Mingzhou Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/147577/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
2	Phosphoprotein of Human Parainfluenza Virus Type 3 Blocks Autophagosome-Lysosome Fusion to Increase Virus Production. Cell Host and Microbe, 2014, 15, 564-577.	11.0	142
3	Viral strategies for triggering and manipulating mitophagy. Autophagy, 2018, 14, 1665-1673.	9.1	119
4	The Matrix Protein of Human Parainfluenza Virus Type 3 Induces Mitophagy that Suppresses Interferon Responses. Cell Host and Microbe, 2017, 21, 538-547.e4.	11.0	112
5	SG formation relies on elF4GI-G3BP interaction which is targeted by picornavirus stress antagonists. Cell Discovery, 2019, 5, 1.	6.7	96
6	The SARS-CoV-2 subgenome landscape and its novel regulatory features. Molecular Cell, 2021, 81, 2135-2147.e5.	9.7	72
7	Picornavirus 2A protease regulates stress granule formation to facilitate viral translation. PLoS Pathogens, 2018, 14, e1006901.	4.7	61
8	Interaction of Vesicular Stomatitis Virus P and N Proteins: Identification of Two Overlapping Domains at the N Terminus of P That Are Involved in N ⁰ -P Complex Formation and Encapsidation of Viral Genome RNA. Journal of Virology, 2007, 81, 13478-13485.	3.4	58
9	Viral Regulation of RNA Granules in Infected Cells. Virologica Sinica, 2019, 34, 175-191.	3.0	50
10	Glucosamine promotes hepatitis B virus replication through its dual effects in suppressing autophagic degradation and inhibiting MTORC1 signaling. Autophagy, 2020, 16, 548-561.	9.1	49
11	SARS-CoV-2 promote autophagy to suppress type I interferon response. Signal Transduction and Targeted Therapy, 2021, 6, 180.	17.1	49
12	An Amino Acid of Human Parainfluenza Virus Type 3 Nucleoprotein Is Critical for Template Function and Cytoplasmic Inclusion Body Formation. Journal of Virology, 2013, 87, 12457-12470.	3.4	47
13	Inclusion Body Fusion of Human Parainfluenza Virus Type 3 Regulated by Acetylated α-Tubulin Enhances Viral Replication. Journal of Virology, 2017, 91, .	3.4	47
14	Casein Kinase II Controls TBK1/IRF3 Activation in IFN Response against Viral Infection. Journal of Immunology, 2015, 194, 4477-4488.	0.8	38
15	Mapping and Functional Role of the Self-Association Domain of Vesicular Stomatitis Virus Phosphoprotein. Journal of Virology, 2006, 80, 9511-9518.	3.4	31
16	Inclusion bodies of human parainfluenza virus type 3 inhibit antiviral stress granule formation by shielding viral RNAs. PLoS Pathogens, 2018, 14, e1006948.	4.7	28
17	N-Terminal Phosphorylation of Phosphoprotein of Vesicular Stomatitis Virus Is Required for Preventing Nucleoprotein from Binding to Cellular RNAs and for Functional Template Formation. Journal of Virology, 2013, 87, 3177-3186.	3.4	22
18	A Leucine Residue in the C Terminus of Human Parainfluenza Virus Type 3 Matrix Protein Is Essential for Efficient Virus-Like Particle and Virion Release. Journal of Virology, 2014, 88, 13173-13188.	3.4	20

Mingzhou Chen

#	Article	IF	CITATIONS
19	Host–Pathogen Interactions in Measles Virus Replication and Anti-Viral Immunity. Viruses, 2016, 8, 308.	3.3	20
20	Vesicular stomatitis virus-based vaccines expressing EV71 virus-like particles elicit strong immune responses and protect newborn mice from lethal challenges. Vaccine, 2016, 34, 4196-4204.	3.8	16
21	Virion-Associated Cholesterol Regulates the Infection of Human Parainfluenza Virus Type 3. Viruses, 2019, 11, 438.	3.3	16
22	PI4KB on Inclusion Bodies Formed by ER Membrane Remodeling Facilitates Replication of Human Parainfluenza Virus Type 3. Cell Reports, 2019, 29, 2229-2242.e4.	6.4	16
23	Nucleocapsid proteins: roles beyond viral <scp>RNA</scp> packaging. Wiley Interdisciplinary Reviews RNA, 2016, 7, 213-226.	6.4	14
24	Several residues within the N-terminal arm of vesicular stomatitis virus nucleoprotein play a critical role in protecting viral RNA from nuclease digestion. Virology, 2015, 478, 9-17.	2.4	12
25	Interaction of Human Parainfluenza Virus Type 3 Nucleoprotein with Matrix Protein Mediates Internal Viral Protein Assembly. Journal of Virology, 2016, 90, 2306-2315.	3.4	12
26	The two-stage interaction of Ebola virus VP40 with nucleoprotein results in a switch from viral RNA synthesis to virion assembly/budding. Protein and Cell, 2022, 13, 120-140.	11.0	10
27	Enterovirus 71 2A Protease Inhibits P-Body Formation To Promote Viral RNA Synthesis. Journal of Virology, 2021, 95, e0092221.	3.4	10
28	P300-mediated NEDD4 acetylation drives ebolavirus VP40 egress by enhancing NEDD4 ligase activity. PLoS Pathogens, 2021, 17, e1009616.	4.7	8
29	SLC35B2 Acts in a Dual Role in the Host Sulfation Required for EV71 Infection. Journal of Virology, 2022, 96, e0204221.	3.4	8
30	Human Parainfluenza Virus Type 3 Matrix Protein Reduces Viral RNA Synthesis of HPIV3 by Regulating Inclusion Body Formation. Viruses, 2018, 10, 125.	3.3	6
31	IgA targeting on the α-molecular recognition element (α-MoRE) of viral phosphoprotein inhibits measles virus replication by interrupting formation and function of P-N complex intracellularly. Antiviral Research, 2019, 161, 144-153.	4.1	6
32	An alanine residue in human parainfluenza virus type 3 phosphoprotein is critical for restricting excessive NO-P interaction and maintaining N solubility. Virology, 2018, 518, 64-76.	2.4	4
33	Sumoylation of Human Parainfluenza Virus Type 3 Phosphoprotein Correlates with A Reduction in Viral Replication. Virologica Sinica, 2021, 36, 438-448.	3.0	3
34	Two second-site mutations compensate the engineered mutation of R7A in vesicular stomatitis virus nucleocapsid protein. Virus Research, 2016, 214, 59-64.	2.2	2
35	The nonstructural protein 2C of Coxsackie B virus has RNA helicase and chaperoning activities. Virologica Sinica, 2022, 37, 656-663.	3.0	0