
Costas Galiotis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1475436/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Bioink with cartilage-derived extracellular matrix microfibers enables spatial control of vascular capillary formation in bioprinted constructs. Biofabrication, 2022, 14, 034104.	7.1	26
2	Whey protein films reinforced with bacterial cellulose nanowhiskers: Improving edible film properties via a circular economy approach. Food Chemistry, 2022, 385, 132604.	8.2	41
3	Hazard assessment of abraded thermoplastic composites reinforced with reduced graphene oxide. Journal of Hazardous Materials, 2022, 435, 129053.	12.4	16
4	Enhancement of damping response in polymers and composites by the addition of graphene nanoplatelets. Composites Science and Technology, 2022, 227, 109562.	7.8	18
5	Chemical Vapour Deposition Graphene–PMMA Nanolaminates for Flexible Gas Barrier. Membranes, 2022, 12, 611.	3.0	3
6	Impact of prolonged environmental exposure on stress transfer efficiency in poly(pâ€phenylene) Tj ETQq0 0 0 rg	gBT/Qverl 4.6	ock ₂ 10 Tf 50 5
7	Efficient Mechanical Stress Transfer in Multilayer Graphene with a Ladder-like Architecture. ACS Applied Materials & Interfaces, 2021, 13, 4473-4484.	8.0	9

8	Highly Deformable, Ultrathin Large-Area Poly(methyl methacrylate) Films. ACS Omega, 2021, 6, 8308-8312.	3.5	7
9	Determination of the elastic moduli of CVD graphene by probing graphene/polymer Bragg stacks. 2D Materials, 2021, 8, 035040.	4.4	12
10	Multi-functional 2D hybrid aerogels for gas absorption applications. Scientific Reports, 2021, 11, 13548.	3.3	11
11	Real-Time Multiscale Monitoring and Tailoring of Graphene Growth on Liquid Copper. ACS Nano, 2021, 15, 9638-9648.	14.6	28
12	Preventing colour fading in artworks with graphene veils. Nature Nanotechnology, 2021, 16, 1004-1010.	31.5	22
13	Nacre-like GNP/Epoxy composites: Reinforcement efficiency vis-Ã-vis graphene content. Composites Science and Technology, 2021, 211, 108873.	7.8	18
14	Effective EMI shielding behaviour of thin graphene/PMMA nanolaminates in the THz range. Nature Communications, 2021, 12, 4655.	12.8	84
15	Shape Memory Composite Sandwich Structures with Self-Healing Properties. Polymers, 2021, 13, 3056.	4.5	10
16	In situ kinetic studies of CVD graphene growth by reflection spectroscopy. Chemical Engineering Journal, 2021, 421, 129434.	12.7	10
17	Growth and <i>in situ</i> characterization of 2D materials by chemical vapour deposition on liquid metal catalysts: a review. Nanoscale, 2021, 13, 3346-3373.	5.6	30
18	Multifunctional Cement Mortars Enhanced with Graphene Nanoplatelets and Carbon Nanotubes. Sensors, 2021, 21, 933.	3.8	23

#	Article	IF	CITATIONS
19	Graphene and related materials in hierarchical fiber composites: Production techniques and key industrial benefits. Composites Science and Technology, 2020, 185, 107848.	7.8	36
20	Fabrication and Electrochemical Properties of Three-Dimensional (3D) Porous Graphitic and Graphenelike Electrodes Obtained by Low-Cost Direct Laser Writing Methods. ACS Omega, 2020, 5, 1540-1548.	3.5	35
21	Improving the damping behavior of fiber-reinforced polymer composites with embedded superelastic shape memory alloys (SMA). Smart Materials and Structures, 2020, 29, 025006.	3.5	16
22	Thermal properties enhancement of epoxy resins by incorporating polybenzimidazole nanofibers filled with graphene and carbon nanotubes as reinforcing material. Polymer Testing, 2020, 82, 106317.	4.8	52
23	Hierarchy of nanoscale graphene wrinkles on compliant substrate: Theory and experiment. Extreme Mechanics Letters, 2020, 40, 100948.	4.1	2
24	Visible Laser Scribing Fabrication of Porous Graphitic Carbon Electrodes: Morphologies, Electrochemical Properties, and Applications as Disposable Sensor Platforms. ACS Applied Electronic Materials, 2020, 2, 3279-3288.	4.3	22
25	Mechanical, Electrical, and Thermal Properties of Carbon Nanotube Buckypapers/Epoxy Nanocomposites Produced by Oxidized and Epoxidized Nanotubes. Materials, 2020, 13, 4308.	2.9	17
26	Thermomechanical Response of Supported Hexagonal Boron Nitride Sheets of Various Thicknesses. Journal of Physical Chemistry C, 2020, 124, 12134-12143.	3.1	7
27	Tunable macroscale structural superlubricity in two-layer graphene via strain engineering. Nature Communications, 2020, 11, 1595.	12.8	88
28	Thermomechanical behaviour of hexagonal boron nitride at elevated temperatures. 2D Materials, 2020, 7, 045011.	4.4	7
29	2020 Roadmap on Carbon Materials for Energy Storage and Conversion. Chemistry - an Asian Journal, 2020, 15, 995-1013.	3.3	154
30	Production and processing of graphene and related materials. 2D Materials, 2020, 7, 022001.	4.4	333
31	Development of a reactor for the <i>in situ</i> monitoring of 2D materials growth on liquid metal catalysts, using synchrotron x-ray scattering, Raman spectroscopy, and optical microscopy. Review of Scientific Instruments, 2020, 91, 013907.	1.3	19
32	Wettability of graphene by molten polymers. Polymer, 2019, 180, 121708.	3.8	14
33	Stress transfer at the nanoscale on graphene ribbons of regular geometry. Nanoscale, 2019, 11, 14354-14361.	5.6	20
34	Effect of Carbon Support on the Electrocatalytic Properties of Ptâ^'Ru Catalysts. ChemElectroChem, 2019, 6, 4970-4979.	3.4	17
35	Effect of Carbon Support on the Electrocatalytic Properties of Ptâ^'Ru Catalysts. ChemElectroChem, 2019, 6, 4921-4921.	3.4	2
36	3-Arm star pyrene-functional PMMAs for efficient exfoliation of graphite in chloroform: fabrication of graphene-reinforced fibrous veils. Nanoscale, 2019, 11, 915-931.	5.6	19

#	Article	IF	CITATIONS
37	Production and Mechanical Characterization of Graphene Micro-Ribbons. Journal of Composites Science, 2019, 3, 42.	3.0	2
38	Investigation of charges-driven interactions between graphene and different SiO2 surfaces. Carbon, 2019, 148, 336-343.	10.3	11
39	Mosaic pattern formation in exfoliated graphene by mechanical deformation. Nature Communications, 2019, 10, 1572.	12.8	35
40	Sculpturing graphene wrinkle patterns into compliant substrates. Carbon, 2019, 146, 772-778.	10.3	18
41	Stress-transfer from polymer substrates to monolayer and few-layer graphenes. Nanoscale Advances, 2019, 1, 4972-4980.	4.6	14
42	Load transfer in high content graphite nanoplateles composites. AIP Conference Proceedings, 2019, , .	0.4	2
43	Benchmarking of graphene-based materials: real commercial products versus ideal graphene. 2D Materials, 2019, 6, 025006.	4.4	68
44	Enhancing the adhesion of graphene to polymer substrates by controlled defect formation. Nanotechnology, 2019, 30, 015704.	2.6	12
45	A novel mild method for surface treatment of carbon fibres in epoxy-matrix composites. Composites Science and Technology, 2018, 157, 178-184.	7.8	28
46	Evaluating arbitrary strain configurations and doping in graphene with Raman spectroscopy. 2D Materials, 2018, 5, 015016.	4.4	95
47	Tailoring viscoelastic response, self-heating and deicing properties of carbon-fiber reinforced epoxy composites by graphene modification. Composites Part A: Applied Science and Manufacturing, 2018, 106, 1-10.	7.6	44
48	Strain Engineering in Highly Wrinkled CVD Graphene/Epoxy Systems. ACS Applied Materials & Interfaces, 2018, 10, 43192-43202.	8.0	14
49	Controllable, eco-friendly, synthesis of highly crystalline 2D-MoS ₂ and clarification of the role of growth-induced strain. 2D Materials, 2018, 5, 035035.	4.4	23
50	Compressive response and buckling of graphene nanoribbons. Scientific Reports, 2018, 8, 9593.	3.3	25
51	An Evaluation of Graphene as a Multi-Functional Heating Element for Biomedical Applications. Journal of Biomedical Nanotechnology, 2018, 14, 86-97.	1.1	4
52	Strained hexagonal boron nitride: Phonon shift and Grüneisen parameter. Physical Review B, 2018, 97, .	3.2	51
53	A mechanical system for tensile testing of supported films at the nanoscale. Nanotechnology, 2018, 29, 395707.	2.6	12
54	Non-Eulerian behavior of graphitic materials under compression. Carbon, 2018, 138, 227-233.	10.3	13

#	Article	IF	CITATIONS
55	Graphene aerogels: a review. 2D Materials, 2017, 4, 032001.	4.4	195
56	Graphene: A new activator of sodium persulfate for the advanced oxidation of parabens in water. Water Research, 2017, 126, 111-121.	11.3	123
57	Wrinkled Few-Layer Graphene as Highly Efficient Load Bearer. ACS Applied Materials & Interfaces, 2017, 9, 26593-26601.	8.0	46
58	Atomistic potential for graphene and other sp ² carbon systems. Physical Chemistry Chemical Physics, 2017, 19, 30925-30932.	2.8	13
59	Wrinkling formation in simply-supported graphenes under tension and compression loadings. Nanoscale, 2017, 9, 18180-18188.	5.6	31
60	Optical detection of strain and doping inhomogeneities in single layer MoS2. Applied Physics Letters, 2016, 108, .	3.3	119
61	Mechanical Stability of Flexible Graphene-Based Displays. ACS Applied Materials & Interfaces, 2016, 8, 22605-22614.	8.0	56
62	Stress and charge transfer in uniaxially strained CVD graphene. Physica Status Solidi (B): Basic Research, 2016, 253, 2355-2361.	1.5	12
63	Graphene flakes under controlled biaxial deformation. Scientific Reports, 2016, 5, 18219.	3.3	84
64	Uniaxial compression of suspended single and multilayer graphenes. 2D Materials, 2016, 3, 025033.	4.4	21
65	Molecular Modeling Combined with Advanced Chemistry for the Rational Design of Efficient Graphene Dispersing Agents. ACS Macro Letters, 2016, 5, 24-29.	4.8	21
66	Work Function Tuning of Reduced Graphene Oxide Thin Films. Journal of Physical Chemistry C, 2016, 120, 281-290.	3.1	143
67	Compression behavior of simply-supported and fully embedded monolayer graphene: Theory and experiment. Extreme Mechanics Letters, 2016, 8, 191-200.	4.1	17
68	Electrochemically exfoliated graphene/PEDOT composite films as efficient Pt-free counter electrode for dye-sensitized solar cells. Electrochimica Acta, 2016, 194, 110-115.	5.2	41
69	Phenomenological multiscale finite element for single layer graphene. Computational Materials Science, 2016, 115, 125-136.	3.0	2
70	Curvature-dependent surface energy for free-standing monolayer graphene. Mathematics and Mechanics of Solids, 2016, 21, 812-825.	2.4	13
71	Phonon properties of graphene derived from molecular dynamics simulations. Scientific Reports, 2015, 5, 12923.	3.3	113
72	Effect of the reduction process on the field emission performance of reduced graphene oxide cathodes. RSC Advances, 2015, 5, 53604-53610.	3.6	11

#	Article	IF	CITATIONS
73	Experimentally derived axial stress–strain relations for two-dimensional materials such as monolayer graphene. Carbon, 2015, 81, 322-328.	10.3	43
74	Stress Transfer Mechanisms at the Submicron Level for Graphene/Polymer Systems. ACS Applied Materials & amp; Interfaces, 2015, 7, 4216-4223.	8.0	105
75	Nonlinear subharmonic oscillation of orthotropic graphene-matrix composite. Computational Materials Science, 2015, 99, 164-172.	3.0	11
76	Deformation of Wrinkled Graphene. ACS Nano, 2015, 9, 3917-3925.	14.6	143
77	Graphene resting on substrate: Closed form solutions for the perfect bonding and the delamination case. International Journal of Solids and Structures, 2015, 71, 219-232.	2.7	12
78	Epoxidized multi-walled carbon nanotube buckypapers: A scaffold for polymer nanocomposites with enhanced mechanical properties. Chemical Engineering Journal, 2015, 281, 793-803.	12.7	23
79	Suspended monolayer graphene under true uniaxial deformation. Nanoscale, 2015, 7, 13033-13042.	5.6	52
80	Graphene Mechanics: Current Status and Perspectives. Annual Review of Chemical and Biomolecular Engineering, 2015, 6, 121-140.	6.8	76
81	Embedded trilayer graphene flakes under tensile and compressive loading. 2D Materials, 2015, 2, 024009.	4.4	24
82	Constitutive modeling of some 2D crystals: Graphene, hexagonal BN, MoS 2 , WSe 2 and NbSe 2. International Journal of Solids and Structures, 2015, 66, 98-110.	2.7	18
83	Colloidal stabilization of graphene sheets by ionizable amphiphilic block copolymers in various media. RSC Advances, 2015, 5, 89447-89460.	3.6	11
84	Graphene as a hexagonal 2-lattice: Evaluation of the in-plane material constants for the linear theory. A multiscale approach. Journal of Applied Physics, 2015, 118, .	2.5	11
85	Oxidation resistance of aligned carbon nanotube–reinforced silicon carbide composites. Ceramics International, 2015, 41, 12495-12498.	4.8	15
86	Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale, 2015, 7, 4598-4810.	5.6	2,452
87	Morphological and Microstructural Property Comparison of Bulk and Aligned Cvd-Grown Carbon Nanotubes. Advanced Composites Letters, 2014, 23, 096369351402300.	1.3	1
88	Improved power conversion efficiency by insertion of RGO–TiO2 composite layer as optical spacer in polymer bulk heterojunction solar cells. Organic Electronics, 2014, 15, 348-355.	2.6	21
89	Curvature dependent surface energy for a free standing monolayer graphene: Some closed form solutions of the non-linear theory. International Journal of Non-Linear Mechanics, 2014, 67, 186-197.	2.6	35
90	Curvature dependent surface energy for free standing monolayer graphene: Geometrical and material linearization with closed form solutions. International Journal of Engineering Science, 2014, 85, 224-233.	5.0	25

#	Article	IF	CITATIONS
91	Failure Processes in Embedded Monolayer Graphene under Axial Compression. Scientific Reports, 2014, 4, 5271.	3.3	65
92	Assessing micromechanical behaviour of PET cords in rubber matrix composites by laser Raman microscopy. Composites Science and Technology, 2013, 85, 104-110.	7.8	6
93	Raman spectroscopy of graphene at high pressure: Effects of the substrate and the pressure transmitting media. Physical Review B, 2013, 88, .	3.2	56
94	Graphene production by dissociation of camphor molecules on nickel substrate. Thin Solid Films, 2013, 527, 31-37.	1.8	37
95	Open structured in comparison with dense multi-walled carbon nanotube buckypapers and their composites. Composites Science and Technology, 2013, 77, 52-59.	7.8	28
96	Efficient exfoliation of graphene sheets in binary solvents. Materials Letters, 2013, 94, 47-50.	2.6	22
97	Nonlinear softening and hardening nonlocal bending stiffness of an initially curved monolayer graphene. International Journal of Non-Linear Mechanics, 2013, 56, 123-131.	2.6	18
98	Study of the thermal reduction of graphene oxide and of its application as electrocatalyst in quasi-solid state dye-sensitized solar cells in combination with PEDOT. Electrochimica Acta, 2013, 111, 698-706.	5.2	49
99	In-plane force fields and elastic properties of graphene. Journal of Applied Physics, 2013, 113, .	2.5	98
100	Structural Properties of Chemically Functionalized Carbon Nanotube Thin Films. Materials, 2013, 6, 2360-2371.	2.9	22
101	Buckypaper as Pt-free cathode electrode in photoactivated fuel cells. Electrochimica Acta, 2012, 80, 399-404.	5.2	29
102	Phonon and Structural Changes in Deformed Bernal Stacked Bilayer Graphene. Nano Letters, 2012, 12, 687-693.	9.1	65
103	Polymer–nanotube interaction in MWCNT/poly(vinyl alcohol) composite mats. Carbon, 2012, 50, 4291-4294.	10.3	46
104	Compressive behavior of MWCNT/epoxy composite mats. Composites Science and Technology, 2012, 72, 1027-1033.	7.8	40
105	Axial Deformation of Monolayer Graphene under Tension and Compression. Carbon Nanostructures, 2012, , 87-97.	0.1	2
106	High-pressure Raman study of stacked-cup carbon nanofibers. High Pressure Research, 2011, 31, 131-135.	1.2	2
107	Raman 2D-Band Splitting in Graphene: Theory and Experiment. ACS Nano, 2011, 5, 2231-2239.	14.6	271
108	Development of a universal stress sensor for graphene and carbon fibres. Nature Communications, 2011, 2, .	12.8	172

#	Article	IF	CITATIONS
109	Surface refinement and electronic properties of graphene layers grown on copper substrate: An XPS, UPS and EELS study. Applied Surface Science, 2011, 257, 9785-9790.	6.1	185
110	Nanostructured Heteroarm Star Block Terpolymers via an Extension of the "In–Out―Polymerization Route. Macromolecular Rapid Communications, 2011, 32, 371-377.	3.9	9
111	Electrochemical oxidation of multi-wall carbon nanotubes. Carbon, 2011, 49, 2702-2708.	10.3	50
112	Carbon nanotube–polymer composites: Chemistry, processing, mechanical and electrical properties. Progress in Polymer Science, 2010, 35, 357-401.	24.7	2,738
113	Development and testing of a self-deformed composite material. Composite Structures, 2010, 92, 306-311.	5.8	5
114	Dielectric Spectroscopy and Tunability of Multi-Walled Carbon Nanotube / Epoxy Resin Composites. Advanced Composites Letters, 2010, 19, 096369351001900.	1.3	4
115	Compression Behavior of Single-Layer Graphenes. ACS Nano, 2010, 4, 3131-3138.	14.6	282
116	Effect of Processing and Loading Conditions upon the Fatigue Behaviour of a C _f /Epoxy Laminate. Advanced Composites Letters, 2009, 18, 096369350901800.	1.3	2
117	Subjecting a Graphene Monolayer to Tension and Compression. Small, 2009, 5, 2397-2402.	10.0	400
118	The effect of oxidation treatment on the properties of multi-walled carbon nanotube thin films. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2009, 165, 135-138.	3.5	62
119	Effect of fatigue on the interface integrity of unidirectional Cf-reinforced epoxy resin composites. Acta Materialia, 2009, 57, 2800-2811.	7.9	8
120	Effect of oxidation treatment of multiwalled carbon nanotubes on the mechanical and electrical properties of their epoxy composites. Composites Part A: Applied Science and Manufacturing, 2009, 40, 778-783.	7.6	104
121	Single-walled carbon nanotubes decorated with a pyrene–fluorenevinylene conjugate. Nanotechnology, 2009, 20, 135606.	2.6	20
122	High volume fraction carbon nanotube–epoxy composites. Nanotechnology, 2009, 20, 405702.	2.6	58
123	Uniaxial strain in graphene by Raman spectroscopy: <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>G</mml:mi>peak splitting, Grüneisen parameters, and sample orientation. Physical Review B. 2009. 79</mml:math 	3.2	1,662
124	Accelerated environmental ageing study of polyester/glass fiber reinforced composites (GFRPCs). Composites Part B: Engineering, 2008, 39, 467-475.	12.0	130
125	Matrix cracking in polymeric composites laminates: Modelling and experiments. Composites Science and Technology, 2008, 68, 2310-2317.	7.8	48
126	Energy criterion for modelling damage evolution in cross-ply composite laminates. Composites Science and Technology, 2008, 68, 2318-2324.	7.8	28

#	Article	IF	CITATIONS
127	Chemical oxidation of multiwalled carbon nanotubes. Carbon, 2008, 46, 833-840.	10.3	2,376
128	Thermal stress development in fibrous composites. Materials Letters, 2008, 62, 341-345.	2.6	18
129	Transformation fatigue and stress relaxation of shape memory alloy wires. Smart Materials and Structures, 2007, 16, 2560-2570.	3.5	25
130	Thermal Characterization of Porous Silicon Micro-Hotplates using IR Thermography. , 2007, , .		0
131	Quantifying Crystalline Fraction within Polymer Spherulites. Macromolecules, 2007, 40, 786-789.	4.8	26
132	Oxidized Multi-Walled Carbon Nanotube Film Fabrication and Characterization. Advanced Composites Letters, 2007, 16, 096369350701600.	1.3	21
133	Waterâ€Soluble Carbon Nanotubes by Redox Radical Polymerization. Macromolecular Rapid Communications, 2007, 28, 1553-1558.	3.9	35
134	Analysis of matrix cracking in GFRP laminates using Raman spectroscopy. Composites Science and Technology, 2007, 67, 1946-1954.	7.8	13
135	Phonon stress sensitivity for interface characterization of fibrous composites at various temperatures. Acta Materialia, 2007, 55, 3783-3793.	7.9	2
136	Stress generation by shape memory alloy wires embedded in polymer composites. Acta Materialia, 2007, 55, 5489-5499.	7.9	42
137	High pressure Raman study of the secondâ€order vibrational modes of single―and doubleâ€walled carbon nanotubes. Physica Status Solidi (B): Basic Research, 2007, 244, 4069-4073.	1.5	8
138	Covalently functionalized carbon nanotubes as macroinitiators for radical polymerization. Physica Status Solidi (B): Basic Research, 2007, 244, 4046-4050.	1.5	28
139	Growth of calcium carbonate on non-covalently modified carbon nanotubes. Materials Letters, 2007, 61, 5044-5046.	2.6	19
140	Effects of inter-fibre spacing and matrix cracks on stress amplification factors in carbon-fibre/epoxy matrix composites, Part II: Hexagonal array of fibres. Composites Part A: Applied Science and Manufacturing, 2006, 37, 1936-1943.	7.6	13
141	Viscoplastic finite element analysis of matrix crack propagation in model continuous-carbon fibre/epoxy composites. Composites Part A: Applied Science and Manufacturing, 2006, 37, 1922-1935.	7.6	3
142	Growth of calcium phosphate mineral on carbon nanotube buckypapers. Physica Status Solidi (B): Basic Research, 2006, 243, 3230-3233.	1.5	16
143	Enhancing the damping of wind turbine rotor blades, the DAMPBLADE project. Wind Energy, 2006, 9, 163-177.	4.2	17
144	Effect of Off – Axis Matrix Cracking on Stiffness of Symmetric Angle-Ply Composite Laminates. International Journal of Fracture, 2006, 139, 529-536.	2.2	23

#	Article	IF	CITATIONS
145	Raman spectroscopy investigation of stiffness change and residual strains due to matrix cracking. Mechanics of Composite Materials, 2006, 42, 535-546.	1.4	1
146	Experimental Determination of Stress Concentrations in Composite Laminates and their Effects on Damage Evolution. Applied Mechanics and Materials, 2006, 5-6, 383-390.	0.2	0
147	Direct measurement of fiber bridging in notched glass-ceramic-matrix composites. Journal of Materials Research, 2006, 21, 1150-1160.	2.6	21
148	Effect of stress and temperature on the optical phonons of aramid fibers. Physical Review B, 2006, 73, .	3.2	7
149	Determination of interface integrity in high volume fraction polymer composites at all strain levels. Acta Materialia, 2005, 53, 647-657.	7.9	13
150	Local strain re-distribution and stiffness degradation in cross-ply polymer composites under tension. Acta Materialia, 2005, 53, 3335-3343.	7.9	28
151	An experimental and theoretical study of the stress transfer problem in fibrous composites. Acta Materialia, 2005, 53, 4173-4183.	7.9	18
152	Design and construction of a vehicular bridge made of glass/polyester pultruded box beams. Plastics, Rubber and Composites, 2005, 34, 201-207.	2.0	26
153	Global method for measuring stress in polymer fibers at elevated temperatures. Applied Physics Letters, 2005, 87, 131910.	3.3	1
154	Interfacial damage modelling of composites. , 2005, , 33-64.		4
155	Estimation of Crystallinity in Isotropic Isotactic Polypropylene with Raman Spectroscopy. Applied Spectroscopy, 2005, 59, 1141-1147.	2.2	35
156	Stress/Strain Measurements in Fibers and Composites Using Raman Spectroscopy. , 2005, , 35-98.		0
157	Axial strain redistribution resulting from off-axis ply cracking in polymer composites. Applied Physics Letters, 2004, 85, 3752-3754.	3.3	18
158	Mechanically and thermally induced chain conformational transformations between helical form I and trans-planar form III in syndiotactic polypropylene using FT-IR and Raman spectroscopic techniques. Polymer, 2004, 45, 4453-4464.	3.8	27
159	Fluorescence studies of polycrystalline Al2O3 composite constituents: piezo-spectroscopic calibration and applications. Applied Physics A: Materials Science and Processing, 2004, 79, 647-659.	2.3	11
160	Compressive failure mechanisms in multi-fibre microcomposites. Composites Part A: Applied Science and Manufacturing, 2004, 35, 461-475.	7.6	10
161	Stress transfer efficiency in model composites under dynamic loading. Applied Physics A: Materials Science and Processing, 2003, 76, 231-239.	2.3	5
162	Stress and temperature self-sensing fibres. Chemical Physics Letters, 2003, 367, 270-277.	2.6	9

#	Article	IF	CITATIONS
163	Mechanisms of stress transfer and interface integrity in carbon/epoxy composites under compression loading. Part II: Numerical approach. International Journal of Solids and Structures, 2003, 40, 5521-5538.	2.7	6
164	Direct in situ measurements of bridging stresses in CFCCs. Acta Materialia, 2003, 51, 5359-5373.	7.9	25
165	Effects of inter-fibre spacing and matrix cracks on stress amplification factors in carbon-fibre/epoxy matrix composites. Part I: planar array of fibres. Composites Part A: Applied Science and Manufacturing, 2003, 34, 1227-1234.	7.6	12
166	The effect of the interface on the fatigue performance of fibre composites. , 2003, , 147-172.		0
167	Strain Redistribution in Composite Laminates Resulting from Off-Axis Ply Cracking. , 2003, , 139-150.		2
168	In Situ Assessment of the Micromechanics of Large Scale Bridging in Ceramic Composites. , 2003, , 71-79.		0
169	Progress on Composites with Embedded Shape Memory Alloy Wires. Materials Transactions, 2002, 43, 961-973.	1.2	43
170	Comparative assessment of stress transfer efficiency in tension and compression. Composites Part A: Applied Science and Manufacturing, 2002, 33, 1303-1309.	7.6	13
171	Mechanisms of stress transfer and interface integrity in carbon/epoxy composites under compression loading. International Journal of Solids and Structures, 2002, 39, 3217-3231.	2.7	15
172	Aramid fibers; a multifunctional sensor for monitoring stress/strain fields and damage development in composite materials. Engineering Fracture Mechanics, 2002, 69, 1067-1087.	4.3	43
173	Modelling the stress–transfer efficiency of carbon–epoxy interfaces. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2001, 457, 1555-1577.	2.1	10
174	Micromechanics of reinforcement and damage initiation in carbon fibre/epoxy composites under fatigue loading. Composites Part A: Applied Science and Manufacturing, 2001, 32, 457-471.	7.6	16
175	Adaptive composites incorporating shape memory alloy wires. Part 2: development of internal recovery stresses as a function of activation temperature. Composites Part A: Applied Science and Manufacturing, 2001, 32, 1735-1747.	7.6	39
176	Title is missing!. Journal of Materials Science, 2001, 36, 535-546.	3.7	45
177	Detailed atomistic molecular-dynamics simulation of the orthorhombic phase of crystalline polyethylene and alkane crystals. Journal of Chemical Physics, 2001, 115, 3937-3950.	3.0	27
178	Determination of molecular changes in soft tissues under strain using laser Raman microscopy. Journal of Biomechanics, 2000, 33, 483-486.	2.1	57
179	Matrix crack propagation criteria for model short-carbon fibre/epoxy composites. Composites Science and Technology, 2000, 60, 2835-2847.	7.8	32
180	Measurement and modeling of stress concentration around a circular notch. Experimental Mechanics, 2000, 40, 248-255.	2.0	21

#	Article	IF	CITATIONS
181	The progressional approach to interfacial failure in carbon reinforced composites: elasto-plastic finite element modelling of interface cracks. Composites Part A: Applied Science and Manufacturing, 2000, 31, 929-943.	7.6	22
182	Stress Transfer from the Matrix to the Fibre in a Fragmentation Test: Raman Experiments and Analytical Modeling. Journal of Composite Materials, 1999, 33, 377-399.	2.4	43
183	In situ monitoring of the fibre strain distribution in carbon-fibre thermoplastic composites1. Application of a tensile stress field. Composites Science and Technology, 1999, 59, 2149-2161.	7.8	31
184	Unification of fibre/matrix interfacial measurements with Raman microscopy. Journal of Raman Spectroscopy, 1999, 30, 899-912.	2.5	39
185	Surface and bulk stress/strain measurements in composite laminates with a fibre-optic Raman probe. Composites Part A: Applied Science and Manufacturing, 1999, 30, 1187-1195.	7.6	8
186	Title is missing!. Journal of Materials Science, 1998, 33, 2745-2750.	3.7	12
187	Definition and measurement of the shear-lag parameter, β, as an index of the stress transfer efficiency in polymer composites. Journal of Materials Science, 1998, 33, 1137-1143.	3.7	24
188	Title is missing!. Journal of Materials Science, 1998, 33, 5311-5325.	3.7	10
189	Residual strain and Young's modulus determination in cross-ply composites using an embedded aramid fibre strain sensor. Composites Part A: Applied Science and Manufacturing, 1998, 29, 1363-1369.	7.6	13
190	Real-Time Micro-Raman Measurements on Stressed Polyethylene Fibers. 1. Strain Rate Effects and Molecular Stress Redistribution. Macromolecules, 1998, 31, 6964-6976.	4.8	43
191	Micromechanics of reinforcement using laser Raman spectroscopy. , 1998, , 224-255.		5
192	Raman Vibrational Studies of Syndiotactic Polystyrene. 2. Use of the Fundamental ν1Vibrational Mode as a Quantitative Measure of Crystallinity within Isotropic Material. Macromolecules, 1997, 30, 2400-2407.	4.8	49
193	The structure and morphology of syndiotactic polystyrene injection molded coupons. Polymer Engineering and Science, 1997, 37, 153-165.	3.1	27
194	A study of the stress-transfer characteristics in model composites as a function of material processing, fibre sizing and temperature of the environment. Composites Science and Technology, 1997, 57, 827-838.	7.8	25
195	Effects of interface, volume fraction and geometry on stress redistribution in polymer composites under tension. Composites Science and Technology, 1997, 57, 1089-1101.	7.8	47
196	Measurement of stress concentration around fibre breaks in carbon-fibre/epoxy-resin composite tows. Composites Science and Technology, 1997, 57, 913-923.	7.8	18
197	Raman Vibrational Studies of Syndiotactic Polystyrene. 1. Assignments in a Conformational/Crystallinity Sensitive Spectral Region. Macromolecules, 1996, 29, 3515-3520.	4.8	94
198	Interfacial measurements and fracture characteristics of 2D microcomposites using remote laser Raman microscopy. Composites Part A: Applied Science and Manufacturing, 1996, 27, 881-888.	7.6	24

#	Article	IF	CITATIONS
199	Measurement of strain distribution in fibre reinforced ceramic matrix composites. Composites Part A: Applied Science and Manufacturing, 1996, 27, 729-735.	7.6	8
200	Elasto-plastic finite element modelling of interfacial failure in model Kevlar 49 fibre—epoxy composites. Composites Part A: Applied Science and Manufacturing, 1996, 27, 821-832.	7.6	12
201	Effect of fibre sizing on the stress transfer efficiency in carbon/epoxy model composites. Composites Part A: Applied Science and Manufacturing, 1996, 27, 755-767.	7.6	81
202	Failure characteristics in carbon/epoxy composite tows. Composites Part A: Applied Science and Manufacturing, 1996, 27, 1183-1194.	7.6	16
203	Remote Laser Raman Microscopy (ReRaM). 1-Design and Testing of a Confocal Microprobe. Journal of Raman Spectroscopy, 1996, 27, 519-526.	2.5	46
204	Characterization of PAN-based carbon fibres with laser Raman spectroscopy. Journal of Materials Science, 1996, 31, 851-860.	3.7	112
205	Finite element modelling of interfacial failure in model carbon fibre-epoxy composites. Journal of Materials Science, 1996, 31, 2879-2883.	3.7	10
206	Fiber/Matrix mechanical interaction in carbon fiber/bismaleimide model composites. Polymer Composites, 1996, 17, 937-947.	4.6	11
207	STRESS/STRAIN MEASUREMENTS IN ADVANCED COMPOSITES USING REMOTE LASER RAMAN MICROSCOPY. Nondestructive Testing and Evaluation, 1996, 12, 355-366.	2.1	6
208	Analysis of Stress Transfer from the Matrix to the Fiber through an Imperfect Interface: Application to Raman Data and the Single-Fiber Fragmentation Test. , 1996, , 47-66.		8
209	Localised Stress Measurements in Composite Laminates Using a Raman Stress Sensor. Advanced Composites Letters, 1995, 4, 096369359500400.	1.3	5
210	Fundamentals and applications of micro Raman spectroscopy to strain measurements in fibre reinforced composites. International Materials Reviews, 1995, 40, 116-134.	19.3	78
211	Fundamentals and applications of micro Raman spectroscopy to strain measurements in fibre reinforced composites. International Materials Reviews, 1995, 40, 116-134.	19.3	16
212	Environmental Degradation Studies of the Interface in Single-Filament Graphite / Epoxy Composites using Laser Raman Spectroscopy. Advanced Composites Letters, 1994, 3, 096369359400300.	1.3	6
213	Determination of Stress Distribution in Fibre Bridged Cracks in Ceramic Matrix Composites. Advanced Composites Letters, 1994, 3, 096369359400300.	1.3	0
214	Deformation behaviour of liquid crystal polymer fibres: 1. Converting spectroscopic data into mechanical stress-strain curves in tension and compression. Polymer, 1994, 35, 2335-2347.	3.8	58
215	Compressional behaviour of carbon fibres. Journal of Materials Science, 1994, 29, 786-799.	3.7	63
216	Modelling of stress transfer in fibre composites. Composites Science and Technology, 1994, 50, 319-332.	7.8	46

#	Article	IF	CITATIONS
217	Monitoring the micromechanics of reinforcement in carbon fibre/epoxy resin systems. Journal of Materials Science, 1993, 28, 1648-1654.	3.7	61
218	A study of mechanisms of stress transfer in continuous- and discontinuous-fibre model composites by laser Raman spectroscopy. Composites Science and Technology, 1993, 48, 15-28.	7.8	67
219	Interfacial shear stress distribution in model composites: the effect of fibre modulus. Composites, 1993, 24, 459-466.	0.7	24
220	Fibre strain mapping in aramid/epoxy microcomposites. Composites, 1993, 24, 635-642.	0.7	18
221	Interfacial micromechanics in model composites using laser Raman spectroscopy. Proceedings of the Royal Society A, 1993, 440, 379-398.	0.9	39
222	Stress-transfer characteristics in model composites. Composite Interfaces, 1993, 1, 321-336.	2.3	5
223	Laser Raman Spectroscopy; A New Stress/Strain Measurement Technique for the Remote and On-Line Nondestructive Inspection of Fiber Reinforced Polymer Composites. Materials Technology, 1993, 8, 203-209.	3.0	28
224	Interfacial Shear Stress Distribution in Model Composites Part 2: Fragmentation Studies on Carbon Fibre/Epoxy Systems. Journal of Composite Materials, 1992, 26, 574-610.	2.4	80
225	Residual stress distribution in carbon fibre/thermoplastic matrix pre-impregnated composite tapes. Composites, 1992, 23, 28-38.	0.7	58
226	Interfacial studies on carbon/thermoplastic model composites using laser Raman spectroscopy. Journal of Materials Science, 1992, 27, 1663-1671.	3.7	34
227	Phase transformation around indentations in zirconia. Journal of Materials Science Letters, 1992, 11, 575-577.	0.5	33
228	Monitoring the behaviour of polymer fibres under axial compression. Polymer, 1991, 32, 1788-1793.	3.8	40
229	Interfacial studies on model composites by laser Raman spectroscopy. Composites Science and Technology, 1991, 42, 125-150.	7.8	120
230	The study of model polydiacetylene/epoxy composites. Journal of Materials Science, 1991, 26, 2293-2299.	3.7	18
231	Interfacial Shear Stress Distribution in Model Composites, Part 1: A Kevlar 49® Fibre in an Epoxy Matrix. Journal of Composite Materials, 1991, 25, 609-631.	2.4	55
232	FRAGMENTATION STUDIES ON CARBON FIBRE / EPOXY SYSTEMS, USING LASER RAMAN SPECTROSCOPY , 1991, , 288-289.		0
233	Compressional behaviour of carbon fibres. Journal of Materials Science, 1990, 25, 5081-5090.	3.7	66

A Study of Carbon Fibres under Axial Compression. , 1990, , 525-530.

1

#	Article	IF	CITATIONS
235	Monitoring Interfacial Phenomena in Single Fibre Model Composites. , 1990, , 679-684.		0
236	The Raman Optomechanical Strain Gauge. , 1989, , .		0
237	Raman Optomechanical Studies on Fibres and Composites. , 1989, , 765-770.		0
238	Strain dependences of the first- and second-order Raman spectra of carbon fibres. Journal of Materials Science Letters, 1988, 7, 545-547.	0.5	118
239	Residual strain mapping in carbon fibre/PEEK composites. Composites, 1988, 19, 321-324.	0.7	32
240	Strain dependence of the Raman frequencies for different types of carbon fibres. Journal of Materials Science Letters, 1987, 6, 1212-1214.	0.5	137
241	Study of model polydiacetylene/epoxy composites. Journal of Materials Science, 1987, 22, 3642-3646.	3.7	73
242	Stress induced twinning of polydiacetylene single crystal fibres in composites. Journal of Materials Science, 1986, 21, 3440-3444.	3.7	34
243	Stress induced twinning of polydiacetylene single crystal fibres in composites. Journal of Materials Science, 1986, 21, 3440-3444.	3.7	1
244	The study of model polydiacetylene/epoxy composites. Journal of Materials Science, 1984, 19, 3640-3648.	3.7	168
245	High-modulus polydiacetylene single-crystal fibers. Journal of Polymer Science, Polymer Physics Edition, 1984, 22, 1589-1606.	1.0	44
246	The study of model polydiacetylene/epoxy composites. Journal of Materials Science, 1984, 19, 3640-3648.	3.7	32
247	The solid-state polymerization and physical properties of bis(ethyl urethane) of 2,4-hexadiyne-1,6-diol. II. Resonance Raman spectroscopy. Journal of Polymer Science, Polymer Physics Edition, 1983, 21, 2483-2494.	1.0	61
248	A resonance Raman spectroscopic study of the strength of the bonding between an epoxy resin and a polydiacetylene fibre. Journal of Materials Science Letters, 1983, 2, 263-266.	0.5	31
249	The solid-state polymerization and physical properties of bis(ethyl urethane) of 2,4-hexadiyne-1,6-diol: 3. Mechanical properties. Polymer, 1983, 24, 1023-1030.	3.8	47