risk of Epithelial Ovarian Cancer (EOC). Journal of Genetics and Genome Research, 2015, 2, .	0.3	25
18	Common variants at the <i>CHEK2 </i> gene locus and risk of epithelial ovarian cancer. Carcinogenesis, 2015, 36, 1341-1353.	2.8	24

#	Article	IF	CITATIONS
19	Polygenic risk score is associated with increased disease risk in 52 Finnish breast cancer families. Breast Cancer Research and Treatment, 2016, 158, 463-469.	2.5	24
20	Epithelialâ€Mesenchymal Transition (EMT) Gene Variants and Epithelial Ovarian Cancer (EOC) Risk. Genetic Epidemiology, 2015, 39, 689-697.	1.3	22
21	RAD51, XRCC3, and XRCC2 mutation screening in Finnish breast cancer families. SpringerPlus, 2015, 4, 92.	1.2	21
22	Assessing the genetic architecture of epithelial ovarian cancer histological subtypes. Human Genetics, 2016, 135, 741-756.	3.8	19
23	Recurrent moderateâ€risk mutations in Finnish breast and ovarian cancer patients. International Journal of Cancer, 2019, 145, 2692-2700.	5.1	19
24	No clinical utility of KRAS variant rs61764370 for ovarian or breast cancer. Gynecologic Oncology, 2016, 141, 386-401.	1.4	18
25	Evaluating the ovarian cancer gonadotropin hypothesis: A candidate gene study. Gynecologic Oncology, 2015, 136, 542-548.	1.4	15
26	Adult height is associated with increased risk of ovarian cancer: a Mendelian randomisation study. British Journal of Cancer, 2018, 118, 1123-1129.	6.4	15
27	FANCM c.5101C>T mutation associates with breast cancer survival and treatment outcome. International Journal of Cancer, 2016, 139, 2760-2770.	5.1	13
28	Inherited variants affecting RNA editing may contribute to ovarian cancer susceptibility: results from a large-scale collaboration. Oncotarget, 2016, 7, 72381-72394.	1.8	13
29	Geneâ€panel testing of breast and ovarian cancer patients identifies a recurrent <i><scp>RAD51C</scp></i> duplication. Clinical Genetics, 2018, 93, 595-602.	2.0	11
30	Variants in genes encoding small GTPases and association with epithelial ovarian cancer susceptibility. PLoS ONE, 2018, 13, e0197561.	2.5	9
31	Screening of Finnish RAD51Cfounder mutations in prostate and colorectal cancer patients. BMC Cancer, 2012, 12, 552.	2.6	8
32	Screening of HELQ in breast and ovarian cancer families. Familial Cancer, 2016, 15, 19-23.	1.9	7
33	Assessment of variation in immunosuppressive pathway genes reveals TGFBR2 to be associated with risk of clear cell ovarian cancer. Oncotarget, 2016, 7, 69097-69110.	1.8	5