Mingzhou Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/147577/publications.pdf

Version: 2024-02-01

35 papers 5,905 citations

430874 18 h-index 377865 34 g-index

35 all docs

35 docs citations

35 times ranked

14948 citing authors

#	Article	IF	Citations
1	The two-stage interaction of Ebola virus VP40 with nucleoprotein results in a switch from viral RNA synthesis to virion assembly/budding. Protein and Cell, 2022, 13, 120-140.	11.0	10
2	SLC35B2 Acts in a Dual Role in the Host Sulfation Required for EV71 Infection. Journal of Virology, 2022, 96, e0204221.	3.4	8
3	The nonstructural protein 2C of Coxsackie B virus has RNA helicase and chaperoning activities. Virologica Sinica, 2022, 37, 656-663.	3.0	O
4	Sumoylation of Human Parainfluenza Virus Type 3 Phosphoprotein Correlates with A Reduction in Viral Replication. Virologica Sinica, 2021, 36, 438-448.	3.0	3
5	The SARS-CoV-2 subgenome landscape and its novel regulatory features. Molecular Cell, 2021, 81, 2135-2147.e5.	9.7	72
6	SARS-CoV-2 promote autophagy to suppress type I interferon response. Signal Transduction and Targeted Therapy, 2021, 6, 180.	17.1	49
7	P300-mediated NEDD4 acetylation drives ebolavirus VP40 egress by enhancing NEDD4 ligase activity. PLoS Pathogens, 2021, 17, e1009616.	4.7	8
8	Enterovirus 71 2A Protease Inhibits P-Body Formation To Promote Viral RNA Synthesis. Journal of Virology, 2021, 95, e0092221.	3.4	10
9	Glucosamine promotes hepatitis B virus replication through its dual effects in suppressing autophagic degradation and inhibiting MTORC1 signaling. Autophagy, 2020, 16, 548-561.	9.1	49
10	Virion-Associated Cholesterol Regulates the Infection of Human Parainfluenza Virus Type 3. Viruses, 2019, 11, 438.	3. 3	16
11	Viral Regulation of RNA Granules in Infected Cells. Virologica Sinica, 2019, 34, 175-191.	3.0	50
12	PI4KB on Inclusion Bodies Formed by ER Membrane Remodeling Facilitates Replication of Human Parainfluenza Virus Type 3. Cell Reports, 2019, 29, 2229-2242.e4.	6.4	16
13	SG formation relies on elF4Gl-G3BP interaction which is targeted by picornavirus stress antagonists. Cell Discovery, 2019, 5, 1.	6.7	96
14	IgA targeting on the $\hat{l}\pm$ -molecular recognition element ($\hat{l}\pm$ -MoRE) of viral phosphoprotein inhibits measles virus replication by interrupting formation and function of P-N complex intracellularly. Antiviral Research, 2019, 161, 144-153.	4.1	6
15	An alanine residue in human parainfluenza virus type 3 phosphoprotein is critical for restricting excessive N0-P interaction and maintaining N solubility. Virology, 2018, 518, 64-76.	2.4	4
16	Human Parainfluenza Virus Type 3 Matrix Protein Reduces Viral RNA Synthesis of HPIV3 by Regulating Inclusion Body Formation. Viruses, 2018, 10, 125.	3.3	6
17	Viral strategies for triggering and manipulating mitophagy. Autophagy, 2018, 14, 1665-1673.	9.1	119
18	Inclusion bodies of human parainfluenza virus type 3 inhibit antiviral stress granule formation by shielding viral RNAs. PLoS Pathogens, 2018, 14, e1006948.	4.7	28

#	Article	IF	Citations
19	Picornavirus 2A protease regulates stress granule formation to facilitate viral translation. PLoS Pathogens, 2018, 14, e1006901.	4.7	61
20	Inclusion Body Fusion of Human Parainfluenza Virus Type 3 Regulated by Acetylated α-Tubulin Enhances Viral Replication. Journal of Virology, 2017, 91, .	3.4	47
21	The Matrix Protein of Human Parainfluenza Virus Type 3 Induces Mitophagy that Suppresses Interferon Responses. Cell Host and Microbe, 2017, 21, 538-547.e4.	11.0	112
22	Host–Pathogen Interactions in Measles Virus Replication and Anti-Viral Immunity. Viruses, 2016, 8, 308.	3.3	20
23	Nucleocapsid proteins: roles beyond viral <scp>RNA</scp> packaging. Wiley Interdisciplinary Reviews RNA, 2016, 7, 213-226.	6.4	14
24	Vesicular stomatitis virus-based vaccines expressing EV71 virus-like particles elicit strong immune responses and protect newborn mice from lethal challenges. Vaccine, 2016, 34, 4196-4204.	3.8	16
25	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
26	Two second-site mutations compensate the engineered mutation of R7A in vesicular stomatitis virus nucleocapsid protein. Virus Research, 2016, 214, 59-64.	2.2	2
27	Interaction of Human Parainfluenza Virus Type 3 Nucleoprotein with Matrix Protein Mediates Internal Viral Protein Assembly. Journal of Virology, 2016, 90, 2306-2315.	3.4	12
28	Several residues within the N-terminal arm of vesicular stomatitis virus nucleoprotein play a critical role in protecting viral RNA from nuclease digestion. Virology, 2015, 478, 9-17.	2.4	12
29	Casein Kinase II Controls TBK1/IRF3 Activation in IFN Response against Viral Infection. Journal of Immunology, 2015, 194, 4477-4488.	0.8	38
30	Phosphoprotein of Human Parainfluenza Virus Type 3 Blocks Autophagosome-Lysosome Fusion to Increase Virus Production. Cell Host and Microbe, 2014, 15, 564-577.	11.0	142
31	A Leucine Residue in the C Terminus of Human Parainfluenza Virus Type 3 Matrix Protein Is Essential for Efficient Virus-Like Particle and Virion Release. Journal of Virology, 2014, 88, 13173-13188.	3.4	20
32	N-Terminal Phosphorylation of Phosphoprotein of Vesicular Stomatitis Virus Is Required for Preventing Nucleoprotein from Binding to Cellular RNAs and for Functional Template Formation. Journal of Virology, 2013, 87, 3177-3186.	3.4	22
33	An Amino Acid of Human Parainfluenza Virus Type 3 Nucleoprotein Is Critical for Template Function and Cytoplasmic Inclusion Body Formation. Journal of Virology, 2013, 87, 12457-12470.	3.4	47
34	Interaction of Vesicular Stomatitis Virus P and N Proteins: Identification of Two Overlapping Domains at the N Terminus of P That Are Involved in N ⁰ -P Complex Formation and Encapsidation of Viral Genome RNA. Journal of Virology, 2007, 81, 13478-13485.	3.4	58
35	Mapping and Functional Role of the Self-Association Domain of Vesicular Stomatitis Virus Phosphoprotein. Journal of Virology, 2006, 80, 9511-9518.	3.4	31

3