Aynur Aptula

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/14765/publications.pdf

Version: 2024-02-01

26 papers

3,833 citations

279798 23 h-index 27 g-index

27 all docs

 $\begin{array}{c} 27 \\ \text{docs citations} \end{array}$

27 times ranked

1528 citing authors

#	Article	IF	CITATIONS
1	Mechanistic Applicability Domain Classification of a Local Lymph Node Assay Dataset for Skin Sensitization. Chemical Research in Toxicology, 2007, 20, 1019-1030.	3.3	1,334
2	Alternative (non-animal) methods for cosmetics testing: current status and future prospects—2010. Archives of Toxicology, 2011, 85, 367-485.	4.2	488
3	Refinement of the Dermal Sensitisation Threshold (DST) approach using a larger dataset and incorporating mechanistic chemistry domains. Regulatory Toxicology and Pharmacology, 2011, 60, 218-224.	2.7	371
4	Local Lymph Node Data for the Evaluation of Skin Sensitization Alternatives: A Second Compilation. Dermatitis, 2010, 21, 8-32.	1.6	168
5	Skin Sensitization:  Reaction Mechanistic Applicability Domains for Structureâ^'Activity Relationships. Chemical Research in Toxicology, 2005, 18, 1420-1426.	3.3	165
6	In silico toxicology protocols. Regulatory Toxicology and Pharmacology, 2018, 96, 1-17.	2.7	159
7	Electrophilic Chemistry Related to Skin Sensitization. Reaction Mechanistic Applicability Domain Classification for a Published Data Set of 106 Chemicals Tested in the Mouse Local Lymph Node Assay. Chemical Research in Toxicology, 2007, 20, 44-60.	3.3	142
8	Mechanistic Applicability Domains for Non-Animal Based Prediction of Toxicological Endpoints. QSAR Analysis of the Schiff Base Applicability Domain for Skin Sensitization. Chemical Research in Toxicology, 2006, 19, 1228-1233.	3.3	141
9	Reactivity Profiling: Covalent Modification of Single Nucleophile Peptides for Skin Sensitization Risk Assessment. Toxicological Sciences, 2009, 108, 401-411.	3.1	98
10	Non-enzymatic glutathione reactivity and in vitro toxicity: A non-animal approach to skin sensitization. Toxicology in Vitro, 2006, 20, 239-247.	2.4	91
11	TIMES-SS—A promising tool for the assessment of skin sensitization hazard. A characterization with respect to the OECD validation principles for (Q)SARs and an external evaluation for predictivity. Regulatory Toxicology and Pharmacology, 2007, 48, 225-239.	2.7	91
12	An evaluation of selected global (Q)SARs/expert systems for the prediction of skin sensitisation potential. SAR and QSAR in Environmental Research, 2007, 18, 515-541.	2.2	77
13	TIMES-SSâ€"A Mechanistic Evaluation of an External Validation Study Using Reaction Chemistry Principles. Chemical Research in Toxicology, 2007, 20, 1321-1330.	3.3	56
14	Prediction of hERG K+ blocking potency: Application of structural knowledge. SAR and QSAR in Environmental Research, 2004, 15 , $399-411$.	2,2	52
15	Guiding principles for the implementation of non-animal safety assessment approaches for cosmetics: Skin sensitisation. Regulatory Toxicology and Pharmacology, 2012, 63, 40-52.	2.7	45
16	A Minireview of Available Skin Sensitization (Q)SARs/Expert Systems. QSAR and Combinatorial Science, 2008, 27, 60-76.	1.4	44
17	Global (Q)SARs for skin sensitisation–assessment against OECD principles‖. SAR and QSAR in Environmental Research, 2007, 18, 343-365.	2.2	39
18	Chemistry-Based Risk Assessment for Skin Sensitization: Quantitative Mechanistic Modeling for the SNAr Domain. Chemical Research in Toxicology, 2011, 24, 1003-1011.	3.3	34

AYNUR APTULA

#	Article	IF	CITATION
19	Electrophilic Reactivity and Skin Sensitization Potency of S _N Ar Electrophiles. Chemical Research in Toxicology, 2014, 27, 240-246.	3.3	34
20	Structure–activity relationships for abiotic thiol reactivity and aquatic toxicity of halo-substituted carbonyl compounds. SAR and QSAR in Environmental Research, 2007, 18, 21-29.	2.2	33
21	Identifying the Structural Requirements for Chromosomal Aberration by Incorporating Molecular Flexibility and Metabolic Activation of Chemicals. Chemical Research in Toxicology, 2007, 20, 1927-1941.	3.3	31
22	Partial Least Squares Modelling of the Acute Toxicity of Aliphatic Compounds to Tetrahymena pyriformis. SAR and QSAR in Environmental Research, 2003, 14, 265-283.	2.2	28
23	Assuring Consumer Safety without Animal Testing: A Feasibility Case Study for Skin Sensitisation. ATLA Alternatives To Laboratory Animals, 2008, 36, 557-568.	1.0	21
24	A practical guidance for Cramer class determination. Regulatory Toxicology and Pharmacology, 2015, 73, 971-984.	2.7	21
25	Structure–Potency Relationships for Epoxides in Allergic Contact Dermatitis. Chemical Research in Toxicology, 2017, 30, 524-531.	3.3	16
26	Reactivity-based toxicity modelling of five-membered heterocyclic compounds: Application to <i>Tetrahymena pyriformis</i> . SAR and QSAR in Environmental Research, 2010, 21, 681-691.	2.2	15