Ioan Ardelean

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1476889/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Characterization of the Influence of an Accelerator upon the Porosity and Strength of Cement Paste by Nuclear Magnetic Resonance (NMR) Relaxometry. Analytical Letters, 2023, 56, 303-311.	1.8	4
2	Characterization of the Nuclear Magnetic Resonance Relaxivity of Gadolinium Functionalized Magnetic Nanoparticles. Analytical Letters, 2021, 54, 124-139.	1.8	3
3	Interplay of Aging and Lot-to-Lot Variability on the Physical and Chemical Properties of Excipients: A Case Study of Mono- and Diglycerides. Molecular Pharmaceutics, 2021, 18, 862-877.	4.6	6
4	Freeze–Thaw Effect on Road Concrete Containing Blast Furnace Slag: NMR Relaxometry Investigations. Materials, 2021, 14, 3288.	2.9	14
5	Molecular self-diffusion in internal magnetic fields of porous medium investigated by NMR MGSE method. Journal of Magnetic Resonance, 2021, 328, 106981.	2.1	2
6	The Effect of an Accelerator on Cement Paste Capillary Pores: NMR Relaxometry Investigations. Molecules, 2021, 26, 5328.	3.8	7
7	Use of Magic Sandwich Echo and Fast Field Cycling NMR Relaxometry on Honey Adulteration with Corn Syrup. Journal of the Science of Food and Agriculture, 2021, , .	3.5	5
8	Imbibition and dewetting of silica colloidal crystals: An NMR relaxometry study. Journal of Colloid and Interface Science, 2020, 561, 741-748.	9.4	11
9	Revealing the Influence of Microparticles on Geopolymers' Synthesis and Porosity. Materials, 2020, 13, 3211.	2.9	32
10	Evolution of the microstructure and the drug release upon annealing the drug loaded lipid-surfactant microspheres. European Journal of Pharmaceutical Sciences, 2020, 147, 105278.	4.0	11
11	The Effect of Silica Fume and Organosilane Addition on the Porosity of Cement Paste. Molecules, 2020, 25, 1762.	3.8	6
12	NMR T ₁ –T ₂ correlation analysis of molecular absorption inside a hardened cement paste containing silanised silica fume. Molecular Physics, 2019, 117, 1000-1005.	1.7	4
13	The effect of silica nanoparticles on the pore structure of hydrating cement paste: a spatially resolved low-field NMR study. Molecular Physics, 2019, 117, 1006-1014.	1.7	3
14	Microporosity Quantification via NMR Relaxometry. Journal of Physical Chemistry C, 2019, 123, 30486-30491.	3.1	12
15	Surface influence on the rotational and translational dynamics of molecules confined inside a mesoporous carbon xerogel. Magnetic Resonance in Chemistry, 2019, 57, 829-835.	1.9	5
16	Magnetotactic bacteria and biogenic magnetite nanocrystals as potential contrast agents in magnetic resonance imaging. , 2018, , .		2
17	Probing into the mesoporous structure of carbon xerogels via the low-field NMR relaxometry of water and cyclohexane molecules. Microporous and Mesoporous Materials, 2017, 251, 19-25.	4.4	13
18	The effect of silica fume on early hydration of white Portland cement via fast field cycling-NMR relaxometry. AIP Conference Proceedings, 2017, , .	0.4	1

IOAN ARDELEAN

#	Article	IF	CITATIONS
19	Revealing the influence of water-cement ratio on the pore size distribution in hydrated cement paste by using cyclohexane. AIP Conference Proceedings, 2017, , .	0.4	5
20	Probing the connectivity and wettability of carbon aerogels and xerogels via low-field NMR. AIP Conference Proceedings, 2017, , .	0.4	1
21	Usage of internal magnetic fields to study the early hydration process of cement paste by MGSE method. Journal of Magnetic Resonance, 2016, 272, 100-107.	2.1	10
22	NMR relaxation of molecules confined inside the cement paste pores under partially saturated conditions. Cement and Concrete Research, 2016, 89, 56-62.	11.0	75
23	Monitoring the Influence of Aminosilane on Cement Hydration Via Low-field NMR Relaxometry. Applied Magnetic Resonance, 2016, 47, 191-199.	1.2	10
24	The influence of silanized nano-SiO2 on the hydration of cement paste: NMR investigations. AIP Conference Proceedings, 2015, , .	0.4	3
25	Monitoring the size evolution of capillary pores in cement paste during the early hydration via diffusion in internal gradients. Cement and Concrete Research, 2015, 77, 76-81.	11.0	26
26	The Effect of Curing Temperature on Early Hydration of Gray Cement Via Fast Field Cycling-NMR Relaxometry. Applied Magnetic Resonance, 2014, 45, 1299-1309.	1.2	19
27	The Effects of Different Superplasticizers and Water-to-Cement Ratios on the Hydration of Gray Cement Using T2-NMR. Applied Magnetic Resonance, 2013, 44, 1223-1234.	1.2	43
28	Frequencyâ€dependent NMR relaxation of liquids confined inside porous media containing an increased amount of magnetic impurities. Magnetic Resonance in Chemistry, 2013, 51, 123-128.	1.9	25
29	The Influence of the Magnetic Impurity Content on the Pore Size Distribution Determination via the DDIF Technique. Applied Magnetic Resonance, 2013, 44, 365-373.	1.2	5
30	Probing the Pore Size of Porous Ceramics with Controlled Amount of Magnetic Impurities via Diffusion Effects on the CPMG Technique. Applied Magnetic Resonance, 2013, 44, 837-848.	1.2	8
31	Monitoring the ettringite formation in cement paste using low field T2-NMR. , 2013, , .		6
32	The effect of diffusion in internal gradients on nuclear magnetic resonance transverse relaxation measurements. AIP Conference Proceedings, 2013, , .	0.4	5
33	Determination of residual monomers resulting from the chemical polymerization process of dental materials. , 2013, , .		0
34	Monitoring the Air Influence on Cement–Lime Mortar Hydration Using Low-Field Nuclear Magnetic Resonance Relaxometry. Applied Magnetic Resonance, 2012, 43, 443-450.	1.2	11
35	The Size Distribution of Core Shell Polymeric Capsules as Revealed by Low-Field NMR Diffusometry. Applied Magnetic Resonance, 2011, 40, 205-211.	1.2	7
36	Saturationâ€dependent nuclear magnetic resonance relaxation of fluids confined inside porous media with micrometerâ€sized pores. Magnetic Resonance in Chemistry, 2011, 49, 314-319.	1.9	29

IOAN ARDELEAN

#	Article	IF	CITATIONS
37	NMR relaxation dispersion of Miglyol molecules confined inside polymeric microâ€capsules. Magnetic Resonance in Chemistry, 2011, 49, 730-733.	1.9	3
38	Low-Field Nuclear Magnetic Resonance Relaxometry as a Tool in Monitoring the Aging of Coating Solutions (Case Study: Barium Propionate Precursor Coating Solution). Applied Magnetic Resonance, 2010, 39, 365-372.	1.2	4
39	The Diversity of B0 and B1 Gradient NMR Diffusometry Techniques. Israel Journal of Chemistry, 2010, 43, 9-24.	2.3	6
40	Nuclear magnetic resonance studies of liquids morphology inside partially saturated porous media. Journal of Physics: Conference Series, 2009, 182, 012012.	0.4	2
41	Time-Dependent Diffusion Studies on Miglyol Molecules Confined in Permeable Polymeric Capsules. Applied Magnetic Resonance, 2008, 34, 63-69.	1.2	Ο
42	Preparation and NMR Characterization of Polyethyl-2-cyanoacrylate Nanocapsules. Applied Magnetic Resonance, 2008, 34, 111-119.	1.2	9
43	Time-Dependent Molecular Diffusion in Partially Filled Porous Glasses with Heterogeneous Structure. Applied Magnetic Resonance, 2008, 34, 85-99.	1.2	3
44	The heterogeneous distribution of the liquid phase in partially filled porous glasses and its effect on self-diffusion. Magnetic Resonance Imaging, 2007, 25, 453-456.	1.8	5
45	Probing four orders of magnitude of the diffusion time in porous silica glass with unconventional NMR techniques. Journal of Magnetic Resonance, 2006, 182, 215-220.	2.1	19
46	NMR study of the vapor phase contribution to diffusion in partially filled silica glasses with nanometer and micrometer pores. Magnetic Resonance Imaging, 2005, 23, 285-289.	1.8	14
47	Grating spin echoes. Applied Magnetic Resonance, 2004, 26, 307-315.	1.2	3
48	The Diversity of BO and B1 Gradient NMR Diffusometry Techniques. ChemInform, 2004, 35, no.	0.0	0
49	NMR acceleration mapping in percolation model objects. Journal of Magnetic Resonance, 2004, 168, 175-185.	2.1	10
50	Molecular exchange dynamics in partially filled microscale and nanoscale pores of silica glasses studied by field-cycling nuclear magnetic resonance relaxometry. Journal of Chemical Physics, 2004, 121, 10648-10656.	3.0	42
51	Nuclear magnetic resonance study of the vapor contribution to diffusion in silica glasses with micrometer pores partially filled with liquid cyclohexane or water. Journal of Chemical Physics, 2004, 120, 9809-9816.	3.0	15
52	Nuclear magnetic resonance study of the vapor phase contribution to diffusion in nanoporous glasses partially filled with water and cyclohexane. Journal of Chemical Physics, 2003, 119, 10358-10362.	3.0	33
53	Principles and Unconventional Aspects of NMR Diffusometry. Annual Reports on NMR Spectroscopy, 2003, , 43-115.	1.5	52
54	Response to "Comment on â€~Diffusion measurements with the pulsed gradient nonlinear spin echo method' ―[J. Chem. Phys. 116, 1204 (2002)]. Journal of Chemical Physics, 2002, 116, 1206-1206.	3.0	7

IOAN ARDELEAN

#	Article	IF	CITATIONS
55	Diffusion Measurements with the Aid of Nutation Spin Echoes Appearing after Two Inhomogeneous Radiofrequency Pulses in Inhomogeneous Magnetic Fields. Journal of Magnetic Resonance, 2001, 148, 363-366.	2.1	21
56	The influence of J-coupling on heteronuclear nonlinear (or multiple) spin echoes. Chemical Physics Letters, 2001, 347, 157-162.	2.6	4
57	Attenuation of homo- and heteronuclear multiple spin echoes by diffusion. Journal of Chemical Physics, 2001, 114, 8520-8529.	3.0	41
58	Diffusion Measurements Using the Nonlinear Stimulated Echo. Journal of Magnetic Resonance, 2000, 143, 101-105.	2.1	19
59	Two-Pulse Nutation Echoes Generated by Gradients of the Radiofrequency Amplitude and of the Main Magnetic Field. Journal of Magnetic Resonance, 2000, 144, 45-52.	2.1	15
60	The Nutation Spin Echo and Its Use for Localized NMR. Journal of Magnetic Resonance, 2000, 146, 43-48.	2.1	21
61	Demagnetizing field effects on the Hahn echo. Chemical Physics Letters, 2000, 320, 81-86.	2.6	16
62	Diffusion measurements with the pulsed gradient nonlinear spin echo method. Journal of Chemical Physics, 2000, 112, 5275-5280.	3.0	38
63	Intermolecular multiple-quantum coherence transfer echoes and multiple echoes in nuclear magnetic resonance. Journal of Chemical Physics, 1999, 110, 3708-3713.	3.0	31
64	Multiple spin echo generation by gradients of the radio frequency amplitude: Two-dimensional nutation spectroscopy and multiple rotary echoes. Journal of Chemical Physics, 1999, 111, 6501-6509.	3.0	10
65	The Nonlinear Stimulated Echo in the Presence of Inequivalent Spins. Journal of Magnetic Resonance, 1998, 132, 138-143.	2.1	8
66	Multiple Nonlinear Stimulated Echoes. Journal of Magnetic Resonance, 1997, 127, 217-224.	2.1	30
67	Spatial Localized Double-Quantum NMR Heteronuclear Coherence Transfer in Solids by Indirect Detection. Acta Physica Polonica A, 1996, 89, 699-714.	0.5	3