Julien V Brugniaux

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1474220/publications.pdf Version: 2024-02-01

ILLIEN V RRUCNIALLY

#	Article	IF	CITATIONS
1	EPR spectroscopic evidence of iron-catalysed free radical formation in chronic mountain sickness: Dietary causes and vascular consequences. Free Radical Biology and Medicine, 2022, 184, 99-113.	2.9	5
2	Nocturnal hypoxemia, blood pressure, vascular status and chronic mountain sickness in the highest city in the world. Annals of Medicine, 2022, 54, 1884-1893.	3.8	6
3	Long-term Exercise Confers Equivalent Neuroprotection in Females Despite Lower Cardiorespiratory Fitness. Neuroscience, 2020, 427, 58-63.	2.3	7
4	Blood viscosity and its determinants in the highest city in the world. Journal of Physiology, 2020, 598, 4121-4130.	2.9	23
5	Exaggerated systemic oxidativeâ€inflammatoryâ€nitrosative stress in chronic mountain sickness is associated with cognitive decline and depression. Journal of Physiology, 2019, 597, 611-629.	2.9	55
6	Highs and lows of hyperoxia: physiological, performance, and clinical aspects. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2018, 315, R1-R27.	1.8	85
7	Commentaries on Viewpoint: V̇ <scp>o</scp> _{2peak} is an acceptable estimate of cardiorespiratory fitness but not V̇ <scp>o</scp> _{2max} . Journal of Applied Physiology, 2018, 125, 233-240.	2.5	12
8	Redoxâ€regulation of haemostasis in hypoxic exercising humans: a randomised doubleâ€blind placeboâ€controlled antioxidant study. Journal of Physiology, 2018, 596, 4879-4891.	2.9	14
9	Post-prandial hyperlipidaemia results in systemic nitrosative stress and impaired cerebrovascular function in the aged. Clinical Science, 2017, 131, 2807-2812.	4.3	10
10	What role for hypercapnia in obstructive sleep apnea?. Journal of Applied Physiology, 2016, 121, 362-362.	2.5	1
11	Effects of exercise intensity on clot microstructure and mechanical properties in healthy individuals. Thrombosis Research, 2016, 143, 130-136.	1.7	10
12	Studying cerebral hemodynamics and metabolism using simultaneous near-infrared spectroscopy and transcranial Doppler ultrasound: a hyperventilation and caffeine study. Physiological Reports, 2015, 3, e12378.	1.7	11
13	Acute Exercise Stress Reveals Cerebrovascular Benefits Associated with Moderate Gains in Cardiorespiratory Fitness. Journal of Cerebral Blood Flow and Metabolism, 2014, 34, 1873-1876.	4.3	50
14	Improvement of energy expenditure prediction from heart rate during running. Physiological Measurement, 2014, 35, 253-266.	2.1	27
15	Erythropoietin: friend and foe!. Acta Physiologica, 2014, 212, 125-127.	3.8	2
16	Impaired cerebral haemodynamic function associated with chronic traumatic brain injury in professional boxers. Clinical Science, 2013, 124, 177-189.	4.3	111
17	Elevated Aerobic Fitness Sustained Throughout the Adult Lifespan Is Associated With Improved Cerebral Hemodynamics. Stroke, 2013, 44, 3235-3238.	2.0	175
18	Counterpoint: Hypobaric hypoxia does not induce different responses from normobaric hypoxia. Journal of Applied Physiology, 2012, 112, 1784-1786.	2.5	62

Julien V Brugniaux

#	Article	IF	CITATIONS
19	Point: Counterpoint: Hypobaric hypoxia induces/does not induce different responses from normobaric hypoxia. Journal of Applied Physiology, 2012, 112, 1783-1784.	2.5	158
20	Last Word on Counterpoint: Hypobaric hypoxia does not induce different physiological responses from normobaric hypoxia. Journal of Applied Physiology, 2012, 112, 1796-1796.	2.5	13
21	Redox regulation of neurovascular function by acetazolamide: complementary insight into mechanisms underlying highâ€altitude acclimatisation. Journal of Physiology, 2012, 590, 3627-3628.	2.9	6
22	Commentaries on Viewpoint: Expending our physical activity (measurement) budget wisely. Journal of Applied Physiology, 2011, 111, 608-613.	2.5	2
23	Sea-Level Assessment of Dynamic Cerebral Autoregulation Predicts Susceptibility to Acute Mountain Sickness at High Altitude. Stroke, 2011, 42, 3628-3630.	2.0	19
24	Effects of intermittent hypoxia on erythropoietin, soluble erythropoietin receptor and ventilation in humans. European Respiratory Journal, 2011, 37, 880-887.	6.7	39
25	Cerebral and myocardial blood flow responses to hypercapnia and hypoxia in humans. American Journal of Physiology - Heart and Circulatory Physiology, 2011, 301, H1678-H1686.	3.2	40
26	Antioxidant status of elite athletes remains impaired 2Âweeks after a simulated altitude training camp. European Journal of Nutrition, 2010, 49, 285-292.	3.9	32
27	Polar Activity Watch 200: a new device to accurately assess energy expenditure. British Journal of Sports Medicine, 2010, 44, 245-249.	6.7	42
28	Effects of Exposure to Intermittent Hypoxia on Oxidative Stress and Acute Hypoxic Ventilatory Response in Humans. American Journal of Respiratory and Critical Care Medicine, 2009, 180, 1002-1009.	5.6	149
29	Interchangeability between heart rate and photoplethysmography variabilities during sympathetic stimulations. Physiological Measurement, 2009, 30, 1357-1369.	2.1	74
30	Oxidative stress and HIF-1α modulate hypoxic ventilatory responses after hypoxic training on athletes. Respiratory Physiology and Neurobiology, 2009, 167, 217-220.	1.6	27
31	Thirteen days of "live high–train low―does not affect prooxidant/antioxidant balance in elite swimmers. European Journal of Applied Physiology, 2009, 106, 517-524.	2.5	23
32	Hemoglobin and hematocrit are not such good candidates to detect autologous blood doping. International Journal of Hematology, 2009, 89, 714-715.	1.6	9
33	Cardiovascular and cerebrovascular responses to acute hypoxia following exposure to intermittent hypoxia in healthy humans. Journal of Physiology, 2009, 587, 3287-3299.	2.9	87
34	Effects of the â€~live high–train low' method on prooxidant/antioxidant balance on elite athletes. European Journal of Clinical Nutrition, 2009, 63, 756-762.	2.9	36
35	Altitude, Heart Rate Variability and Aerobic Capacities. International Journal of Sports Medicine, 2008, 29, 300-306.	1.7	19
36	Effect of 4 days of intermittent hypoxia on oxidative stress in healthy men. FASEB Journal, 2008, 22, 960.3.	0.5	2

JULIEN V BRUGNIAUX

#	Article	IF	CITATIONS
37	Cerebrovascular responses to altitude. Respiratory Physiology and Neurobiology, 2007, 158, 212-223.	1.6	101
38	Determining an erythropoietin threshold is not sufficient for accelerating erythrocyte production. European Journal of Applied Physiology, 2007, 99, 325-326.	2.5	3
39	Eighteen days of "living high, training low―stimulate erythropoiesis and enhance aerobic performance in elite middle-distance runners. Journal of Applied Physiology, 2006, 100, 203-211.	2.5	123
40	Living high-training low: tolerance and acclimatization in elite endurance athletes. European Journal of Applied Physiology, 2006, 96, 66-77.	2.5	68
41	Living high–training low: effect on erythropoiesis and aerobic performance in highly-trained swimmers. European Journal of Applied Physiology, 2006, 96, 423-433.	2.5	80
42	Influence of "living high–training low―on aerobic performance and economy of work in elite athletes. European Journal of Applied Physiology, 2006, 97, 627-636.	2.5	68
43	Living high–training low: effect on erythropoiesis and maximal aerobic performance in elite Nordic skiers. European Journal of Applied Physiology, 2006, 97, 695-705.	2.5	74
44	Autonomic Adaptations in Andean Trained Participants to a 4220-m Altitude Marathon. Medicine and Science in Sports and Exercise, 2005, 37, 2148-2153.	0.4	20
45	Effects of Intermittent Hypoxia on Heart Rate Variability during Rest and Exercise. High Altitude Medicine and Biology, 2005, 6, 215-225.	0.9	42
46	Sildenafil Inhibits Altitude-induced Hypoxemia and Pulmonary Hypertension. American Journal of Respiratory and Critical Care Medicine, 2005, 171, 275-281.	5.6	225
47	Autonomic control of the cardiovascular system during acclimatization to high altitude: effects of sildenafil. Journal of Applied Physiology, 2004, 97, 935-940.	2.5	63
48	Neuromuscular fatigue during a long-duration cycling exercise. Journal of Applied Physiology, 2002, 92, 1487-1493.	2.5	186