Troels Skrydstrup

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1480678/publications.pdf

Version: 2024-02-01

297 papers

15,302 citations

65 h-index 101 g-index

405 all docs 405 docs citations

405 times ranked

11738 citing authors

#	Article	IF	CITATIONS
1	Evaluation of Manganese Catalysts for the Hydrogenative Deconstruction of Commercial and Endâ \in ofâ \in Life Polyurethane Samples. ChemSusChem, 2022, 15, .	3.6	16
2	Selective N-Terminal Acylation of Peptides and Proteins with Tunable Phenol Esters. Bioconjugate Chemistry, 2022, 33, 625-633.	1.8	4
3	Pdâ€Catalyzed Difluoromethylations of Aryl Boronic Acids, Halides, and Pseudohalides with ICF ₂ H Generated ex Situ. Chemistry - A European Journal, 2022, 28, .	1.7	6
4	New Phenol Esters for Efficient pH-Controlled Amine Acylation of Peptides, Proteins, and Sepharose Beads in Aqueous Media. Bioconjugate Chemistry, 2022, 33, 172-179.	1.8	7
5	Synthetic developments on the preparation of sulfides from thiol-free reagents. Organic Chemistry Frontiers, 2021, 8, 326-368.	2.3	24
6	Incorporation of nickel single atoms into carbon paper as self-standing electrocatalyst for CO ₂ reduction. Journal of Materials Chemistry A, 2021, 9, 1583-1592.	5. 2	35
7	Hydrophobic Copper Interfaces Boost Electroreduction of Carbon Dioxide to Ethylene in Water. ACS Catalysis, 2021, 11, 958-966.	5 . 5	120
8	A Nickel(II)â€Mediated Thiocarbonylation Strategy for Carbon Isotope Labeling of Aliphatic Carboxamides. Chemistry - A European Journal, 2021, 27, 7114-7123.	1.7	10
9	Design and Applications of a SO ₂ Surrogate in Palladium atalyzed Direct Aminosulfonylation between Aryl Iodides and Amines. Angewandte Chemie - International Edition, 2021, 60, 7353-7359.	7.2	40
10	Design and Applications of a SO 2 Surrogate in Palladium atalyzed Direct Aminosulfonylation between Aryl lodides and Amines. Angewandte Chemie, 2021, 133, 7429-7435.	1.6	0
11	Are Amines the Holy Grail for Facilitating CO 2 Reduction?. Angewandte Chemie, 2021, 133, 9258-9263.	1.6	3
12	Are Amines the Holy Grail for Facilitating CO ₂ Reduction?. Angewandte Chemie - International Edition, 2021, 60, 9174-9179.	7.2	48
13	Catalytic Hydrogenation of Polyurethanes to Base Chemicals: From Model Systems to Commercial and End-of-Life Polyurethane Materials. Jacs Au, 2021, 1, 517-524.	3.6	45
14	On-demand synthesis of phosphoramidites. Nature Communications, 2021, 12, 2760.	5.8	16
15	Highly Scalable Conversion of Blood Protoporphyrin to Efficient Electrocatalyst for CO 2 â€toâ€CO Conversion. Advanced Materials Interfaces, 2021, 8, 2100067.	1.9	4
16	Mechanistic Elucidation of Dimer Formation and Strategies for Its Suppression in Electrochemical Reduction of <i>Fac</i> â€Mn(bpy)(CO) ₃ Br. ChemElectroChem, 2021, 8, 2108-2114.	1.7	17
17	Lowâ€Valence Zn ^{δ+} (0<δ<2) Singleâ€Atom Material as Highly Efficient Electrocatalyst for CO ₂ Reduction. Angewandte Chemie - International Edition, 2021, 60, 22826-22832.	7.2	115
18	Lowâ€Valence Zn ^{δ+} (0<δ<2) Singleâ€Atom Material as Highly Efficient Electrocatalyst for CO ₂ Reduction. Angewandte Chemie, 2021, 133, 23008-23014.	1.6	12

#	Article	IF	Citations
19	Nickel-Mediated Alkoxycarbonylation for Complete Carbon Isotope Replacement. Journal of the American Chemical Society, 2021, 143, 17816-17824.	6.6	22
20	Regioselective Hydroalkylation of Vinylarenes via Cooperative Cu and Ni Catalysis. Angewandte Chemie - International Edition, 2021, , .	7.2	5
21	Promoting Selective Generation of Formic Acid from CO ₂ Using Mn(bpy)(CO) ₃ Br as Electrocatalyst and Triethylamine/Isopropanol as Additives. Journal of the American Chemical Society, 2021, 143, 20491-20500.	6.6	24
22	Ligand-Controlled Product Selectivity in Electrochemical Carbon Dioxide Reduction Using Manganese Bipyridine Catalysts. Journal of the American Chemical Society, 2020, 142, 4265-4275.	6.6	114
23	Achieving Nearâ€Unity CO Selectivity for CO ₂ Electroreduction on an Ironâ€Decorated Carbon Material. ChemSusChem, 2020, 13, 6360-6369.	3.6	8
24	Renewable Solvents for Palladium-Catalyzed Carbonylation Reactions. Organic Process Research and Development, 2020, 24, 2665-2675.	1.3	32
25	Main element chemistry enables gas-cylinder-free hydroformylations. Nature Catalysis, 2020, 3, 843-850.	16.1	34
26	Access to Aryl and Heteroaryl Trifluoromethyl Ketones from Aryl Bromides and Fluorosulfates with Stoichiometric CO. Organic Letters, 2020, 22, 4068-4072.	2.4	17
27	Controlled Release of Reactive Gases: A Tale of Taming Carbon Monoxide. ChemPlusChem, 2020, 85, 1529-1533.	1.3	14
28	Evaluation of the Electrocatalytic Reduction of Carbon Dioxide using Rhenium and Ruthenium Bipyridine Catalysts Bearing Pendant Amines in the Secondary Coordination Sphere. Organometallics, 2020, 39, 1480-1490.	1.1	30
29	Direct Access to Isotopically Labeled Aliphatic Ketones Mediated by Nickel(I) Activation. Angewandte Chemie, 2020, 132, 8176-8180.	1.6	8
30	Silylcarboxylic Acids as Bifunctional Reagents: Application in Palladiumâ€Catalyzed Externalâ€COâ€Free Carbonylative Crossâ€Coupling Reactions. Advanced Synthesis and Catalysis, 2020, 362, 4078-4083.	2.1	9
31	Robust tuning metal/carbon heterointerfaces via ketonic oxygen enables hydrogen evolution reaction outperforming Pt/C. Applied Surface Science, 2020, 529, 147080.	3.1	3
32	Stoichiometric Studies on the Carbonylative Trifluoromethylation of Aryl Pd(II) Complexes using TMSCF ₃ as the Trifluoromethyl Source. Organometallics, 2020, 39, 688-697.	1.1	12
33	Restructuring Metal–Organic Frameworks to Nanoscale Bismuth Electrocatalysts for Highly Active and Selective CO ₂ Reduction to Formate. Advanced Functional Materials, 2020, 30, 1910408.	7.8	110
34	Carbonylative Suzuki–Miyaura couplings of sterically hindered aryl halides: synthesis of 2-aroylbenzoate derivatives. Organic and Biomolecular Chemistry, 2020, 18, 1754-1759.	1.5	9
35	Direct Access to Isotopically Labeled Aliphatic Ketones Mediated by Nickel(I) Activation. Angewandte Chemie - International Edition, 2020, 59, 8099-8103.	7.2	32
36	Carbon Isotope Labeling Strategy for \hat{l}^2 -Amino Acid Derivatives via Carbonylation of Azanickellacycles. Journal of the American Chemical Society, 2019, 141, 11821-11826.	6.6	29

3

#	Article	IF	Citations
37	Liquid Marbles: A Promising and Versatile Platform for Miniaturized Chemical Reactions. Angewandte Chemie - International Edition, 2019, 58, 11952-11954.	7.2	22
38	FlÃ $\frac{1}{4}$ ssigmurmeln: Eine vielversprechende und vielseitige Plattform fÃ $\frac{1}{4}$ r Miniaturisierte Chemische Reaktionen. Angewandte Chemie, 2019, 131, 12078-12080.	1.6	1
39	Access to βâ€Ketonitriles through Nickelâ€Catalyzed Carbonylative Coupling of αâ€Bromonitriles with Alkylzinc Reagents. Chemistry - A European Journal, 2019, 25, 9856-9860.	1.7	42
40	COtab: Expedient and Safe Setup for Pd-Catalyzed Carbonylation Chemistry. Organic Letters, 2019, 21, 5775-5778.	2.4	15
41	Direct Access to Aryl Bis(trifluoromethyl)carbinols from Aryl Bromides or Fluorosulfates: Palladium atalyzed Carbonylation. Angewandte Chemie, 2018, 130, 6974-6978.	1.6	9
42	Chemically and electrochemically catalysed conversion of CO2 to CO with follow-up utilization to value-added chemicals. Nature Catalysis, 2018, 1, 244-254.	16.1	373
43	Direct Access to Aryl Bis(trifluoromethyl)carbinols from Aryl Bromides or Fluorosulfates: Palladium atalyzed Carbonylation. Angewandte Chemie - International Edition, 2018, 57, 6858-6862.	7.2	38
44	Palladium Catalyzed Carbonylative Coupling of Alkyl Boron Reagents with Bromodifluoroacetamides. ACS Catalysis, 2018, 8, 3853-3858.	5.5	29
45	Carbonylative Coupling of Alkyl Zinc Reagents with Benzyl Bromides Catalyzed by a Nickel/NN ₂ Pincer Ligand Complex. Angewandte Chemie - International Edition, 2018, 57, 800-804.	7.2	85
46	Carbonylative Coupling of Alkyl Zinc Reagents with Benzyl Bromides Catalyzed by a Nickel/NN ₂ Pincer Ligand Complex. Angewandte Chemie, 2018, 130, 808-812.	1.6	21
47	Ligand-free gold nanoparticles supported on mesoporous carbon as electrocatalysts for CO2 reduction. Journal of CO2 Utilization, 2018, 28, 50-58.	3.3	16
48	New Directions in Transition Metal Catalyzed Carbonylation Chemistry. Chimia, 2018, 72, 606.	0.3	13
49	Exâ€Situ Formation of Methanethiol: Application in the Gold(I)â€Promoted Antiâ€Markovnikov Hydrothiolation of Olefins. Angewandte Chemie, 2018, 130, 14083-14087.	1.6	3
50	Exâ€Situ Formation of Methanethiol: Application in the Gold(I)â€Promoted Antiâ€Markovnikov Hydrothiolation of Olefins. Angewandte Chemie - International Edition, 2018, 57, 13887-13891.	7.2	38
51	Facile Synthesis of Iron- and Nitrogen-Doped Porous Carbon for Selective CO ₂ Electroreduction. ACS Applied Nano Materials, 2018, 1, 3608-3615.	2.4	21
52	Synthesis of Aliphatic Carboxamides Mediated by Nickel NN ₂ â€Pincer Complexes and Adaptation to Carbonâ€Isotope Labeling. Chemistry - A European Journal, 2018, 24, 14946-14949.	1.7	16
53	Recent developments in carbonylation chemistry using [¹³ C]CO, [¹¹ C]CO, and [¹⁴ C]CO. Journal of Labelled Compounds and Radiopharmaceuticals, 2018, 61, 949-987.	0.5	47
54	Intermittent, low dose carbon monoxide exposure enhances survival and dopaminergic differentiation of human neural stem cells. PLoS ONE, 2018, 13, e0191207.	1.1	20

#	Article	IF	Citations
55	Selective CO ₂ Reduction to CO in Water using Earth-Abundant Metal and Nitrogen-Doped Carbon Electrocatalysts. ACS Catalysis, 2018, 8, 6255-6264.	5 . 5	267
56	Pd-catalyzed carbonylative \hat{l}_{\pm} -arylation of azlactones: A formal four-component coupling route to $\hat{l}_{\pm},\hat{l}_{\pm}$ -disubstituted amino acids. Journal of Catalysis, 2018, 364, 366-370.	3.1	8
57	Copper-Catalyzed Carboxylation of Hydroborated Disubstituted Alkenes and Terminal Alkynes with Cesium Fluoride. ACS Catalysis, 2017, 7, 1392-1396.	5.5	59
58	Evidence for Single-Electron Pathways in the Reaction between Palladium(II) Dialkyl Complexes and Alkyl Bromides under Thermal and Photoinduced Conditions. Organometallics, 2017, 36, 2058-2066.	1.1	17
59	Palladium-Catalyzed Aminocarbonylation in Solid-Phase Peptide Synthesis: A Method for Capping, Cyclization, and Isotope Labeling. Organic Letters, 2017, 19, 2873-2876.	2.4	32
60	Enhanced Catalytic Activity of Cobalt Porphyrin in CO ₂ Electroreduction upon Immobilization on Carbon Materials. Angewandte Chemie, 2017, 129, 6568-6572.	1.6	62
61	Enhanced Catalytic Activity of Cobalt Porphyrin in CO ₂ Electroreduction upon Immobilization on Carbon Materials. Angewandte Chemie - International Edition, 2017, 56, 6468-6472.	7.2	305
62	Access to Perfluoroalkyl-Substituted Enones and Indolin-2-ones via Multicomponent Pd-Catalyzed Carbonylative Reactions. Journal of Organic Chemistry, 2017, 82, 6474-6481.	1.7	33
63	Application of Methyl Bisphosphineâ€Ligated Palladium Complexes for Low Pressure <i>N</i> à€ ¹¹ Câ€Acetylation of Peptides. Angewandte Chemie - International Edition, 2017, 56, 4549-4553.	7.2	34
64	Efficient Water Reduction with sp ³ â€sp ³ Diboron(4) Compounds: Application to Hydrogenations, Hâ€"D Exchange Reactions, and Carbonyl Reductions. Angewandte Chemie - International Edition, 2017, 56, 15910-15915.	7.2	54
65	<i>Ex situ</i> generation of stoichiometric HCN and its application in the Pd-catalysed cyanation of aryl bromides: evidence for a transmetallation step between two oxidative addition Pd-complexes. Chemical Science, 2017, 8, 8094-8105.	3.7	35
66	Scalable carbon dioxide electroreduction coupled to carbonylation chemistry. Nature Communications, 2017, 8, 489.	5.8	54
67	Experimental and Theoretical Studies on the Reduction of CO2 to CO with Chloro(methyl)disilane Components from the Direct Process. Synlett, 2017, 28, 2439-2444.	1.0	6
68	Application of Methyl Bisphosphine‣igated Palladium Complexes for Low Pressure <i>N</i> â€ ¹¹ Câ€Acetylation of Peptides. Angewandte Chemie, 2017, 129, 4620-4624.	1.6	11
69	Utilizing Glycerol as an Ex Situ CO-Source in Pd-Catalyzed Alkoxycarbonylation of Styrenes. ACS Catalysis, 2017, 7, 6089-6093.	5.5	30
70	Synthesis and selective ² Hâ€, ¹³ Câ€, and ¹⁵ Nâ€labeling of the Tau proteinder THKâ€523. Journal of Labelled Compounds and Radiopharmaceuticals, 2017, 60, 30-35.	ein _{O.5}	16
71	Efficient Water Reduction with sp ³ â€sp ³ Diboron(4) Compounds: Application to Hydrogenations, H–D Exchange Reactions, and Carbonyl Reductions. Angewandte Chemie, 2017, 129, 16126-16131.	1.6	15
72	A Palladiumâ€Catalyzed Double Carbonylation Approach to Isatins from 2â€Iodoanilines. European Journal of Organic Chemistry, 2016, 2016, 1881-1885.	1.2	22

#	Article	IF	CITATIONS
73	Incorporation of βâ€Siliconâ€Î²3â€Amino Acids in the Antimicrobial Peptide Alamethicin Provides a 20â€Fold Increase in Membrane Permeabilization. Chemistry - A European Journal, 2016, 22, 8358-8367.	1.7	21
74	Cooperative redox activation for carbon dioxide conversion. Nature Communications, 2016, 7, 13782.	5.8	49
75	Controlled electropolymerisation of a carbazole-functionalised iron porphyrin electrocatalyst for CO ₂ reduction. Chemical Communications, 2016, 52, 5864-5867.	2.2	48
76	Development of a Palladium-Catalyzed Carbonylative Coupling Strategy to 1,4-Diketones. ACS Catalysis, 2016, 6, 2982-2987.	5.5	34
77	How Glycosaminoglycans Promote Fibrillation of Salmon Calcitonin. Journal of Biological Chemistry, 2016, 291, 16849-16862.	1.6	15
78	Direct Access to α,αâ€Difluoroacylated Arenes by Palladiumâ€Catalyzed Carbonylation of (Hetero)Aryl Boronic Acid Derivatives. Angewandte Chemie, 2016, 128, 10552-10556.	1.6	16
79	Chemo―and Regioselective Ethynylation of Tryptophanâ€Containing Peptides and Proteins. Chemistry - A European Journal, 2016, 22, 1572-1576.	1.7	85
80	Palladiumâ€Catalyzed Carbonylative Synthesis of 2,3â€Disubstituted Chromones. Advanced Synthesis and Catalysis, 2016, 358, 466-479.	2.1	25
81	Direct <i>trans</i> -Selective Ruthenium-Catalyzed Reduction of Alkynes in Two-Chamber Reactors and Continuous Flow. ACS Catalysis, 2016, 6, 4710-4714.	5.5	67
82	Direct Access to α,αâ€Difluoroacylated Arenes by Palladiumâ€Catalyzed Carbonylation of (Hetero)Aryl Boronic Acid Derivatives. Angewandte Chemie - International Edition, 2016, 55, 10396-10400.	7.2	70
83	The Development and Application of Two-Chamber Reactors and Carbon Monoxide Precursors for Safe Carbonylation Reactions. Accounts of Chemical Research, 2016, 49, 594-605.	7.6	404
84	Palladium-Catalyzed Carbonylative α-Arylation of <i>tert</i> -Butyl Cyanoacetate with (Hetero)aryl Bromides. Journal of Organic Chemistry, 2016, 81, 1358-1366.	1.7	25
85	Tin-containing silicates: identification of a glycolytic pathway via 3-deoxyglucosone. Green Chemistry, 2016, 18, 3360-3369.	4.6	56
86	Rapid and Efficient Conversion of ¹¹ CO ₂ to ¹¹ CO through Silacarboxylic Acids: Applications in Pdâ€Mediated Carbonylations. Chemistry - A European Journal, 2015, 21, 17601-17604.	1.7	31
87	Synthesis of Acyl Carbamates via Four Component Pd-Catalyzed Carbonylative Coupling of Aryl Halides, Potassium Cyanate, and Alcohols. Organic Letters, 2015, 17, 1248-1251.	2.4	23
88	Palladium-catalysed carbonylative \hat{l}_{\pm} -arylation of nitromethane. Chemical Communications, 2015, 51, 3600-3603.	2.2	31
89	General Method for the Preparation of Active Esters by Palladium-Catalyzed Alkoxycarbonylation of Aryl Bromides. Journal of Organic Chemistry, 2015, 80, 1920-1928.	1.7	29
90	Efficient ¹¹ C-Carbonylation of Isolated Aryl Palladium Complexes for PET: Application to Challenging Radiopharmaceutical Synthesis. Journal of the American Chemical Society, 2015, 137, 1548-1555.	6.6	85

#	Article	IF	CITATIONS
91	The natural, peptaibolic peptide SPF-5506-A 4 adopts a \hat{l}^2 -bend spiral structure, shows low hemolytic activity and targets membranes through formation of large pores. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2015, 1854, 882-889.	1.1	10
92	Access to 2-(Het)aryl and 2-Styryl Benzoxazoles via Palladium-Catalyzed Aminocarbonylation of Aryl and Vinyl Bromides. Organic Letters, 2015, 17, 2094-2097.	2.4	34
93	Organocatalyzed CO ₂ Trapping Using Alkynyl Indoles. Angewandte Chemie - International Edition, 2015, 54, 6862-6866.	7.2	84
94	Pd-catalyzed carbonylative access to aroyl phosphonates from (hetero)aryl bromides. Chemical Communications, 2015, 51, 7831-7834.	2.2	8
95	Patterned Carboxylation of Graphene Using Scanning Electrochemical Microscopy. Langmuir, 2015, 31, 4443-4452.	1.6	9
96	Palladium-Catalyzed Carbonylative Couplings of Vinylogous Enolates: Application to Statin Structures. Journal of the American Chemical Society, 2015, 137, 14043-14046.	6.6	30
97	Pd-Catalyzed Carbonylative Synthesis of Other-Membered Heterocycles from Aryl Halides. Topics in Heterocyclic Chemistry, 2015, , 89-99.	0.2	0
98	Scaffolded multimers of hIAPP20–29 peptide fragments fibrillate faster and lead to different fibrils compared to the free hIAPP20–29 peptide fragment. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2015, 1854, 1890-1897.	1.1	11
99	Câ€"H activation dependent Pd-catalyzed carbonylative coupling of (hetero)aryl bromides and polyfluoroarenes. Chemical Communications, 2015, 51, 1870-1873.	2.2	40
100	Palladium-Catalyzed Carbonylation of Aryl Bromides with N-Substituted Cyanamides. Synlett, 2014, 25, 1241-1245.	1.0	14
101	Transition of chemically modified diphenylalanine peptide assemblies revealed by atomic force microscopy. RSC Advances, 2014, 4, 7516.	1.7	13
102	Controlled Electrochemical Carboxylation of Graphene To Create a Versatile Chemical Platform for Further Functionalization. Langmuir, 2014, 30, 6622-6628.	1.6	21
103	Efficient Fluoride-Catalyzed Conversion of CO ₂ to CO at Room Temperature. Journal of the American Chemical Society, 2014, 136, 6142-6147.	6.6	130
104	A Palladiumâ€Catalyzed Carbonylative–Deacetylative Sequence to 1,3â€Keto Amides. Advanced Synthesis and Catalysis, 2014, 356, 3519-3524.	2.1	21
105	Palladium atalyzed Carbonylative Coupling of (2â€Azaaryl)methyl Anion Equivalents with (Hetero)Aryl Bromides. Chemistry - A European Journal, 2014, 20, 15785-15789.	1.7	18
106	The Importance of Being Capped: Terminal Capping of an Amyloidogenic Peptide Affects Fibrillation Propensity and Fibril Morphology. Biochemistry, 2014, 53, 6968-6980.	1,2	33
107	Mild Pd-Catalyzed Aminocarbonylation of (Hetero)Aryl Bromides with a Palladacycle Precatalyst. Organic Letters, 2014, 16, 4296-4299.	2.4	130
108	1,2,4―and 1,3,4â€Oxadiazole Synthesis by Palladiumâ€Catalyzed Carbonylative Assembly of Aryl Bromides with Amidoximes or Hydrazides. Advanced Synthesis and Catalysis, 2014, 356, 3074-3082.	2.1	39

#	Article	IF	CITATIONS
109	Palladiumâ€Catalyzed Carbonylative αâ€Arylation of 2â€Oxindoles with (Hetero)aryl Bromides: Efficient and Complementary Approach to 3â€Acylâ€2â€oxindoles. Angewandte Chemie - International Edition, 2014, 53, 9582-9586.	7.2	32
110	Palladiumâ€Catalyzed Carbonylative αâ€Arylation to βâ€Ketonitriles. Chemistry - A European Journal, 2014, 20, 9534-9538.	1.7	41
111	Palladium-Catalyzed Carbonylative Sonogashira Coupling of Aryl Bromides Using Near Stoichiometric Carbon Monoxide. Organic Letters, 2014, 16, 2216-2219.	2.4	65
112	Palladium-Catalyzed Thiocarbonylation of Aryl, Vinyl, and Benzyl Bromides. Journal of Organic Chemistry, 2014, 79, 11830-11840.	1.7	64
113	Carbonylative Suzuki Couplings of Aryl Bromides with Boronic Acid Derivatives under Base-Free Conditions. Organic Letters, 2014, 16, 1888-1891.	2.4	65
114	Two-Chamber Hydrogen Generation and Application: Access to Pressurized Deuterium Gas. Journal of Organic Chemistry, 2014, 79, 5861-5868.	1.7	47
115	Access to 1,2â€Dihydroisoquinolines through Goldâ€Catalyzed Formal [4+2] Cycloaddition. Chemistry - A European Journal, 2014, 20, 7926-7930.	1.7	42
116	Targeting of peptide conjugated magnetic nanoparticles to urokinase plasminogen activator receptor (uPAR) expressing cells. Nanoscale, 2013, 5, 8192.	2.8	28
117	Pdâ€Catalyzed Carbonylative αâ€Arylation of Aryl Bromides: Scope and Mechanistic Studies. Chemistry - A European Journal, 2013, 19, 17926-17938.	1.7	50
118	Direct Route to 1,3â€Diketones by Palladiumâ€Catalyzed Carbonylative Coupling of Aryl Halides with Acetylacetone. Chemistry - A European Journal, 2013, 19, 17687-17691.	1.7	32
119	Access to βâ€Keto Esters by Palladium atalyzed Carbonylative Coupling of Aryl Halides with Monoester Potassium Malonates. Angewandte Chemie - International Edition, 2013, 52, 9763-9766.	7.2	52
120	An Air-Tolerant Approach to the Carbonylative Suzuki–Miyaura Coupling: Applications in Isotope Labeling. Journal of Organic Chemistry, 2013, 78, 10310-10318.	1.7	57
121	Efficient Routes to Carbon–Silicon Bond Formation for the Synthesis of Silicon-Containing Peptides and Azasilaheterocycles. Accounts of Chemical Research, 2013, 46, 457-470.	7.6	184
122	Pd-Catalyzed Thiocarbonylation with Stoichiometric Carbon Monoxide: Scope and Applications. Organic Letters, 2013, 15, 948-951.	2.4	106
123	Palladium-Catalyzed Synthesis of Aromatic Carboxylic Acids with Silacarboxylic Acids. Organic Letters, 2013, 15, 1378-1381.	2.4	57
124	Coexistence of ribbon and helical fibrils originating from hIAPP _{20â€"29} revealed by quantitative nanomechanical atomic force microscopy. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 2798-2803.	3.3	104
125	Modernized Low Pressure Carbonylation Methods in Batch and Flow Employing Common Acids as a CO Source. Organic Letters, 2013, 15, 2794-2797.	2.4	152
126	Effective Palladium-Catalyzed Hydroxycarbonylation of Aryl Halides with Substoichiometric Carbon Monoxide. Journal of the American Chemical Society, 2013, 135, 2891-2894.	6.6	113

#	Article	IF	Citations
127	Reductive Carbonylation of Aryl Halides Employing a Two-Chamber Reactor: A Protocol for the Synthesis of Aryl Aldehydes Including ¹³ C- and D-Isotope Labeling. Journal of Organic Chemistry, 2013, 78, 6112-6120.	1.7	70
128	Generation of Stoichiometric Ethylene and Isotopic Derivatives and Application in Transitionâ€Metalâ€Catalyzed Vinylation and Enyne Metathesis. Chemistry - A European Journal, 2013, 19, 17603-17607.	1.7	24
129	Identifying ligand-binding hot spots in proteins using brominated fragments. Acta Crystallographica Section F: Structural Biology Communications, 2013, 69, 1060-1065.	0.7	10
130	Control and femtosecond time-resolved imaging of torsion in a chiral molecule. Journal of Chemical Physics, 2012, 136, 204310.	1.2	83
131	Palladium-Catalyzed <i>N</i> -Acylation of Monosubstituted Ureas Using Near-Stoichiometric Carbon Monoxide. Journal of Organic Chemistry, 2012, 77, 3793-3799.	1.7	52
132	Isotope-Labeling of the Fibril Binding Compound FSB via a Pd-Catalyzed Double Alkoxycarbonylation. Journal of Organic Chemistry, 2012, 77, 5357-5363.	1.7	28
133	Synthesis and Evaluation of Silanediols as Highly Selective Uncompetitive Inhibitors of Human Neutrophil Elastase. Journal of Medicinal Chemistry, 2012, 55, 7900-7908.	2.9	29
134	Scanning Tunneling Microscopy Reveals Single-Molecule Insights into the Self-Assembly of Amyloid Fibrils. ACS Nano, 2012, 6, 6882-6889.	7.3	27
135	Regioselective Rh(I)-Catalyzed Sequential Hydrosilylation toward the Assembly of Silicon-Based Peptidomimetic Analogues. Journal of Organic Chemistry, 2012, 77, 5894-5906.	1.7	20
136	Modulation of fibrillation of hIAPP core fragments by chemical modification of the peptide backbone. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2012, 1824, 274-285.	1.1	14
137	¹⁴ Carbon monoxide made simple – novel approach to the generation, utilization, and scrubbing of ¹⁴ carbon monoxide. Journal of Labelled Compounds and Radiopharmaceuticals, 2012, 55, 411-418.	0.5	64
138	Cyclodextrin-Scaffolded Alamethicin with Remarkably Efficient Membrane Permeabilizing Properties and Membrane Current Conductance. Journal of Physical Chemistry B, 2012, 116, 7652-7659.	1.2	28
139	Mild and Efficient Nickel-Catalyzed Heck Reactions with Electron-Rich Olefins. Journal of the American Chemical Society, 2012, 134, 443-452.	6.6	138
140	Palladium Catalyzed Carbonylative Heck Reaction Affording Monoprotected 1,3-Ketoaldehydes. Organic Letters, 2012, 14, 2536-2539.	2.4	61
141	Palladium-Catalyzed Double Carbonylation Using Near Stoichiometric Carbon Monoxide: Expedient Access to Substituted ¹³ C ₂ -Labeled Phenethylamines. Journal of Organic Chemistry, 2012, 77, 6155-6165.	1.7	74
142	An Efficient Method for the Preparation of Tertiary Esters by Palladium-Catalyzed Alkoxycarbonylation of Aryl Bromides. Organic Letters, 2012, 14, 284-287.	2.4	57
143	Gold atalyzed Carbene Transfer to Alkynes: Access to 2,4â€Disubstituted Furans. Angewandte Chemie - International Edition, 2012, 51, 4681-4684.	7.2	148
144	Nonâ€enzymatic palladium recovery on microbial and synthetic surfaces. Biotechnology and Bioengineering, 2012, 109, 1889-1897.	1.7	65

#	Article	IF	Citations
145	Microbially supported synthesis of catalytically active bimetallic Pdâ€Au nanoparticles. Biotechnology and Bioengineering, 2012, 109, 45-52.	1.7	52
146	Palladiumâ€Catalyzed Carbonylative αâ€Arylation for Accessing 1,3â€Diketones. Angewandte Chemie - International Edition, 2012, 51, 798-801.	7.2	92
147	Palladium-Catalyzed Approach to Primary Amides Using Nongaseous Precursors. Organic Letters, 2011, 13, 4454-4457.	2.4	63
148	Carbonylative Heck Reactions Using CO Generated <i>ex Situ</i> in a Two-Chamber System. Organic Letters, 2011, 13, 2444-2447.	2.4	98
149	Reductive Lithiation of Methyl Substituted Diarylmethylsilanes: Application to Silanediol Peptide Precursors. Organic Letters, 2011, 13, 732-735.	2.4	31
150	<i>Ex Situ</i> Generation of Stoichiometric and Substoichiometric ¹² CO and ¹³ CO and Its Efficient Incorporation in Palladium Catalyzed Aminocarbonylations. Journal of the American Chemical Society, 2011, 133, 6061-6071.	6.6	389
151	Silacarboxylic Acids as Efficient Carbon Monoxide Releasing Molecules: Synthesis and Application in Palladium-Catalyzed Carbonylation Reactions. Journal of the American Chemical Society, 2011, 133, 18114-18117.	6.6	254
152	Long-Term-Stable Etherâ^'Lipid vs Conventional Esterâ^'Lipid Bicelles in Oriented Solid-State NMR: Altered Structural Information in Studies of Antimicrobial Peptides. Journal of Physical Chemistry B, 2011, 115, 1767-1774.	1.2	26
153	Metal-Free Halonium Mediated Acetate Shifts of Ynamides To Access α-Halo Acrylamides/Acrylimides. Organic Letters, 2011, 13, 1750-1753.	2.4	25
154	Size control and catalytic activity of bio-supported palladium nanoparticles. Colloids and Surfaces B: Biointerfaces, 2011, 85, 373-378.	2.5	51
155	Taking Advantage of the Ambivalent Reactivity of Ynamides in Gold Catalysis: A Rare Case of Alkyne Dimerization. Angewandte Chemie - International Edition, 2011, 50, 5090-5094.	7.2	105
156	In Situ Generated Bulky Palladium Hydride Complexes as Catalysts for the Efficient Isomerization of Olefins. Selective Transformation of Terminal Alkenes to 2-Alkenes. Journal of the American Chemical Society, 2010, 132, 7998-8009.	6.6	196
157	Access to 2,5-Diamidopyrroles and 2,5-Diamidofurans by Au(I)-Catalyzed Double Hydroamination or Hydration of 1,3-Diynes. Organic Letters, 2010, 12, 2758-2761.	2.4	187
158	2â€Pyridyl Tosylate Derivativesâ€"Building Blocks for Structural Diversity via Transition Metal Catalysis. Israel Journal of Chemistry, 2010, 50, 558-567.	1.0	8
159	Environmentally Benign Recovery and Reactivation of Palladium from Industrial Waste by Using Gramâ€Negative Bacteria. ChemSusChem, 2010, 3, 1036-1039.	3.6	54
160	Pdâ€Catalyzed CN Bond Formation with Heteroaromatic Tosylates. Chemistry - A European Journal, 2010, 16, 5437-5442.	1.7	56
161	DFT Investigation of the Palladium atalyzed Ene–Yne Coupling. Chemistry - A European Journal, 2010, 16, 9494-9501.	1.7	15
162	Formation of palladium(0) nanoparticles at microbial surfaces. Biotechnology and Bioengineering, 2010, 107, 206-215.	1.7	78

#	Article	IF	CITATIONS
163	Divorcing folding from function: How acylation affects the membrane-perturbing properties of an antimicrobial peptide. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2010, 1804, 806-820.	1.1	21
164	Further Studies toward the Stereocontrolled Synthesis of Silicon-Containing Peptide Mimics. Journal of Organic Chemistry, 2010, 75, 3283-3293.	1.7	42
165	Pardaxin Permeabilizes Vesicles More Efficiently by Pore Formation than by Disruption. Biophysical Journal, 2010, 98, 576-585.	0.2	43
166	Stereocontrolled Synthesis of 2-Substituted-1,3-Azasilaheterocycles. Organic Letters, 2010, 12, 3528-3531.	2.4	41
167	Conformational Flexibility of Chitosan: A Molecular Modeling Study. Biomacromolecules, 2010, 11, 3196-3207.	2.6	67
168	NMR Reveals Two-Step Association of Congo Red to Amyloid \hat{l}^2 in Low-Molecular-Weight Aggregates. Journal of Physical Chemistry B, 2010, 114, 16003-16010.	1.2	27
169	Enamides Accessed from Aminothioesters via a Pd(0)-Catalyzed Decarbonylative/β-Hydride Elimination Sequence. Organic Letters, 2010, 12, 4716-4719.	2.4	34
170	Heteroaromatic Tosylates as Electrophiles in Regioselective Mizoroki–Heckâ€Coupling Reactions with Electronâ€Rich Olefins. Chemistry - A European Journal, 2009, 15, 5950-5955.	1.7	63
171	Unique Identification of Supramolecular Structures in Amyloid Fibrils by Solid tate NMR Spectroscopy. Angewandte Chemie - International Edition, 2009, 48, 2118-2121.	7.2	195
172	Some unusual reactivities in the SmI2-mediated reductive coupling of acrylamides and acrylates with imides. Tetrahedron, 2009, 65, 10908-10916.	1.0	10
173	Highly Regioselective Au(I)-Catalyzed Hydroamination of Ynamides and Propiolic Acid Derivatives with Anilines. Organic Letters, 2009, 11, 4208-4211.	2.4	140
174	Synthesis of a Ketomethylene Isostere of the Fibrillating Peptide SNNFGAILSS. Journal of Organic Chemistry, 2009, 74, 7955-7957.	1.7	10
175	Application of Ynamides in the Synthesis of 2-Amidoindoles. Organic Letters, 2009, 11, 221-224.	2.4	85
176	A Versatile Approach to \hat{I}^2 -Amyloid Fibril-Binding Compounds Exploiting the Shirakawa/Hayashi Protocol for $\langle i \rangle$ -Alkene Synthesis. Organic Letters, 2009, 11, 999-1002.	2.4	17
177	Studies on the 1,2-Migrations in Pd-Catalyzed Negishi Couplings with JosiPhos Ligands. Journal of Organic Chemistry, 2009, 74, 135-143.	1.7	49
178	A Ligand Free and Room Temperature Protocol for Pd-Catalyzed Kumadaâ^'Corriu Couplings of Unactivated Alkenyl Phosphates. Journal of Organic Chemistry, 2009, 74, 3536-3539.	1.7	70
179	Heteroaromatic Sulfonates and Phosphates as Electrophiles in Iron-Catalyzed Cross-Couplings. Organic Letters, 2009, 11, 4886-4888.	2.4	96
180	An Automatic Solid-Phase Synthesis of Peptaibols. Journal of Organic Chemistry, 2009, 74, 1329-1332.	1.7	44

#	Article	IF	Citations
181	Incorporation of Antimicrobial Peptides into Membranes: A Combined Liquid-State NMR and Molecular Dynamics Study of Alamethicin in DMPC/DHPC Bicelles. Journal of Physical Chemistry B, 2009, 113, 6928-6937.	1.2	62
182	Importance of Câ^'N Bond Rotation in N-Acyl Oxazolidinones in their Sml2-Promoted Coupling to Acrylamides. Journal of the American Chemical Society, 2009, 131, 10253-10262.	6.6	37
183	Residue-Specific Information about the Dynamics of Antimicrobial Peptides from ¹ Hâ^' ¹⁵ N and ² H Solid-State NMR Spectroscopy. Journal of the American Chemical Society, 2009, 131, 18335-18342.	6.6	35
184	Bio-supported palladium nanoparticles as a catalyst for Suzuki–Miyaura and Mizoroki–Heck reactions. Green Chemistry, 2009, 11, 2041.	4.6	82
185	Action Of The Antimicrobial Peptide Novicidin: Divorcing Folding From Function. Biophysical Journal, 2009, 96, 379a.	0.2	0
186	Classical Reagents: New Surprises in Palladium-Catalyzed CC Coupling Reactions. Chemistry - A European Journal, 2008, 14, 8756-8766.	1.7	29
187	Palladium atalyzed Intermolecular Ene–Yne Coupling: Development of an Atomâ€Efficient Mizoroki–Heckâ€Type Reaction. Angewandte Chemie - International Edition, 2008, 47, 2668-2672.	7.2	89
188	SmI2-promoted intra- and intermolecular C–C bond formation with chiral N-acyl oxazolidinones. Tetrahedron, 2008, 64, 11884-11895.	1.0	25
189	Simple d-glucosamine-based phosphine-imine and phosphine-amine ligands in Pd-catalyzed asymmetric allylic alkylations. Tetrahedron Letters, 2008, 49, 6635-6638.	0.7	17
190	Sequential Câ^'Si Bond Formations from Diphenylsilane: Application to Silanediol Peptide Isostere Precursors. Journal of the American Chemical Society, 2008, 130, 13145-13151.	6.6	87
191	Direct Vinylation and Difluorovinylation of Arylboronic Acids Using Vinyl- and 2,2-Difluorovinyl Tosylates via the Suzukiâ^Miyaura Cross Coupling. Journal of Organic Chemistry, 2008, 73, 3404-3410.	1.7	120
192	An Expedient Synthesis of the Fibril Binding Compound FSB via Sequential Pd-Catalyzed Coupling Reactions. Journal of Organic Chemistry, 2008, 73, 3570-3573.	1.7	11
193	Direct Entry to Peptidyl Ketones via Sml ₂ -Mediated Câ^'C Bond Formation with Readily Accessible <i>N</i> -Peptidyl Oxazolidinones. Journal of Organic Chemistry, 2008, 73, 1088-1092.	1.7	27
194	Irregularities in the Effect of Potassium Phosphate in Ynamide Synthesis. Journal of Organic Chemistry, 2008, 73, 9447-9450.	1.7	73
195	Radicals by Design. Chimia, 2008, 62, 735-741.	0.3	5
196	Resolution Enhancement in Solid-State NMR of Oriented Membrane Proteins by Anisotropic Differential Linebroadening. Journal of the American Chemical Society, 2008, 130, 5028-5029.	6.6	17
197	Stereocontrolled Synthesis of Methyl Silanediol Peptide Mimics. Journal of Organic Chemistry, 2007, 72, 10035-10044.	1.7	73
198	Membrane-Bound Conformation of Peptaibols with Methyl-Deuterated α-Amino Isobutyric Acids by ² H Magic Angle Spinning Solid-State NMR Spectroscopy. Journal of the American Chemical Society, 2007, 129, 14717-14723.	6.6	23

#	Article	IF	Citations
199	On the Mechanism of Electron-Capture-Induced Dissociation of Peptide Dications from 15N-Labeling and Crown-Ether Complexation. Journal of Physical Chemistry A, 2007, 111, 9641-9643.	1.1	48
200	Studies on the Heck Reaction with Alkenyl Phosphates:Â Can the 1,2-Migration Be Controlled? Scope and Limitations. Journal of the American Chemical Society, 2007, 129, 6931-6942.	6.6	122
201	Investigations on the Suzukiâ^'Miyaura and Negishi Couplings with Alkenyl Phosphates:Â Application to the Synthesis of 1,1-Disubstituted Alkenes. Journal of Organic Chemistry, 2007, 72, 6464-6472.	1.7	90
202	SmI2-Promoted Radical Addition Reactions with N-(2-Indolylacyl)oxazolidinones:  Synthesis of Bisindole Compounds. Journal of Organic Chemistry, 2007, 72, 4181-4188.	1.7	19
203	Studies Directed to Understanding the Structure of Chitosanâ^'Metal Complexes:Â Investigations of Mono- and Disaccharide Models with Platinum(II) Group Metals. Inorganic Chemistry, 2007, 46, 4326-4335.	1.9	26
204	Enantioselective Proteins: Selection, Binding Studies and Molecular Modeling of Antibodies with Affinity towards Hydrophobic BINOL Derivatives. ChemBioChem, 2007, 8, 1974-1980.	1.3	9
205	Studies Directed to the Synthesis of Oligochitosans – Preparation of Building Blocks and Their Evaluation in Glycosylation Studies. European Journal of Organic Chemistry, 2007, 2007, 3392-3401.	1.2	25
206	Evaluation of disaccharide-based ligands for Pd(0)-catalyzed asymmetric allylations. Tetrahedron Letters, 2007, 48, 3569-3573.	0.7	16
207	Creating carbon–carbon bonds with samarium diiodide for the synthesis of modified amino acids and peptides. Organic and Biomolecular Chemistry, 2006, 4, 3553-3564.	1.5	37
208	Direct synthesis of 1,1-diarylalkenes from alkenyl phosphates via nickel(0)-catalysed Suzuki–Miyaura coupling. Chemical Communications, 2006, , 4137-4139.	2.2	57
209	Formal Total Synthesis of the Potent Renin Inhibitor Aliskiren:Â Application of a SmI2-Promoted Acyl-like Radical Coupling. Journal of Organic Chemistry, 2006, 71, 4766-4777.	1.7	47
210	Mechanistic Evidence for Intermolecular Radical Carbonyl Additions Promoted by Samarium Diiodide. Journal of the American Chemical Society, 2006, 128, 9616-9617.	6.6	49
211	Characterization of HMPA-Coordinated Titanium(III) Species in Solutions of Zinc-Reduced Titanocene Dihalides. Organometallics, 2006, 25, 2031-2036.	1.1	23
212	Expanding the Scope of the Acyl-Type Radical Addition Reactions Promoted by Sml2. Journal of Organic Chemistry, 2006, 71, 8219-8226.	1.7	24
213	Heck Coupling with Nonactivated Alkenyl Tosylates and Phosphates: Examples of Effective 1,2-Migrations of the Alkenyl Palladium(II) Intermediates. Angewandte Chemie - International Edition, 2006, 45, 3349-3353.	7.2	196
214	A convenient and simple procedure for the preparation of nitrate esters from alcohols employing LiNO3/(CF3CO)2O. Tetrahedron Letters, 2005, 46, 6205-6207.	0.7	15
215	Radical Addition of Nitrones to Acrylates Mediated by Sml2: Asymmetric Synthesis of ?-Amino Acids Employing Carbohydrate-Based Chiral Auxiliaries ChemInform, 2005, 36, no.	0.1	0
216	Can Decarbonylation of Acyl Radicals Be Overcome in Radical Addition Reactions? En Route to a Solution Employing N-Acyl Oxazolidinones and SmI2/H2O ChemInform, 2005, 36, no.	0.1	0

#	Article	IF	Citations
217	Fast and Regioselective Heck Couplings with N-Acyl-N-vinylamine Derivatives ChemInform, 2005, 36, no.	0.1	0
218	A Convenient and Simple Procedure for the Preparation of Nitrate Esters from Alcohols Employing LiNO3/(CF3CO)2O ChemInform, 2005, 36, no.	0.1	0
219	Regioselective Heck Couplings of $\hat{I}\pm,\hat{I}^2$ -Unsaturated Tosylates and Mesylates with Electron-Rich Olefins. Organic Letters, 2005, 7, 5585-5587.	2.4	96
220	Influence of the Halogen in Titanocene Halide Promoted Reductions. Organometallics, 2005, 24, 1252-1262.	1.1	61
221	Can Decarbonylation of Acyl Radicals Be Overcome in Radical Addition Reactions? En Route to a Solution EmployingN-Acyl Oxazolidinones and Sml2/H2O. Journal of the American Chemical Society, 2005, 127, 6544-6545.	6.6	82
222	Synthesis of a Hydroxyethylene Isostere of the Tripeptide Arg-Gly-Leu via a Convergent Acyl-like Radical Addition Strategy. Journal of Organic Chemistry, 2005, 70, 7512-7519.	1.7	16
223	Fast and Regioselective Heck Couplings with N-Acyl-N-vinylamine Derivatives. Journal of Organic Chemistry, 2005, 70, 5997-6003.	1.7	85
224	Samarium diiodide-induced intramolecular pinacol coupling of dinitrones: synthesis of cyclic cis-vicinal diamines. Chemical Communications, 2005, , 5402.	2,2	13
225	Revelation of the Nature of the Reducing Species in Titanocene Halide-Promoted Reductions. Journal of the American Chemical Society, 2004, 126, 7853-7864.	6.6	134
226	Highly Diastereoselective Mannich-Type Reactions of Chiral N-Arylhydrazones ChemInform, 2004, 35, no.	0.1	0
227	An improved protocol for the SmI2-promoted C-alkylation of peptides: degradation and functionalization of serine residues in linear and cyclic peptides. Tetrahedron Letters, 2004, 45, 9091-9094.	0.7	19
228	Preparation of a novel diphosphine–palladium macrocyclic complex possessing a molecular recognition site. Oxidative addition studies. Chemical Communications, 2004, , 202-203.	2.2	16
229	Radical addition of nitrones to acrylates mediated by Sml2: asymmetric synthesis of \hat{l}^3 -amino acids employing carbohydrate-based chiral auxiliaries. Chemical Communications, 2004, , 1962-1963.	2.2	30
230	Highly Diastereoselective Mannich-Type Reactions of Chiral N-Acylhydrazones. Journal of Organic Chemistry, 2004, 69, 4792-4796.	1.7	37
231	Mechanistic Investigation of the Electrochemical Reduction of Cp2TiX2. Organometallics, 2004, 23, 1866-1874.	1.1	69
232	Sml2-Promoted Radical Addition of Nitrones to α,β-Unsaturated Amides and Esters:  Synthesis of γ-Amino Acids via a Nitrogen Equivalent to the Ketyl Radical. Organic Letters, 2003, 5, 229-231.	2.4	95
233	Sml2-Promoted Radical Addition of Nitrones to \hat{l}_{\pm} , \hat{l}_{-} Unsaturated Amides and Esters: Synthesis of \hat{l}_{-} Amino Acids via a Nitrogen Equivalent to the Ketyl Radical ChemInform, 2003, 34, no.	0.1	0
234	Further studies in the acyl-type radical additions promoted by SmI 2: mechanistic implications and stereoselective reduction of the keto-functionality. Tetrahedron, 2003, 59, 10541-10549.	1.0	22

#	Article	IF	CITATIONS
235	Synthesis of the C-Linked Disaccharide α-d-Man-(1→4)-d-Man Employing a Sml2-Mediated C-Glycosylation Step:  En Route to Cyclic C-Oligosaccharides. Journal of Organic Chemistry, 2003, 68, 2123-2128.	1.7	30
236	Sml2Reduced Thioesters as Synthons of Unstable Acyl Radicals:Â Direct Synthesis of Potential Protease Inhibitors via Intermolecular Radical Addition. Journal of the American Chemical Society, 2003, 125, 4030-4031.	6.6	48
237	Asymmetric Mannich-Type Reactions for the Synthesis of Aspartic Acid Derivatives from ChiralN-tert-Butanesulfinylimino Esters. Journal of Organic Chemistry, 2003, 68, 7112-7114.	1.7	36
238	Sml2-Mediated Cyclizations of Derivatized \hat{I}^2 -Lactams for the Highly Diastereoselective Construction of Functionalized Prolines. Journal of Organic Chemistry, 2002, 67, 2411-2417.	1.7	42
239	Conformation of Glycomimetics in the Free and Protein-Bound State: Structural and Binding Features of theC-glycosyl Analogue of the Core Trisaccharide α-d-Man-(1 → 3)-[α-d-Man-(1 → 6)]-d-Man. Journal of the American Chemical Society, 2002, 124, 14940-14951.	6.6	53
240	Synthesis and Investigation of New Macrocyclic Diphosphineâ^Palladium(0) Complexes Based on the Barbiturate Binding Receptor. Organometallics, 2002, 21, 5243-5253.	1.1	25
241	Application of the Anomeric Samarium Route for the Convergent Synthesis of theC-Linked Trisaccharide α-d-Man-(1→3)-[α-d-Man-(1→6)]-d-Man and the Disaccharides α-d-Man-(1→3)-d-Man and α-d-Man-(1→6)-d-Man. Journal of Organic Chemistry, 2002, 67, 6297-6308.	1.7	49
242	Formal total synthesis of the PKC inhibitor, balanol: preparation of the fully protected benzophenone fragment. Tetrahedron, 2002, 58, 2231-2238.	1.0	41
243	Synthesis and binding properties of chiral macrocyclic barbiturate receptors: application to nitrile oxide cyclizations. Journal of the Chemical Society, Perkin Transactions 1, 2002, , 1723-1733.	1.3	20
244	Studies on the C-alkylation and C-allylation of small peptides employing glycyl radical intermediates. Journal of the Chemical Society, Perkin Transactions $1,2001,916$.	1.3	9
245	Is the trinuclear complex the true reducing species in the Cp2TiCl2/Mn- and Cp2TiCl2/Zn-promoted pinacol coupling?. Comptes Rendus De L'Academie Des Sciences - Series IIc: Chemistry, 2001, 4, 435-438.	0.1	6
246	C-Glycosyl Analogs of Oligosaccharides and Glycosyl Amino Acids. , 2001, , 2679-2724.		16
247	Application of Reductive Samariation to the Synthesis of Small Unnatural Peptides. Angewandte Chemie - International Edition, 2000, 39, 242-246.	7.2	50
248	Evidence for Ionic Samarium(II) Species in THF/HMPA Solution and Investigation of Their Electron-Donating Properties. Chemistry - A European Journal, 2000, 6, 3747-3754.	1.7	110
249	Development of a catalytic cycle for the generation of C1-glycosyl carbanions with Cp2TiCl2: application to glycal synthesis. Tetrahedron Letters, 2000, 41, 8645-8649.	0.7	33
250	A highly convergent synthesis of a branched C-trisaccharide employing a double SmI2-promoted C-glycosylation. Chemical Communications, 2000, , 2319-2320.	2.2	13
251	Studies on the Sml2-Promoted Pinacol-Type Cyclization:Â Synthesis of the Hexahydroazepine Ring of Balanol. Journal of Organic Chemistry, 2000, 65, 5382-5390.	1.7	77
252	Synthesis of the Benzophenone Fragment of Balanol via an Intramolecular Cyclization Event. Journal of Organic Chemistry, 2000, 65, 6052-6060.	1.7	52

#	Article	IF	CITATIONS
253	Selective Side Chain Introduction onto Small Peptides Mediated by Samarium Diiodide:Â A Potential Route to Peptide Libraries. Journal of the American Chemical Society, 2000, 122, 12413-12421.	6.6	62
254	Application of an intramolecular Heck reaction for the construction of the balanol aryl core structure. Tetrahedron Letters, 1999, 40, 4901-4904.	0.7	28
255	A convenient synthesis of glycals employing in-situ generated Cp2TiCl. Tetrahedron Letters, 1999, 40, 6087-6090.	0.7	21
256	A convergent synthesis of \hat{l}_{\pm} -C-1,3-mannobioside via Sml2-promoted C-glycosylation. Tetrahedron Letters, 1999, 40, 7565-7568.	0.7	29
257	Ligand Effects on the Diastereoselectivities of Samarium Diiodide Promoted Pinacol Coupling. European Journal of Organic Chemistry, 1999, 1999, 565-572.	1.2	37
258	Samarium Diiodide Promoted C-Glycosylation: An Application to the Stereospecific Synthesis of $\hat{l}\pm 1,2$ -C-Mannobioside and Its Derivatives. Chemistry - A European Journal, 1999, 5, 430-441.	1.7	72
259	Conformational Differences BetweenC- andO-Glycosides: Thel±-C-Mannobiose/l±-O-Mannobiose Case. Chemistry - A European Journal, 1999, 5, 442-448.	1.7	50
260	Influence of a dimetal ion binding ferrocene ligand on the samarium diiodide promoted pinacol coupling reaction. Chemical Communications, 1999, , 2051-2052.	2.2	23
261	Is samarium diiodide an inner- or outer-sphere electron donating agent?. Chemical Communications, 1999, , 343-344.	2.2	81
262	Radical intermediates in the stereoselective synthesis of C-glycosides. Advances in Free Radical Chemistry, 1999, , 89-121.	0.4	7
263	A General Approach to 1,2-trans-C-Glycosides via Glycosyl Samarium(III) Compounds. Chemistry - A European Journal, 1998, 4, 655-671.	1.7	74
264	First synthesis of a C-glycoside anologue of a tumor-associated carbohydrate antigen employing samarium diiodide promoted C-glycosylation. Chemical Communications, 1998, , 955-956.	2.2	58
265	Stereocontrolled Synthesis of α-C-Galactosamine Derivatives via Chelation-ControlledC-Glycosylation. Journal of Organic Chemistry, 1998, 63, 2507-2516.	1.7	71
266	Stereoselective Synthesis of α-C-Glucosamines via Anomeric Organosamarium Reagents. Synlett, 1998, 1998, 1393-1395.	1.0	35
267	1,2â€ <i>cis</i> â€ <i>C</i> â€glycoside synthesis by samarium diiodideâ€promoted radical cyclizations. Chemistry - A European Journal, 1997, 3, 1342-1356.	1.7	66
268	Further studies in \hat{l}_{\pm} -C-mannosylation promoted by samarium diiodide. Tetrahedron Letters, 1997, 38, 1767-1770.	0.7	21
269	New Sequential Reactions with Single-Electron-Donating Agents. Angewandte Chemie International Edition in English, 1997, 36, 345-347.	4.4	94
270	Evaluation of Isofagomine and Its Derivatives As Potent Glycosidase Inhibitors. Biochemistry, 1996, 35, 2788-2795.	1.2	103

#	Article	IF	Citations
271	Stereocontrolled synthesis of î±-C-galactosamine derivatives promoted by samarium diiodide: an example of chelation controlled C-glycosylation. Chemical Communications, 1996, , 1883-1884.	2.2	34
272	A new and convenient benzyloxyalkylating agent induced by samarium diiodide. Chemical Communications, 1996, , 515.	2.2	15
273	The stereospecific synthesis of methyl \hat{l} ±-C-mannobioside: a potential inhibitor of M. tuberculosis binding to human macrophages. Chemical Communications, 1996, , 1661-1662.	2.2	37
274	Eine hoch stereoselektive Synthese von 1,2â€ <i>trans</i> â€Câ€Glycosiden ýber Glycosylsamarium(<scp>lll</scp>)â€Verbindungen. Angewandte Chemie, 1995, 107, 990-993.	1.6	30
275	A Highly Stereoselective Synthesis of 1,2-trans-C-Glycosides via Glycosyl Samarium(III) Compounds. Angewandte Chemie International Edition in English, 1995, 34, 909-912.	4.4	115
276	Construction of the Bicyclic Core Structure of the Enediyne Antibiotic Esperamicin-A1 in Either Enantiomeric Form from (-)-Quinic Acid. Journal of Organic Chemistry, 1995, 60, 2753-2761.	1.7	43
277	Silicon-Tethered Reactions. Chemical Reviews, 1995, 95, 1253-1277.	23.0	260
278	Application and Mechanistic Studies of the [2,3]-wittig rearrangement: An approach to the bicyclic core structure of the "enediyne―antitumor antib. Tetrahedron, 1994, 50, 1469-1502.	1.0	23
279	Samarium Iodide Induced Intramolecular C-Glycoside Formation: Efficient Radical Formation in the Absence of an Additive. Angewandte Chemie International Edition in English, 1994, 33, 1383-1386.	4.4	101
280	Isofagomine, a Potent, New Glycosidase Inhibitor. Angewandte Chemie International Edition in English, 1994, 33, 1778-1779.	4.4	163
281	Novel silylating agents employing 4-pentenyl silyl ethers. Tetrahedron Letters, 1994, 35, 8167-8170.	0.7	11
282	Synthesis of isofagomine, a novel glycosidase inhibitor. Tetrahedron, 1994, 50, 13449-13460.	1.0	75
283	Substrate recognition by amyloglucosidase: evaluation of conformationally biased isomaltosides. Carbohydrate Research, 1993, 250, 87-92.	1.1	30
284	Stereoselective allylic transposition by means of allylic n-pentenyl ethers. Tetrahedron Letters, 1993, 34, 6407-6410.	0.7	11
285	The [2,3] Wittig rearrangement: Studies toward the synthesis of the bicyclic core structure of the enediyne antibiotics. Tetrahedron Letters, 1992, 33, 4563-4566.	0.7	17
286	Synthesis of 1-aryl-(1,2-dideoxy- \hat{l} ±-d-glucofurano)-[2,1-d]imidazolidine-2-selones and the crystal structure of the 1-p-bromophenyl derivative. Carbohydrate Research, 1992, 237, 303-311.	1.1	13
287	Synthesis Of Isomaltose Analogues. Journal of Carbohydrate Chemistry, 1991, 10, 969-980.	0.4	9
288	From disubstituted acetylenes to trisubstituted olefins. An application. Tetrahedron Letters, 1991, 32, 7535-7538.	0.7	19

#	Article	IF	CITATIONS
289	The opening of trans-2-3-epoxy-1-butanol derivatives with organometallic reagents. Tetrahedron Letters, 1990, 31, 7145-7148.	0.7	33
290	Glucosinolates in Bretschneideraceae. Biochemical Systematics and Ecology, 1989, 17, 375-379.	0.6	17
291	Selenoglucosinolates in nature: Fact or myth?. Phytochemistry, 1988, 27, 3743-3749.	1.4	25
292	Selenoglucosinolates: Synthesis and Enzymatic Hydrolysis Acta Chemica Scandinavica, 1987, 41b, 29-33.	0.7	21
293	Synthesis and properties of some stereoisomeric long-chain 1,2,3,4-tetrols. Tetrahedron, 1986, 42, 1439-1448.	1.0	23
294	Modification of Amino Acids, Peptides, and Carbohydrates through Radical Chemistry., 0,, 135-162.		27
295	Practical Gas Cylinder-Free Preparations of Important Transition Metal-Based Precatalysts Requiring Gaseous Reagents. Organic Process Research and Development, 0, , .	1.3	6
296	New Sequential Reactions with Single Electron Transferring Agents., 0,, 34-39.		1
297	Regioselective Hydroalkylation of Vinylarenes via Cooperative Cu and Ni Catalysis. Angewandte Chemie, 0, , .	1.6	1