Xiang Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1475459/publications.pdf

Version: 2024-02-01

74163 61984 6,549 151 43 75 citations h-index g-index papers 152 152 152 6569 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Flexible CuCo2O4@Ni-Co-S hybrids as electrode materials for high-performance energy storage devices. Chinese Chemical Letters, 2023, 34, 107593.	9.0	19
2	Constructing High Efficiency CoZn _x Mn _{2â€"x} O ₄ Electrocatalyst by Regulating the Electronic Structure and Surface Reconstruction. Small, 2022, 18, e2107268.	10.0	43
3	Ammonium vanadate cathode materials with enhanced Zn storage by the optimization of electrolytes. CrystEngComm, 2022, 24, 1387-1393.	2.6	7
4	Increased crystallinity of RuSe ₂ /carbon nanotubes for enhanced electrochemical hydrogen generation performance. Nanoscale, 2022, 14, 790-796.	5.6	17
5	Pt/Mn ₃ O ₄ cubes with high anti-poisoning ability for C1 and C2 alcohol fuel oxidation. Chemical Communications, 2022, 58, 2371-2374.	4.1	15
6	PPy decorated α-Fe2O3 nanosheets as flexible supercapacitor electrodes. Rare Metals, 2022, 41, 1195-1201.	7.1	31
7	Aqueous zinc ion batteries based on sodium vanadate electrode materials with long lifespan and high energy density. Materials Advances, 2022, 3, 604-610.	5.4	16
8	Enhanced Electrochemical Performance of Zn/VO _{<i>x</i>} Batteries by a Carbon-Encapsulation Strategy. ACS Applied Materials & Samp; Interfaces, 2022, 14, 11654-11662.	8.0	51
9	Highly stable flexible pressure sensors with a quasi-homogeneous composition and interlinked interfaces. Nature Communications, 2022, 13, 1317.	12.8	141
10	Zinc-Ion Storage Mechanism of Polyaniline for Rechargeable Aqueous Zinc-Ion Batteries. Nanomaterials, 2022, 12, 1438.	4.1	17
11	Approaching high performance Ni(Co) molybdate electrode materials for flexible hybrid devices. RSC Advances, 2022, 12, 14858-14864.	3. 6	6
12	Co3O4@NiMoO4 composite electrode materials for flexible hybrid capacitors. Frontiers of Optoelectronics, 2022, 15, .	3.7	4
13	Hetero MOFâ€onâ€MOFâ€derived carbon nanotube interconnected nitrogenâ€doped carbonâ€encapsulated FeNi/FeF ₂ for efficient oxygen evolution reaction. , 2022, 4, 924-938.		36
14	Ammonium vanadate electrode materials with stable layered structures for rechargeable zinc ion batteries. CrystEngComm, 2022, 24, 5421-5427.	2.6	6
15	Metal-organic framework derived porous cathode materials for hybrid zinc ion capacitor. Rare Metals, 2022, 41, 2985-2991.	7.1	24
16	NiMoCo layered double hydroxides for electrocatalyst and supercapacitor electrode. Science China Materials, 2021, 64, 581-591.	6.3	64
17	MnCo ₂ O ₄ Nanosheet/NiCo ₂ S ₄ Nanowire Heterostructures as Cathode Materials for Capacitors. ACS Applied Nano Materials, 2021, 4, 2183-2189.	5.0	19
18	Nanohybridization of Ni–Co–S Nanosheets with ZnCo ₂ O ₄ Nanowires as Supercapacitor Electrodes with Long Cycling Stabilities. ACS Applied Energy Materials, 2021, 4, 2637-2643.	5.1	57

#	Article	IF	CITATIONS
19	Ni Foam Substrates Modified with a ZnCo ₂ O ₄ Nanowire-Coated Ni(OH) ₂ Nanosheet Electrode for Hybrid Capacitors and Electrocatalysts. ACS Applied Nano Materials, 2021, 4, 5461-5468.	5.0	37
20	Chinese ink-facilitated fabrication of paper-based composites as electrodes for supercapacitors. International Journal of Smart and Nano Materials, 2021, 12, 351-374.	4.2	5
21	A stretchable and adhesive ionic conductor based on polyacrylic acid and deep eutectic solvents. Npj Flexible Electronics, 2021, 5, .	10.7	52
22	Enhanced Zinc Ion Storage Capability of V $<$ sub $>$ 2 $<$ /sub $>$ 0 $<$ sub $>$ 5 $<$ /sub $>$ Electrode Materials with Hollow Interior Cavities. Batteries and Supercaps, 2021, 4, 1867-1873.	4.7	31
23	A facile synthetic protocol of α-Fe ₂ O ₃ @FeS ₂ nanocrystals for advanced electrochemical capacitors. CrystEngComm, 2021, 23, 2432-2438.	2.6	9
24	A flexible hybrid capacitor based an NiCo ₂ S ₄ nanowire electrode with an ultrahigh capacitance. Dalton Transactions, 2021, 50, 4045-4052.	3.3	19
25	Mesoporous Co–Mo–S nanosheet networks as cathode materials for flexible electrochemical capacitors. CrystEngComm, 2021, 23, 7671-7678.	2.6	9
26	Electronic and lattice strain dual tailoring for boosting Pd electrocatalysis in oxygen reduction reaction. IScience, 2021, 24, 103332.	4.1	10
27	Manipulating the Electrocatalytic Performance of NiCoP Nanowires by V Doping Under Acidic and Basic Conditions for Hydrogen and Oxygen Evolution Reactions. ACS Applied Nano Materials, 2021, 4, 10791-10798.	5.0	29
28	Stable and Efficient Pb–Ni Binary Metal Perovskite Solar Cells. ACS Sustainable Chemistry and Engineering, 2021, 9, 17112-17119.	6.7	5
29	Performance modulation of energy storage devices: A case of Ni-Co-S electrode materials. Chemical Engineering Journal, 2020, 392, 123651.	12.7	97
30	Realizing Superior Electrochemical Performance of Asymmetric Capacitors through Tailoring Electrode Architectures. ACS Applied Energy Materials, 2020, 3, 7004-7010.	5.1	52
31	Enhanced electrochemical performances of ZnCo ₂ O ₄ @CoMoO ₄ core–shell structures with long cycling stabilities. Dalton Transactions, 2020, 49, 6242-6248.	3.3	20
32	Vulcanization induced composition regulation of NiO electrode materials with improved electrochemical performances. Journal of Colloid and Interface Science, 2019, 554, 705-710.	9.4	15
33	Sulfurâ€Induced Interface Engineering of Hybrid NiCo ₂ O ₄ @NiMo ₂ S ₄ Structure for Overall Water Splitting and Flexible Hybrid Energy Storage. Advanced Materials Interfaces, 2019, 6, 1901308.	3.7	130
34	Toward a high performance asymmetric hybrid capacitor by electrode optimization. Inorganic Chemistry Frontiers, 2019, 6, 2824-2831.	6.0	52
35	Mixed transition metal oxide nanowire arrays enabling hybrid capacitor performance enhancement. CrystEngComm, 2019, 21, 5789-5796.	2.6	16
36	Engineering PPy decorated MnCo ₂ O ₄ urchins for quasi-solid-state hybrid capacitors. CrystEngComm, 2019, 21, 1600-1606.	2.6	48

#	Article	IF	CITATIONS
37	Asymmetric pseudo-capacitors based on dendrite-like MnO ₂ nanostructures. CrystEngComm, 2019, 21, 3349-3355.	2.6	30
38	Constructing High Performance Hybrid Battery and Electrocatalyst by Heterostructured NiCo ₂ O ₄ @NiWS Nanosheets. Crystal Growth and Design, 2019, 19, 1921-1929.	3.0	105
39	Enhanced Electrochemical Performance of Co ₂ T _x Structures through Coupled Synergistic Effects. ChemistrySelect, 2019, 4, 12886-12890.	1.5	15
40	NiCo ₂ O ₄ nanowire based flexible electrode materials for asymmetric supercapacitors. New Journal of Chemistry, 2018, 42, 7399-7406.	2.8	83
41	Hybrid MnO ₂ @NiCo ₂ O ₄ nanosheets for high performance asymmetric supercapacitors. Inorganic Chemistry Frontiers, 2018, 5, 1378-1385.	6.0	77
42	Mesoporous NiCo ₂ O ₄ nanoneedle arrays as supercapacitor electrode materials with excellent cycling stabilities. Inorganic Chemistry Frontiers, 2018, 5, 835-843.	6.0	107
43	Nanoparticles assembled SnO2 nanosheet photocatalysts for wastewater purification. Materials Letters, 2018, 210, 354-357.	2.6	77
44	Reaction temperatureâ€dependent growth of ZnS nanomaterials. Micro and Nano Letters, 2018, 13, 157-159.	1.3	1
45	Porous α-Fe2O3@C Nanowire Arrays as Flexible Supercapacitors Electrode Materials with Excellent Electrochemical Performances. Nanomaterials, 2018, 8, 487.	4.1	27
46	Flexible \hat{l} ±-Fe ₂ O ₃ nanorod electrode materials for sodium-ion batteries with excellent cycle performance. Functional Materials Letters, 2018, 11, 1840002.	1.2	12
47	Flexible Mn-decorated NiCo ₂ S ₄ core–shell nanowire arrays for a high performance hybrid supercapacitor electrode with a long cycle life. CrystEngComm, 2018, 20, 4735-4744.	2.6	53
48	Hierarchical WO3@MnWO4 core-shell structure for asymmetric supercapacitor with ultrahigh cycling performance at low temperature. Journal of Colloid and Interface Science, 2018, 531, 216-224.	9.4	31
49	î±-Fe2O3/rGO nanospindles as electrode materials for supercapacitors with long cycle life. Materials Research Bulletin, 2018, 107, 391-396.	5.2	38
50	Hierarchical Co ₃ O ₄ @Co ₉ S ₈ nanowall structures assembled by many nanosheets for high performance asymmetric supercapacitors. RSC Advances, 2018, 8, 28172-28178.	3.6	18
51	Hierarchical NiCo 2 O 4 nanowalls composed of ultrathin nanosheets as electrode materials for supercapacitor and Li ion battery applications. Materials Research Bulletin, 2017, 93, 303-309.	5.2	74
52	Synthesis and electrochemical performance of NaV ₆ O ₁₅ microflowers for lithium and sodium ion batteries. RSC Advances, 2017, 7, 29481-29488.	3.6	38
53	Flexible electrode materials based on WO3 nanotube bundles for high performance energy storage devices. Nano Energy, 2017, 42, 143-150.	16.0	221
54	Hierarchical SnO2 nanostructures as high efficient photocatalysts for the degradation of organic dyes. Journal of Sol-Gel Science and Technology, 2017, 84, 316-322.	2.4	17

#	Article	IF	CITATIONS
55	Investigation on electrochemical behaviors of NiCo ₂ O ₄ battery-type supercapacitor electrodes: the role of an aqueous electrolyte. Inorganic Chemistry Frontiers, 2017, 4, 1642-1648.	6.0	172
56	Facile hydrothermal synthesis of WO3 nanorods for photocatalysts and supercapacitors. Journal of Alloys and Compounds, 2017, 724, 695-702.	5.5	150
57	Electrochemical energy storage performance of heterostructured SnO2@MnO2 nanoflakes. Ceramics International, 2017, 43, 1688-1694.	4.8	18
58	Facile synthesis of flexible WO3 nanofibers as supercapacitor electrodes. Materials Letters, 2017, 186, 94-97.	2.6	36
59	Core-shell structured Co 3 O 4 @NiCo 2 O 4 electrodes grown on flexible carbon fibers with superior electrochemical properties. Nano Energy, 2017, 31, 410-417.	16.0	330
60	NiO nanosheet assembles for supercapacitor electrode materials. Progress in Natural Science: Materials International, 2016, 26, 271-275.	4.4	129
61	Hierarchical WO3 nanostructures assembled by nanosheets and their applications in wastewater purification. Journal of Alloys and Compounds, 2016, 689, 570-574.	5.5	37
62	Facile Synthesis of Ag ₂ O Nanoparticles Decorated ZnO Assembles with Excellent Photocatalytic Performances. Journal of Nanoscience and Nanotechnology, 2016, 16, 8538-8543.	0.9	4
63	3D Co3O4@MnO2 heterostructures grown on a flexible substrate and their applications in supercapacitor electrodes and photocatalysts. Dalton Transactions, 2016, 45, 16850-16858.	3.3	41
64	Flexible heterostructured supercapacitor electrodes based on \hat{l}_{\pm} -Fe ₂ O ₃ nanosheets with excellent electrochemical performances. Dalton Transactions, 2016, 45, 12862-12870.	3.3	45
65	Donut-shaped Co3O4 nanoflakes grown on nickel foam with enhanced supercapacitive performances. Applied Surface Science, 2016, 365, 240-244.	6.1	33
66	Ultrathin NiO nanoflakes electrode materials for supercapacitors. Applied Surface Science, 2016, 360, 8-13.	6.1	103
67	Spinous α-Fe ₂ O ₃ hierarchical structures anchored on Ni foam for supercapacitor electrodes and visible light driven photocatalysts. Dalton Transactions, 2016, 45, 7094-7103.	3.3	56
68	Facile synthesis of SnO2 hollow microspheres composed of nanoparticles and their remarkable photocatalytic performance. Materials Research Bulletin, 2016, 74, 284-290.	5.2	28
69	Synthesis and Electrochemical Properties of Manganese Vanadate Nanorods as an Intercalation Anode for Lithium-Ion Batteries. Science of Advanced Materials, 2016, 8, 1309-1313.	0.7	6
70	Synthesis and Improved Thermal Stability of High Surface Area \hat{I}^3 -Al2O3 Nanofibers Modified by Lanthanum. Science of Advanced Materials, 2016, 8, 1242-1247.	0.7	0
71	<i>A Special Section on</i> Hierarchically Nanostructured Materials for Environmental and Energy Applications. Science of Advanced Materials, 2016, 8, 1227-1230.	0.7	0
72	Semiconductor Nanomaterials for Energy Conversion and Storage. Journal of Nanomaterials, 2015, 2015, 1-2.	2.7	2

#	Article	IF	CITATIONS
7 3	Ultrathin \hat{I}^3 -Al ₂ O ₃ nanofibers with large specific surface area and their enhanced thermal stability by Si-doping. RSC Advances, 2015, 5, 54053-54058.	3.6	28
74	Phase-controlled synthesis of polymorphic MnO ₂ structures for electrochemical energy storage. Journal of Materials Chemistry A, 2015, 3, 5722-5729.	10.3	176
75	Enhanced electrochemical performance of hybrid SnO ₂ @MO _x (M = Ni, Co,) Tj ETQq1 1 materials. Journal of Materials Chemistry A, 2015, 3, 3676-3682.	. 0.784314 10.3	1 rgBT /Over 85
76	Rational Design of WO3 Nanostructures as the Anode Materials for Lithium-Ion Batteries with Enhanced Electrochemical Performance. Nano-Micro Letters, 2015, 7, 12-16.	27.0	42
77	Template-free growth of well-crystalline α-Fe2O3 nanopeanuts with enhanced visible-light driven photocatalytic properties. Journal of Colloid and Interface Science, 2015, 457, 345-352.	9.4	32
78	Visible-light-driven photocatalytic properties of simply synthesized \hat{l}_{\pm} -Iron(III)oxide nanourchins. Journal of Colloid and Interface Science, 2015, 451, 93-100.	9.4	30
79	Facile synthesis of hollow ZnS nanospheres for environmental remediation. Materials Letters, 2015, 160, 271-274.	2.6	17
80	Hybrid ZnO/ZnS nanoforests as the electrode materials for high performance supercapacitor application. Dalton Transactions, 2015, 44, 2409-2415.	3.3	65
81	High Rate Supercapacitor Electrodes Based <i>α</i> -Fe ₂ O ₃ Nanosheet Networks Anchored on a Nickel Foam. Science of Advanced Materials, 2015, 7, 1395-1399.	0.7	10
82	Metal Oxide Heterostructures for Water Purification. Journal of Nanomaterials, 2014, 2014, 1-2.	2.7	3
83	Nanosheet-Assembled ZnO Microflower Photocatalysts. Journal of Nanomaterials, 2014, 2014, 1-6.	2.7	1
84	ZnO Film Photocatalysts. Journal of Nanomaterials, 2014, 2014, 1-7.	2.7	6
85	Removal of Congo Red Dye Molecules by MnO ₂ Nanorods. Journal of Nanoscience and Nanotechnology, 2014, 14, 7157-7160.	0.9	2
86	Selective epichlorohydrin-sensing performance of Ag nanoparticles decorated porous SnO ₂ architectures. CrystEngComm, 2014, 16, 110-115.	2.6	29
87	Hierarchical SnO ₂ Nanostructures Made of Intermingled Ultrathin Nanosheets for Environmental Remediation, Smart Gas Sensor, and Supercapacitor Applications. ACS Applied Materials & Amp; Interfaces, 2014, 6, 2174-2184.	8.0	463
88	Cuprous Chloride Nanocubes Grown on Copper Foil for Pseudocapacitor Electrodes. Nano-Micro Letters, 2014, 6, 340-346.	27.0	14
89	Hierarchical WO ₃ @SnO ₂ coreâ€"shell nanowire arrays on carbon cloth: a new class of anode for high-performance lithium-ion batteries. Journal of Materials Chemistry A, 2014, 2, 7367-7372.	10.3	84
90	Hybrid \hat{l}_{\pm} -Fe 2 O 3 @NiO heterostructures for flexible and high performance supercapacitor electrodes and visible light driven photocatalysts. Nano Energy, 2014, 10, 90-98.	16.0	198

#	Article	IF	Citations
91	Dendritic α-Fe ₂ O ₃ hierarchical architectures for visible light driven photocatalysts. CrystEngComm, 2014, 16, 575-580.	2.6	57
92	Dendritic CdS assemblies for removal of organic dye molecules. Dalton Transactions, 2014, 43, 4847-4853.	3.3	20
93	High efficient ZnO nanowalnuts photocatalyst: A case study. Materials Research Bulletin, 2014, 59, 98-103.	5.2	9
94	Controlled assembly of Bi ₂ S ₃ architectures as Schottky diode, supercapacitor electrodes and highly efficient photocatalysts. RSC Advances, 2014, 4, 41636-41641.	3.6	56
95	Synthesis of self-assembled CdS nanospheres and their photocatalytic activities by photodegradation of organic dye molecules. Chemical Engineering Journal, 2014, 258, 203-209.	12.7	122
96	Facile synthesis of ultralong MnO ₂ nanowires as high performance supercapacitor electrodes and photocatalysts with enhanced photocatalytic activities. CrystEngComm, 2014, 16, 9999-10005.	2.6	103
97	Nanosheet based SnO2 assembles grown on a flexible substrate. Applied Surface Science, 2014, 305, 626-629.	6.1	12
98	Ultra-long germanium oxide nanowires: Structures and optical properties. Journal of Alloys and Compounds, 2014, 606, 149-153.	5.5	10
99	Hydrothermal Synthesis and Photocatalytic Performance of Uniform $\langle I \rangle \hat{l} \pm \langle I \rangle$ -Fe ₂ O ₃ Nanocubes. Journal of Nanoscience and Nanotechnology, 2014, 14, 7211-7214.	0.9	4
100	Visible Light Driven $\langle I \rangle \hat{I} \pm \langle I \rangle$ -Fe $\langle SUB \rangle 2 \langle SUB \rangle O \langle SUB \rangle 3 \langle SUB \rangle$ Nanorod Photocatalyst. Journal of Nanoscience and Nanotechnology, 2014, 14, 7224-7227.	0.9	7
101	Largeâ€scale fabrication and the optical properties of towerâ€like zinc oxide structures. Micro and Nano Letters, 2014, 9, 475-477.	1.3	0
102	SnO ₂ Core–Shell Microspheres as the Superior Anode Materials for Li-Ion Batteries. Science of Advanced Materials, 2014, 6, 1184-1187.	0.7	11
103	Mushroom-like ZnO Nanostructures Grown on Tungsten Substrate. Current Nanoscience, 2014, 10, 308-311.	1.2	1
104	One-step synthesis of crystalline anatase TiO2 nanospindles and investigation on their photocatalytic performance. Materials Letters, 2013, 100, 198-200.	2.6	10
105	Towards a highly efficient simulated sunlight driven photocatalyst: a case of heterostructured ZnO/ZnS hybrid structure. Dalton Transactions, 2013, 42, 14178.	3.3	63
106	Facile template-free synthesis and visible-light driven photocatalytic performances of dendritic CdS hierarchical structures. Dalton Transactions, 2013, 42, 4633.	3.3	52
107	High-performance energy-storage devices based on WO3 nanowire arrays/carbon cloth integrated electrodes. Journal of Materials Chemistry A, 2013, 1, 7167.	10.3	203
108	General strategy for self assembly of mesoporous SnO2 nanospheres and their applications in water purification. RSC Advances, 2013, 3, 12140.	3.6	47

#	Article	IF	Citations
109	Hierarchical Semiconductor Oxide Photocatalyst: A Case of the SnO2 Microflower. Nano-Micro Letters, 2013, 5, 234-241.	27.0	23
110	Facile Synthesis of Template-Induced SnO2Nanotubes. Journal of Nanomaterials, 2013, 2013, 1-6.	2.7	4
111	Hybrid Ag2O/ZnO Heterostructures. Journal of Nanomaterials, 2013, 2013, 1-5.	2.7	3
112	Facile Hydrothermal Approach to ZnO Nanorods at Mild Temperature. Journal of Nanomaterials, 2013, 2013, 1-5.	2.7	1
113	Gas Phase Growth of Wurtzite ZnS Nanobelts on a Large Scale. Journal of Nanomaterials, 2013, 2013, 1-4.	2.7	13
114	Controlled synthesis and photocatalytic properties of three dimensional hierarchical ZnO microflowers. Materials Express, 2013, 3, 256-264.	0.5	17
115	Effective Volatile Organic Compounds Gas Sensor Based on AgCl–SnO ₂ Nanocomposites. Nanoscience and Nanotechnology Letters, 2013, 5, 1278-1282.	0.4	0
116	Self-Assembly of Semiconductor Metal Oxide Nanostructures. Journal of Nanomaterials, 2013, 2013, 1-2.	2.7	2
117	Synthesis of Ultra-Thin ZnO Nanosheets: Photocatalytic and Superhydrophilic Properties. Science of Advanced Materials, 2013, 5, 1052-1059.	0.7	32
118	Self-Assembled Porous ZnS Nanospheres with High Photocatalytic Performance. Science of Advanced Materials, 2013, 5, 1329-1336.	0.7	36
119	Photocatalytic Degradation of Organic Dyes with Hierarchical Ag ₂ O/ZnO Heterostructures. Science of Advanced Materials, 2013, 5, 1364-1371.	0.7	34
120	Reduced Graphene Oxide-BiVO ₄ Composite for Enhanced Photoelectrochemical Cell and Photocatalysis. Science of Advanced Materials, 2013, 5, 1485-1492.	0.7	12
121	Growth of Thin Sheet Assembled Hierarchical ZnO Nanostructures. Journal of Nanomaterials, 2012, 2012, 1-5.	2.7	4
122	ZnO microbowls grown on an ITO glass substrate through thermal evaporation. Chinese Physics B, 2012, 21, 098104.	1.4	7
123	Self assembly of shape-controlled ZnS nanostructures with novel yellow light photoluminescence and excellent hydrophobic properties. CrystEngComm, 2012, 14, 7759.	2.6	22
124	Assembling ZnO Nanorods into Microflowers through a Facile Solution Strategy: Morphology Control and Cathodoluminescence Properties. Nano-Micro Letters, 2012, 4, 45-51.	27.0	39
125	Assembling SnO Nanosheets into Microhydrangeas: Gas Phase Synthesis and Their Optical Property. Nano-Micro Letters, 2012, 4, 215-219.	27.0	7
126	Facile approach to ZnO nanorods by directly etching zinc substrate. Micro and Nano Letters, 2012, 7, 485.	1.3	4

#	Article	IF	Citations
127	A co-templated approach to hierarchically mesoporous–macroporous bioactive glasses (MMBG) scaffolds for bone tissue regeneration. Journal of Sol-Gel Science and Technology, 2012, 62, 170-176.	2.4	11
128	SnO ₂ Core–Shell Microspheres with Excellent Photocatalytic Properties. Science of Advanced Materials, 2012, 4, 702-707.	0.7	44
129	Hierarchical Porous SnO ₂ Microflowers Photocatalyst. Science of Advanced Materials, 2012, 4, 1127-1133.	0.7	39
130	Assembling ZnO Nanorods into Microflowers through a Facile Solution Strategy: Morphology Control and Cathodoluminescence Properties., 2012, 4, 45.		5
131	ZnO microrod arrays grown on a curved sphere surface and their optical properties. CrystEngComm, 2011, 13, 6114.	2.6	17
132	Porous SnO2 nanowire bundles for photocatalyst and Li ion battery applications. CrystEngComm, 2011, 13, 3506.	2.6	220
133	Construction of a novel pH-sensitive drug release system from mesoporous silica tablets coated with Eudragit. Solid State Sciences, 2011, 13, 641-646.	3.2	17
134	Solution growth and optical property of ZnS/ZnO microspheres. Micro and Nano Letters, 2011, 6, 633.	1.3	8
135	Hydrothermal synthesis of highly symmetric 26â€facet Cu ₂ O polyhedra. Crystal Research and Technology, 2011, 46, 300-304.	1.3	14
136	Solution synthesis and optimization of ZnO nanowindmills. Applied Surface Science, 2011, 257, 7432-7435.	6.1	34
137	Mixed surfactants-directed the mesoporous silica materials with various morphologies and structures. Journal of Solid State Chemistry, 2011, 184, 1415-1420.	2.9	8
138	Low temperature growth and properties of ZnO nanorod arrays. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2011, 2, 035006.	1.5	10
139	Synthesis of Vertically Aligned Dense ZnO Nanowires. Journal of Nanomaterials, 2011, 2011, 1-5.	2.7	6
140	Synthesis and Characterization of Flower-Like ZnO Microspheres Assembled by Nanosheets. Advanced Science Letters, 2011, 4, 3608-3612.	0.2	3
141	Hydrothermally Grown ZnO Micro/Nanotube Arrays and Their Properties. Nanoscale Research Letters, 2010, 5, 570-575.	5.7	71
142	Synthesis and photoluminescent properties of CaMoO4 nanostructures at room temperature. Materials Letters, 2010, 64, 602-604.	2.6	35
143	Bio-templated synthesis of highly ordered macro-mesoporous silica material for sustained drug delivery. Solid State Sciences, 2010, 12, 851-856.	3.2	28
144	Controlled Growth and Cathodoluminescence Property of ZnS nanobelts with Large Aspect Ratio. Nano-Micro Letters, 2010, 2, 272-276.	27.0	15

#	ARTICLE	IF	CITATIONS
145	Solution Growth and Cathodoluminescence of Novel SnO2 Coreâ^'Shell Homogeneous Microspheres. Journal of Physical Chemistry C, 2010, 114, 8235-8240.	3.1	48
146	Aqueous phase approach to ZnO microspindles at low temperature. Journal of Alloys and Compounds, 2010, 501, 375-379.	5.5	28
147	Facile hydrothermal synthesis of novel ZnO nanocubes. Journal of Alloys and Compounds, 2010, 504, L1-L4.	5.5	44
148	ZnS nanorods with tripod-like and tetrapod-like legs. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2010, 1, 035005.	1.5	5
149	Large scale synthesis of fishbone-like ZnS nanostructures using ITO glass as the substrate. Journal of Alloys and Compounds, 2009, 482, L32-L35.	5.5	18
150	Fabrication of ZnO ring-like nanostructures at a moderate temperature via a thermal evaporation process. Journal of Alloys and Compounds, 2009, 486, L13-L16.	5.5	38
151	Growth of dendritic SnO2 nanoarchitectures. Materials Chemistry and Physics, 2008, 112, 325-328.	4.0	28