
Christopher J Lelliott

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1479243/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	PDZD8 Disruption Causes Cognitive Impairment in Humans, Mice, and Fruit Flies. Biological Psychiatry, 2022, 92, 323-334.	1.3	14
2	Biallelic variants in TRAPPC10 cause a microcephalic TRAPPopathy disorder in humans and mice. PLoS Genetics, 2022, 18, e1010114.	3.5	10
3	Effects of maternal highâ€fat/high sucrose diet on hepatic lipid metabolism in rat offspring. Clinical and Experimental Pharmacology and Physiology, 2021, 48, 86-95.	1.9	4
4	Osteocyte transcriptome mapping identifies a molecular landscape controlling skeletal homeostasis and susceptibility to skeletal disease. Nature Communications, 2021, 12, 2444.	12.8	58
5	A Positively Selected MAGEE2 LoF Allele Is Associated with Sexual Dimorphism in Human Brain Size and Shows Similar Phenotypes in Magee2 Null Mice. Molecular Biology and Evolution, 2021, 38, 5655-5663.	8.9	1
6	Accelerating functional gene discovery in osteoarthritis. Nature Communications, 2021, 12, 467.	12.8	33
7	What is the most appropriate covariate in ANCOVA when analysing metabolic rate?. Nature Metabolism, 2021, 3, 1585-1585.	11.9	5
8	Trappc9 deficiency causes parent-of-origin dependent microcephaly and obesity. PLoS Genetics, 2020, 16, e1008916.	3.5	22
9	High-throughput discovery of genetic determinants of circadian misalignment. PLoS Genetics, 2020, 16, e1008577.	3.5	10
10	Human and mouse essentiality screens as a resource for disease gene discovery. Nature Communications, 2020, 11, 655.	12.8	64
11	Mouse mutant phenotyping at scale reveals novel genes controlling bone mineral density. PLoS Genetics, 2020, 16, e1009190.	3.5	19
12	High-throughput discovery of genetic determinants of circadian misalignment. , 2020, 16, e1008577.		0
13	High-throughput discovery of genetic determinants of circadian misalignment. , 2020, 16, e1008577.		0
14	High-throughput discovery of genetic determinants of circadian misalignment. , 2020, 16, e1008577.		0
15	High-throughput discovery of genetic determinants of circadian misalignment. , 2020, 16, e1008577.		0
16	Large-scale neuroanatomical study uncovers 198 gene associations in mouse brain morphogenesis. Nature Communications, 2019, 10, 3465.	12.8	23
17	Mouse screen reveals multiple new genes underlying mouse and human hearing loss. PLoS Biology, 2019, 17, e3000194.	5.6	84
18	An Orphan CpG Island Drives Expression of a let-7 miRNA Precursor with an Important Role in Mouse Development. Epigenomes, 2019, 3, 7.	1.8	2

CHRISTOPHER J LELLIOTT

#	Article	IF	CITATIONS
19	An atlas of genetic influences on osteoporosis in humans and mice. Nature Genetics, 2019, 51, 258-266.	21.4	557
20	Myosin 10 is involved in murine pigmentation. Experimental Dermatology, 2019, 28, 391-394.	2.9	9
21	Identification of genetic elements in metabolism by high-throughput mouse phenotyping. Nature Communications, 2018, 9, 288.	12.8	59
22	Targeting of NAT10 enhances healthspan in a mouse model of human accelerated aging syndrome. Nature Communications, 2018, 9, 1700.	12.8	103
23	Sixteen diverse laboratory mouse reference genomes define strain-specific haplotypes and novel functional loci. Nature Genetics, 2018, 50, 1574-1583.	21.4	169
24	Prevalence of sexual dimorphism in mammalian phenotypic traits. Nature Communications, 2017, 8, 15475.	12.8	200
25	Lyplal1 is dispensable for normal fat deposition in mice. DMM Disease Models and Mechanisms, 2017, 10, 1481-1488.	2.4	6
26	MacroH2A1 isoforms are associated with epigenetic markers for activation of lipogenic genes in fatâ€induced steatosis. FASEB Journal, 2015, 29, 1676-1687.	0.5	41
27	Discovery of four recessive developmental disorders using probabilistic genotype and phenotype matching among 4,125 families. Nature Genetics, 2015, 47, 1363-1369.	21.4	133
28	Targeting of Slc25a21 Is Associated with Orofacial Defects and Otitis Media Due to Disrupted Expression of a Neighbouring Gene. PLoS ONE, 2014, 9, e91807.	2.5	30
29	Peroxisome proliferatorâ€activated receptor gammaâ€coactivatorâ€1 alpha coordinates sphingolipid metabolism, lipid raft composition and myelin protein synthesis. European Journal of Neuroscience, 2013, 38, 2672-2683.	2.6	19
30	In vivo imaging of lipid storage and regression in diet-induced obesity during nutrition manipulation. American Journal of Physiology - Endocrinology and Metabolism, 2012, 303, E1287-E1295.	3.5	6
31	A New Role for Lipocalin Prostaglandin D Synthase in the Regulation of Brown Adipose Tissue Substrate Utilization. Diabetes, 2012, 61, 3139-3147.	0.6	48
32	Metabolomic and Lipidomic Analysis of the Heart of Peroxisome Proliferator-Activated Receptor-γ Coactivator 1-β Knock Out Mice on a High Fat Diet. Metabolites, 2012, 2, 366-381.	2.9	6
33	Amelioration of lipid-induced insulin resistance in rat skeletal muscle by overexpression of Pgc-1β involves reductions in long-chain acyl-CoA levels and oxidative stress. Diabetologia, 2011, 54, 1417-1426.	6.3	52
34	PGC-1β Deficiency Accelerates the Transition to Heart Failure in Pressure Overload Hypertrophy. Circulation Research, 2011, 109, 783-793.	4.5	136
35	Deletion of the metabolic transcriptional coactivator PGC1 \hat{l}^2 induces cardiac arrhythmia. Cardiovascular Research, 2011, 92, 29-38.	3.8	30
36	Peroxisome proliferator-activated receptor-l ³ coactivator 1-l± (PGC1l±) is a metabolic regulator of intestinal epithelial cell fate. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 6603-6608.	7.1	135

CHRISTOPHER J LELLIOTT

#	Article	IF	CITATIONS
37	Hypothalamic AMPK and fatty acid metabolism mediate thyroid regulation of energy balance. Nature Medicine, 2010, 16, 1001-1008.	30.7	581
38	Coordination of PGC-1β and iron uptake in mitochondrial biogenesis and osteoclast activation. Nature Medicine, 2009, 15, 259-266.	30.7	315
39	PGC-1β: A Co-activator That Sets the Tone for Both Basal and Stress-Stimulated Mitochondrial Activity. Advances in Experimental Medicine and Biology, 2009, 646, 133-139.	1.6	13
40	Intestinal, adipose, and liver inflammation in diet-induced obese mice. Metabolism: Clinical and Experimental, 2008, 57, 1704-1710.	3.4	87
41	Hypothalamic Fatty Acid Metabolism Mediates the Orexigenic Action of Ghrelin. Cell Metabolism, 2008, 7, 389-399.	16.2	417
42	Acutely reduced locomotor activity is a major contributor to Western diet-induced obesity in mice. American Journal of Physiology - Endocrinology and Metabolism, 2008, 294, E251-E260.	3.5	120
43	Mitochondrial Fusion Is Increased by the Nuclear Coactivator PGC-1Î ² . PLoS ONE, 2008, 3, e3613.	2.5	159
44	Hepatic PGC-1β Overexpression Induces Combined Hyperlipidemia and Modulates the Response to PPARα Activation. Arteriosclerosis, Thrombosis, and Vascular Biology, 2007, 27, 2707-2713.	2.4	43
45	Hypothalamic fatty acid metabolism: A housekeeping pathway that regulates food intake. BioEssays, 2007, 29, 248-261.	2.5	127
46	Ablation of PGC-1Î ² Results in Defective Mitochondrial Activity, Thermogenesis, Hepatic Function, and Cardiac Performance. PLoS Biology, 2006, 4, e369.	5.6	249
47	Tamoxifen-Induced Anorexia Is Associated With Fatty Acid Synthase Inhibition in the Ventromedial Nucleus of the Hypothalamus and Accumulation of Malonyl-CoA. Diabetes, 2006, 55, 1327-1336.	0.6	143
48	Regulation of Adiponectin Expression in Human Adipocytes: Effects of Adiposity, Glucocorticoids, and Tumor Necrosis Factor α. Obesity, 2005, 13, 662-669.	4.0	177
49	Genetically Modified Mouse Models of Insulin Resistance. , 2005, , 133-153.		2
50	The Link Between Nutritional Status and Insulin Sensitivity Is Dependent on the Adipocyte-Specific Peroxisome Proliferator-Activated Receptor-Â2 Isoform. Diabetes, 2005, 54, 1706-1716.	0.6	157
51	Transcript and metabolite analysis of the effects of tamoxifen in rat liver reveals inhibition of fatty acid synthesis in the presence of hepatic steatosis. FASEB Journal, 2005, 19, 1108-1119.	0.5	87
52	ETO/MTG8 Is an Inhibitor of C/EBPÎ ² Activity and a Regulator of Early Adipogenesis. Molecular and Cellular Biology, 2004, 24, 9863-9872.	2.3	75
53	Characterization of the human, mouse and rat PGC1beta (peroxisome-proliferator-activated) Tj ETQq1 1 0.7843	14 rgBT /C 3.7	Dverlock 10 Tf
54	Lamin Expression in Human Adipose Cells in Relation to Anatomical Site and Differentiation State. Journal of Clinical Endocrinology and Metabolism, 2002, 87, 728-734.	3.6	35

#	Article	IF	CITATIONS
55	Lamin Expression in Human Adipose Cells in Relation to Anatomical Site and Differentiation State. Journal of Clinical Endocrinology and Metabolism, 2002, 87, 728-734.	3.6	17