
James Mu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1476234/publications.pdf Version: 2024-02-01

LANES MU

#	Article	IF	CITATIONS
1	Insulin Resistance and a Diabetes Mellitus-Like Syndrome in Mice Lacking the Protein Kinase Akt2 (PKBbeta). Science, 2001, 292, 1728-1731.	12.6	1,652
2	AMP-kinase regulates food intake by responding to hormonal and nutrient signals in the hypothalamus. Nature, 2004, 428, 569-574.	27.8	1,464
3	AMP-Activated Protein Kinase Induces a p53-Dependent Metabolic Checkpoint. Molecular Cell, 2005, 18, 283-293.	9.7	1,431
4	AMP kinase is required for mitochondrial biogenesis in skeletal muscle in response to chronic energy deprivation. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 15983-15987.	7.1	895
5	A Role for AMP-Activated Protein Kinase in Contraction- and Hypoxia-Regulated Glucose Transport in Skeletal Muscle. Molecular Cell, 2001, 7, 1085-1094.	9.7	845
6	AMP-activated protein kinase mediates ischemic glucose uptake and prevents postischemic cardiac dysfunction, apoptosis, and injury. Journal of Clinical Investigation, 2004, 114, 495-503.	8.2	640
7	The AMP-activated protein kinase α2 catalytic subunit controls whole-body insulin sensitivity. Journal of Clinical Investigation, 2003, 111, 91-98.	8.2	444
8	Chronic Inhibition of Dipeptidyl Peptidase-4 With a Sitagliptin Analog Preserves Pancreatic Â-Cell Mass and Function in a Rodent Model of Type 2 Diabetes. Diabetes, 2006, 55, 1695-1704.	0.6	432
9	Exercise Induces Isoform-Specific Increase in 5′AMP-Activated Protein Kinase Activity in Human Skeletal Muscle. Biochemical and Biophysical Research Communications, 2000, 273, 1150-1155.	2.1	318
10	The Regulation of AMP-Activated Protein Kinase by H2O2. Biochemical and Biophysical Research Communications, 2001, 287, 92-97.	2.1	269
11	Isoform-specific Regulation of Insulin-dependent Glucose Uptake by Akt/Protein Kinase B. Journal of Biological Chemistry, 2003, 278, 49530-49536.	3.4	268
12	Adipose Fibroblast Growth Factor 21 Is Up-Regulated by Peroxisome Proliferator-Activated Receptor γ and Altered Metabolic States. Molecular Pharmacology, 2008, 74, 403-412.	2.3	260
13	Role of AMP-activated Protein Kinase in Cyclic AMP-dependent Lipolysis In 3T3-L1 Adipocytes. Journal of Biological Chemistry, 2003, 278, 43074-43080.	3.4	254
14	Physiological role of AMP-activated protein kinase (AMPK): insights from knockout mouse models. Biochemical Society Transactions, 2003, 31, 216-219.	3.4	215
15	Glucagon receptor knockout mice are resistant to diet-induced obesity and streptozotocin-mediated beta cell loss and hyperglycaemia. Diabetologia, 2006, 50, 142-150.	6.3	182
16	FGF21 Analogs of Sustained Action Enabled by Orthogonal Biosynthesis Demonstrate Enhanced Antidiabetic Pharmacology in Rodents. Diabetes, 2012, 61, 505-512.	0.6	148
17	The PP2A-Associated Protein Â4 Is an Essential Inhibitor of Apoptosis. Science, 2004, 306, 695-698.	12.6	142
18	Inhibition of DPP-4 with sitagliptin improves glycemic control and restores islet cell mass and function in a rodent model of type 2 diabetes. European Journal of Pharmacology, 2009, 623, 148-154.	3.5	120

James Mu

#	Article	IF	CITATIONS
19	Requirement of the Self-Glucosylating Initiator Proteins Glg1p and Glg2p for Glycogen Accumulation in <i>Saccharomyces cerevisiae</i> . Molecular and Cellular Biology, 1995, 15, 6632-6640.	2.3	109
20	Selective suppression of AMP-activated protein kinase in skeletal muscle: update on â€~lazy mice'. Biochemical Society Transactions, 2003, 31, 236-241.	3.4	93
21	The Clucagon Receptor Is Involved in Mediating the Body Weightâ€Lowering Effects of Oxyntomodulin. Obesity, 2012, 20, 1566-1571.	3.0	90
22	PANIC-ATTAC: A Mouse Model for Inducible and Reversible $\hat{1}^2$ -Cell Ablation. Diabetes, 2008, 57, 2137-2148.	0.6	59
23	AMP kinase is not required for the GLUT4 response to exercise and denervation in skeletal muscle. American Journal of Physiology - Endocrinology and Metabolism, 2004, 287, E739-E743.	3.5	57
24	Chronic treatment with a glucagon receptor antagonist lowers glucose and moderately raises circulating glucagon and glucagon-like peptide 1 without severe alpha cell hypertrophy in diet-induced obese mice. Diabetologia, 2011, 54, 2381-2391.	6.3	57
25	Novel Aspects of the Regulation of Glycogen Storage. Journal of Basic and Clinical Physiology and Pharmacology, 1998, 9, 139-51.	1.3	55
26	Engineering Glucose Responsiveness Into Insulin. Diabetes, 2018, 67, 299-308.	0.6	54
27	Glycogenin-2, a Novel Self-glucosylating Protein Involved in Liver Glycogen Biosynthesis. Journal of Biological Chemistry, 1997, 272, 27589-27597.	3.4	51
28	GLUT4, AMP kinase, but not the insulin receptor, are required for hepatoportal glucose sensor–stimulated muscle glucose utilization. Journal of Clinical Investigation, 2003, 111, 1555-1562.	8.2	50
29	Downstream Signaling Pathways in Mouse Adipose Tissues Following Acute In Vivo Administration of Fibroblast Growth Factor 21. PLoS ONE, 2013, 8, e73011.	2.5	48
30	Anti-Diabetic Efficacy and Impact on Amino Acid Metabolism of GRA1, a Novel Small-Molecule Glucagon Receptor Antagonist. PLoS ONE, 2012, 7, e49572.	2.5	47
31	Self-Glucosylation of Glycogenin, the Initiator of Glycogen Biosynthesis, Involves an Inter-subunit Reaction. Archives of Biochemistry and Biophysics, 1999, 363, 163-170.	3.0	36
32	In Situ Forming Injectable Thermoresponsive Hydrogels for Controlled Delivery of Biomacromolecules. ACS Omega, 2020, 5, 17531-17542.	3.5	36
33	Characterization of Human Glycogenin-2, a Self-glucosylating Initiator of Liver Glycogen Metabolism. Journal of Biological Chemistry, 1998, 273, 34850-34856.	3.4	34
34	A glucose-responsive insulin therapy protects animals against hypoglycemia. JCI Insight, 2018, 3, .	5.0	31
35	GLUT4, AMP kinase, but not the insulin receptor, are required for hepatoportal glucose sensor–stimulated muscle glucose utilization. Journal of Clinical Investigation, 2003, 111, 1555-1562.	8.2	31
36	Initiation of Glycogen Synthesis in Yeast. Journal of Biological Chemistry, 1996, 271, 26554-26560.	3.4	30

James Mu

#	Article	IF	CITATIONS
37	Bone loss in the oestrogenâ€depleted rat is not exacerbated by sitagliptin, either alone or in combination with a thiazolidinedione. Diabetes, Obesity and Metabolism, 2013, 15, 954-957.	4.4	17
38	Functionally selective signaling and broad metabolic benefits by novel insulin receptor partial agonists. Nature Communications, 2022, 13, 942.	12.8	17
39	Restoration of insulin receptor improves diabetic phenotype in T2DM mice. JCI Insight, 2019, 4, .	5.0	16
40	Structure and chromosomal localization of the human glycogenin-2 gene GYG2. Gene, 2000, 242, 229-235.	2.2	14
41	Discovery of Insulin Receptor Partial Agonists MK-5160 and MK-1092 as Novel Basal Insulins with Potential to Improve Therapeutic Index. Journal of Medicinal Chemistry, 2022, 65, 5593-5605.	6.4	8
42	Potentiation of Insulin-Mediated Glucose Lowering without Elevated Hypoglycemia Risk by a Small Molecule Insulin Receptor Modulator. PLoS ONE, 2015, 10, e0122012.	2.5	7
43	Glycogenin-2, a novel self-glucosylating protein involved in liver glycogen biosynthesis Journal of Biological Chemistry, 2001, 276, 14532.	3.4	2