JoAnne Stubbe

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1473970/publications.pdf Version: 2024-02-01

216 papers	14,797 citations	15495 65 h-index	²⁴²³² 110 g-index
222	222	222	7955
all docs	docs citations	times ranked	citing authors

IOANNE STURRE

#	Article	IF	CITATIONS
1	Ribonucleotide reductase, a novel drug target for gonorrhea. ELife, 2022, 11, .	2.8	8
2	¹⁹ F Electron-Nuclear Double Resonance Reveals Interaction between Redox-Active Tyrosines across the α/β Interface of <i>E. coli</i> Ribonucleotide Reductase. Journal of the American Chemical Society, 2022, 144, 11270-11282.	6.6	12
3	Gated Proton Release during Radical Transfer at the Subunit Interface of Ribonucleotide Reductase. Journal of the American Chemical Society, 2021, 143, 176-183.	6.6	14
4	Detection of Water Molecules on the Radical Transfer Pathway of Ribonucleotide Reductase by ¹⁷ 0 Electron–Nuclear Double Resonance Spectroscopy. Journal of the American Chemical Society, 2021, 143, 7237-7241.	6.6	18
5	Statistical analysis of ENDOR spectra. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	8
6	Radicals in Biology: Your Life Is in Their Hands. Journal of the American Chemical Society, 2021, 143, 13463-13472.	6.6	23
7	Ribonucleotide Reductases: Structure, Chemistry, and Metabolism Suggest New Therapeutic Targets. Annual Review of Biochemistry, 2020, 89, 45-75.	5.0	120
8	PET Polymer Recycling. Biochemistry, 2020, 59, 2316-2318.	1.2	10
9	Subunit Interaction Dynamics of Class Ia Ribonucleotide Reductases: In Search of a Robust Assay. Biochemistry, 2020, 59, 1442-1453.	1.2	10
10	Structure of a trapped radical transfer pathway within a ribonucleotide reductase holocomplex. Science, 2020, 368, 424-427.	6.0	82
11	Conformational Motions and Water Networks at the α/β Interface inE. coliRibonucleotide Reductase. Journal of the American Chemical Society, 2020, 142, 13768-13778.	6.6	21
12	Convergent allostery in ribonucleotide reductase. Nature Communications, 2019, 10, 2653.	5.8	27
13	Selenocysteine Substitution in a Class I Ribonucleotide Reductase. Biochemistry, 2019, 58, 5074-5084.	1.2	11
14	Discovery of a New Class I Ribonucleotide Reductase with an Essential DOPA Radical and NO Metal as an Initiator of Long-Range Radical Transfer. Biochemistry, 2019, 58, 435-437.	1.2	7
15	Properties of Site-Specifically Incorporated 3-Aminotyrosine in Proteins To Study Redox-Active Tyrosines: <i>Escherichia coli</i> Ribonucleotide Reductase as a Paradigm. Biochemistry, 2018, 57, 3402-3415.	1.2	12
16	An endogenous dAMP ligand in <i>Bacillus subtilis</i> class Ib RNR promotes assembly of a noncanonical dimer for regulation by dATP. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E4594-E4603.	3.3	18
17	Photochemical Rescue of a Conformationally Inactivated Ribonucleotide Reductase. Journal of the American Chemical Society, 2018, 140, 15744-15752.	6.6	11
18	Basis of dATP inhibition of RNRs. Journal of Biological Chemistry, 2018, 293, 10413-10414.	1.6	6

#	Article	IF	CITATIONS
19	3.3-Ã resolution cryo-EM structure of human ribonucleotide reductase with substrate and allosteric regulators bound. ELife, 2018, 7, .	2.8	37
20	BIOLOGICAL CATALYSIS: UNDERSTANDING RATE ACCELERATIONS IN ENZYMATIC REACTIONS. , 2018, , .		0
21	Glutamate 350 Plays an Essential Role in Conformational Gating of Long-Range Radical Transport in <i>Escherichia coli</i> Class la Ribonucleotide Reductase. Biochemistry, 2017, 56, 856-868.	1.2	19
22	Formal Reduction Potentials of Difluorotyrosine and Trifluorotyrosine Protein Residues: Defining the Thermodynamics of Multistep Radical Transfer. Journal of the American Chemical Society, 2017, 139, 2994-3004.	6.6	34
23	Glutamate 52-β at the α/β subunit interface of Escherichia coli class la ribonucleotide reductase is essential for conformational gating of radical transfer. Journal of Biological Chemistry, 2017, 292, 9229-9239.	1.6	26
24	Conformationally Dynamic Radical Transfer within Ribonucleotide Reductase. Journal of the American Chemical Society, 2017, 139, 16657-16665.	6.6	36
25	The diferric-tyrosyl radical cluster of ribonucleotide reductase and cytosolic iron-sulfur clusters have distinct and similar biogenesis requirements. Journal of Biological Chemistry, 2017, 292, 11445-11451.	1.6	19
26	Spectroscopic Evidence for a H Bond Network at Y ₃₅₆ Located at the Subunit Interface of Active <i>E. coli</i> Ribonucleotide Reductase. Biochemistry, 2017, 56, 3647-3656.	1.2	27
27	Allosteric Inhibition of Human Ribonucleotide Reductase by dATP Entails the Stabilization of a Hexamer. Biochemistry, 2016, 55, 373-381.	1.2	45
28	A >200 meV Uphill Thermodynamic Landscape for Radical Transport in <i>Escherichia coli</i> Ribonucleotide Reductase Determined Using Fluorotyrosine-Substituted Enzymes. Journal of the American Chemical Society, 2016, 138, 13706-13716.	6.6	27
29	Structure of the Catalytic Domain of the Class I Polyhydroxybutyrate Synthase from Cupriavidus necator. Journal of Biological Chemistry, 2016, 291, 25264-25277.	1.6	69
30	Photochemical Generation of a Tryptophan Radical within the Subunit Interface of Ribonucleotide Reductase. Biochemistry, 2016, 55, 3234-3240.	1.2	14
31	Biophysical Characterization of Fluorotyrosine Probes Site-Specifically Incorporated into Enzymes: <i>E. coli</i> Ribonucleotide Reductase As an Example. Journal of the American Chemical Society, 2016, 138, 7951-7964.	6.6	43
32	Charge-Transfer Dynamics at the α/β Subunit Interface of a Photochemical Ribonucleotide Reductase. Journal of the American Chemical Society, 2016, 138, 1196-1205.	6.6	28
33	Radical transfer in E. coli ribonucleotide reductase: a NH ₂ Y ₇₃₁ /R ₄₁₁ A-α mutant unmasks a new conformation of the pathway residue 731. Chemical Science, 2016, 7, 2170-2178.	3.7	38
34	A Ferredoxin Disulfide Reductase Delivers Electrons to the <i>Methanosarcina barkeri</i> Class III Ribonucleotide Reductase. Biochemistry, 2015, 54, 7019-7028.	1.2	18
35	Reverse Electron Transfer Completes the Catalytic Cycle in a 2,3,5-Trifluorotyrosine-Substituted Ribonucleotide Reductase. Journal of the American Chemical Society, 2015, 137, 14387-14395.	6.6	22
36	Composition and Structure of the Inorganic Core of Relaxed Intermediate X (Y122F) of <i>Escherichia coli</i> Ribonucleotide Reductase. Journal of the American Chemical Society, 2015, 137, 15558-15566.	6.6	20

#	Article	IF	CITATIONS
37	Hydrogen Bond Network between Amino Acid Radical Intermediates on the Proton-Coupled Electron Transfer Pathway of <i>E. coli</i> α2 Ribonucleotide Reductase. Journal of the American Chemical Society, 2015, 137, 289-298.	6.6	65
38	Chemistry with an Artificial Primer of Polyhydroxybutyrate Synthase Suggests a Mechanism for Chain Termination. Biochemistry, 2015, 54, 2117-2125.	1.2	16
39	Modulation of Phenol Oxidation in Cofacial Dyads. Journal of the American Chemical Society, 2015, 137, 11860-11863.	6.6	10
40	Direct interfacial Y ₇₃₁ oxidation in α ₂ by a photoβ ₂ subunit of E. coli class la ribonucleotide reductase. Chemical Science, 2015, 6, 4519-4524.	3.7	8
41	Probing Conformational Change During Radical Propagation in the E.coli Class 1a RNR Using 3â€aminotyrosine as a Radical "Sink― FASEB Journal, 2015, 29, 572.10.	0.2	0
42	Quaternary Structure and Activity Modulation in Human Ribonucleotide Reductase. FASEB Journal, 2015, 29, 360.1.	0.2	0
43	Conserved electron donor complex Dre2–Tah18 is required for ribonucleotide reductase metallocofactor assembly and DNA synthesis. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E1695-704.	3.3	40
44	The class III ribonucleotide reductase from <i>Neisseria bacilliformis</i> can utilize thioredoxin as a reductant. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E3756-65.	3.3	24
45	Choosing the Right Metal: Case Studies of Class I Ribonucleotide Reductases. Journal of Biological Chemistry, 2014, 289, 28104-28111.	1.6	36
46	Genetic Characterization and Role in Virulence of the Ribonucleotide Reductases of Streptococcus sanguinis. Journal of Biological Chemistry, 2014, 289, 6273-6287.	1.6	50
47	Streptococcus sanguinis Class Ib Ribonucleotide Reductase. Journal of Biological Chemistry, 2014, 289, 6259-6272.	1.6	45
48	Kinetics of Hydrogen Atom Abstraction from Substrate by an Active Site Thiyl Radical in Ribonucleotide Reductase. Journal of the American Chemical Society, 2014, 136, 16210-16216.	6.6	32
49	<i>Bacillus subtilis</i> Class Ib Ribonucleotide Reductase: High Activity and Dynamic Subunit Interactions. Biochemistry, 2014, 53, 766-776.	1.2	15
50	A Chemically Competent Thiosulfuranyl Radical on the <i>Escherichia coli</i> Class III Ribonucleotide Reductase. Journal of the American Chemical Society, 2014, 136, 9001-9013.	6.6	30
51	Mechanistic Insight with HBCH2CoA as a Probe to Polyhydroxybutyrate (PHB) Synthases. ACS Chemical Biology, 2014, 9, 1773-1779.	1.6	10
52	CONTROLLED RADICAL REACTIONS IN BIOLOGY AND THE IMPORTANCE OF METALLO-COFACTOR BIOSYNTHESIS. , 2014, , .		0
53	Redox-Linked Changes to the Hydrogen-Bonding Network of Ribonucleotide Reductase β2. Journal of the American Chemical Society, 2013, 135, 6380-6383.	6.6	26
54	Function of the Diiron Cluster of <i>Escherichia coli</i> Class Ia Ribonucleotide Reductase in Proton-Coupled Electron Transfer. Journal of the American Chemical Society, 2013, 135, 8585-8593.	6.6	55

#	Article	IF	CITATIONS
55	Reversible, Long-Range Radical Transfer in E. coli Class Ia Ribonucleotide Reductase. Accounts of Chemical Research, 2013, 46, 2524-2535.	7.6	223
56	Mechanism of Assembly of the Dimanganese-Tyrosyl Radical Cofactor of Class Ib Ribonucleotide Reductase: Enzymatic Generation of Superoxide Is Required for Tyrosine Oxidation via a Mn(III)Mn(IV) Intermediate. Journal of the American Chemical Society, 2013, 135, 4027-4039.	6.6	97
57	Formal Reduction Potential of 3,5-Difluorotyrosine in a Structured Protein: Insight into Multistep Radical Transfer. Biochemistry, 2013, 52, 8907-8915.	1.2	27
58	Investigation of in Vivo Roles of the C-terminal Tails of the Small Subunit (ββ′) of Saccharomyces cerevisiae Ribonucleotide Reductase. Journal of Biological Chemistry, 2013, 288, 13951-13959.	1.6	9
59	Modulation of Y ₃₅₆ Photooxidation in <i>E. coli</i> Class Ia Ribonucleotide Reductase by Y ₇₃₁ Across the α ₂ :β ₂ Interface. Journal of the American Chemical Society, 2013, 135, 13250-13253.	6.6	16
60	Generation of a stable, aminotyrosyl radical-induced α2β2 complex of <i>Escherichia coli</i> class la ribonucleotide reductase. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 3835-3840.	3.3	44
61	Radicals: Your life is in their hands. FASEB Journal, 2013, 27, 337.3.	0.2	Ο
62	Mechanistic Studies of Semicarbazone Triapine Targeting Human Ribonucleotide Reductase in Vitro and in Mammalian Cells. Journal of Biological Chemistry, 2012, 287, 35768-35778.	1.6	64
63	Photo-ribonucleotide reductase β2 by selective cysteine labeling with a radical phototrigger. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 39-43.	3.3	53
64	Clofarabine Targets the Large Subunit (α) of Human Ribonucleotide Reductase in Live Cells by Assembly into Persistent Hexamers. Chemistry and Biology, 2012, 19, 799-805.	6.2	45
65	Christian R. Raetz (1946–2011). ACS Chemical Biology, 2012, 7, 12-13.	1.6	1
66	Metallation and mismetallation of iron and manganese proteins in vitro and in vivo: the class I ribonucleotide reductases as a case study. Metallomics, 2012, 4, 1020.	1.0	124
67	The Dimanganese(II) Site of <i>Bacillus subtilis</i> Class Ib Ribonucleotide Reductase. Biochemistry, 2012, 51, 3861-3871.	1.2	30
68	Deciphering Radical Transport in the Large Subunit of Class I Ribonucleotide Reductase. Journal of the American Chemical Society, 2012, 134, 1172-1180.	6.6	40
69	Tangled Up in Knots: Structures of Inactivated Forms of E.Âcoli Class Ia Ribonucleotide Reductase. Structure, 2012, 20, 1374-1383.	1.6	60
70	Purification of Polyhydroxybutyrate Synthase from Its Native Organism, <i>Ralstonia eutropha</i> : Implications for the Initiation and Elongation of Polymer Formation in Vivo. Biochemistry, 2012, 51, 2276-2288.	1.2	35
71	Growth and Localization of Polyhydroxybutyrate Granules in Ralstonia eutropha. Journal of Bacteriology, 2012, 194, 1092-1099.	1.0	65
72	ENDOR Spectroscopy and DFT Calculations: Evidence for the Hydrogen-Bond Network Within α2 in the PCET of E. coli Ribonucleotide Reductase. Journal of the American Chemical Society, 2012, 134, 17661-17670.	6.6	50

#	Article	IF	CITATIONS
73	Kinetics of Radical Intermediate Formation and Deoxynucleotide Production in 3-Aminotyrosine-Substituted <i>Escherichia coli</i> Ribonucleotide Reductases. Journal of the American Chemical Society, 2011, 133, 9430-9440.	6.6	62
74	Use of 2,3,5-F ₃ Y-β2 and 3-NH ₂ Y-α2 To Study Proton-Coupled Electron Transfer in <i>Escherichia coli</i> Ribonucleotide Reductase. Biochemistry, 2011, 50, 1403-1411.	1.2	11
75	<i>Escherichia coli</i> Class Ib Ribonucleotide Reductase Contains a Dimanganese(III)-Tyrosyl Radical Cofactor in Vivo. Biochemistry, 2011, 50, 1672-1681.	1.2	74
76	<i>Bacillus subtilis</i> Class Ib Ribonucleotide Reductase Is a Dimanganese(III)-Tyrosyl Radical Enzyme. Biochemistry, 2011, 50, 5615-5623.	1.2	52
77	Equilibration of Tyrosyl Radicals (Y ₃₅₆ [•] , Y ₇₃₁ [•] ,) Tj ETQ Ribonucleotide Reductase. Journal of the American Chemical Society, 2011, 133, 18420-18432.	Qq1 1 0.78 6.6	84314 rgBT /(61
78	Incorporation of Fluorotyrosines into Ribonucleotide Reductase Using an Evolved, Polyspecific Aminoacyl-tRNA Synthetase. Journal of the American Chemical Society, 2011, 133, 15942-15945.	6.6	97
79	Class I Ribonucleotide Reductases: Metallocofactor Assembly and Repair In Vitro and In Vivo. Annual Review of Biochemistry, 2011, 80, 733-767.	5.0	183
80	The Two Faces of SAM. Science, 2011, 332, 544-545.	6.0	13
81	Control of metallation and active cofactor assembly in the class Ia and Ib ribonucleotide reductases: diiron or dimanganese?. Current Opinion in Chemical Biology, 2011, 15, 284-290.	2.8	22
82	Clofarabine 5′-di and -triphosphates inhibit human ribonucleotide reductase by altering the quaternary structure of its large subunit. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 9815-9820.	3.3	62
83	Investigation of in Vivo Diferric Tyrosyl Radical Formation in Saccharomyces cerevisiae Rnr2 Protein. Journal of Biological Chemistry, 2011, 286, 41499-41509.	1.6	46
84	Structural interconversions modulate activity of <i>Escherichia coli</i> ribonucleotide reductase. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 21046-21051.	3.3	87
85	Structural Basis for Activation of Class Ib Ribonucleotide Reductase. Science, 2010, 329, 1526-1530.	6.0	131
86	Site-Specific Incorporation of 3-Nitrotyrosine as a Probe of p <i>K</i> _a Perturbation of Redox-Active Tyrosines in Ribonucleotide Reductase. Journal of the American Chemical Society, 2010, 132, 8385-8397.	6.6	80
87	A Hot Oxidant, 3-NO ₂ Y ₁₂₂ Radical, Unmasks Conformational Gating in Ribonucleotide Reductase. Journal of the American Chemical Society, 2010, 132, 15368-15379.	6.6	56
88	An Active Dimanganese(III)â^'Tyrosyl Radical Cofactor in <i>Escherichia coli</i> Class Ib Ribonucleotide Reductase. Biochemistry, 2010, 49, 1297-1309.	1.2	121
89	Inactivation of <i>Lactobacillus leichmannii</i> Ribonucleotide Reductase by 2′,2′-Difluoro-2′-deoxycytidine 5′-Triphosphate: Adenosylcobalamin Destruction and Formation of a Nucleotide-Based Radical. Biochemistry, 2010, 49, 1396-1403.	1.2	7
90	Cytosolic Monothiol Glutaredoxins Function in Intracellular Iron Sensing and Trafficking via Their Bound Iron-Sulfur Cluster. Cell Metabolism, 2010, 12, 373-385.	7.2	263

#	Article	IF	CITATIONS
91	Mechanism of Inactivation of Human Ribonucleotide Reductase with p53R2 by Gemcitabine $5\hat{a}\in^2$ -Diphosphate. Biochemistry, 2009, 48, 11612-11621.	1.2	47
92	Insight into the Mechanism of Inactivation of Ribonucleotide Reductase by Gemcitabine 5′-Diphosphate in the Presence or Absence of Reductant. Biochemistry, 2009, 48, 11622-11629.	1.2	51
93	Use of 3-Aminotyrosine To Examine the Pathway Dependence of Radical Propagation in <i>Escherichia coli</i> Ribonucleotide Reductase. Biochemistry, 2009, 48, 12125-12132.	1.2	21
94	Re(bpy)(CO) ₃ CN as a Probe of Conformational Flexibility in a Photochemical Ribonucleotide Reductase. Biochemistry, 2009, 48, 5832-5838.	1.2	15
95	Identification of Protonated Oxygenic Ligands of Ribonucleotide Reductase Intermediate X. Journal of the American Chemical Society, 2009, 131, 3370-3376.	6.6	39
96	Chapter 3 Replacement of Y730 and Y731 in the α2 Subunit of Escherichia coli Ribonucleotide Reductase with 3â€Aminotyrosine using an Evolved Suppressor tRNA/tRNA‧ynthetase Pair. Methods in Enzymology, 2009, 462, 45-76.	0.4	10
97	Structural Examination of the Transient 3-Aminotyrosyl Radical on the PCET Pathway of <i>E. coli</i> Ribonucleotide Reductase by Multifrequency EPR Spectroscopy. Journal of the American Chemical Society, 2009, 131, 15729-15738.	6.6	25
98	Detection of Covalent and Noncovalent Intermediates in the Polymerization Reaction Catalyzed by a C149S Class III Polyhydroxybutyrate Synthase. Biochemistry, 2009, 48, 9202-9211.	1.2	19
99	Structure of the Nucleotide Radical Formed during Reaction of CDP/TTP with the E441Q-α2β2 of <i>E. coli</i> Ribonucleotide Reductase. Journal of the American Chemical Society, 2009, 131, 200-211.	6.6	55
100	Unnatural amino acids: better than the real things?. F1000 Biology Reports, 2009, 1, 88.	4.0	2
101	Mapping the subunit interface of ribonucleotide reductase (RNR) using photo cross-linking. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 5923-5925.	1.0	4
102	Methodology To Probe Subunit Interactions in Ribonucleotide Reductases. Biochemistry, 2008, 47, 13046-13055.	1.2	14
103	Importance of the Maintenance Pathway in the Regulation of the Activity ofEscherichia coliRibonucleotide Reductaseâ€. Biochemistry, 2008, 47, 3989-3999.	1.2	34
104	Mechanistic studies on bleomycin-mediated DNA damage: multiple binding modes can result in double-stranded DNA cleavage. Nucleic Acids Research, 2008, 36, 3781-3790.	6.5	120
105	Nrdl, a flavodoxin involved in maintenance of the diferric-tyrosyl radical cofactor in <i>Escherichia coli</i> class lb ribonucleotide reductase. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 14383-14388.	3.3	63
106	Enhanced subunit interactions with gemcitabine-5′-diphosphate inhibit ribonucleotide reductases. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 14324-14329.	3.3	98
107	Forward and Reverse Electron Transfer with the Y356DOPA-β2 Heterodimer ofE. coliRibonucleotide Reductase. Journal of the American Chemical Society, 2007, 129, 2226-2227.	6.6	35
108	Photoactive Peptides for Light-Initiated Tyrosyl Radical Generation and Transport into Ribonucleotide Reductase. Journal of the American Chemical Society, 2007, 129, 8500-8509.	6.6	44

#	Article	IF	CITATIONS
109	PELDOR Spectroscopy with DOPA-β2 and NH ₂ Y-α2s:  Distance Measurements between Residu Involved in the Radical Propagation Pathway of <i>E. coli</i> Ribonucleotide Reductase. Journal of the American Chemical Society, 2007, 129, 15748-15749.	es 6.6	68
110	Site-Specific Insertion of 3-Aminotyrosine into Subunit α2 of <i>E. coli</i> Ribonucleotide Reductase: Direct Evidence for Involvement of Y ₇₃₀ and Y ₇₃₁ in Radical Propagation. Journal of the American Chemical Society, 2007, 129, 15060-15071.	6.6	129
111	Direct Observation of a Transient Tyrosine Radical Competent for Initiating Turnover in a Photochemical Ribonucleotide Reductase. Journal of the American Chemical Society, 2007, 129, 13828-13830.	6.6	50
112	YfaE, a Ferredoxin Involved in Diferric-Tyrosyl Radical Maintenance in <i>Escherichia coli</i> Ribonucleotide Reductase. Biochemistry, 2007, 46, 11577-11588.	1.2	54
113	Models of transition. Nature, 2007, 448, 762-763.	13.7	1
114	Site-specific incorporation of fluorotyrosines into the R2 subunit of E. coli ribonucleotide reductase by expressed protein ligation. Nature Protocols, 2007, 2, 1225-1235.	5.5	56
115	Determination of the in Vivo Stoichiometry of Tyrosyl Radical per ββâ€~ inSaccharomyces cerevisiaeRibonucleotide Reductaseâ€. Biochemistry, 2006, 45, 12282-12294.	1.2	23
116	Complexed Structures of Formylglycinamide Ribonucleotide Amidotransferase from Thermotoga maritima Describe a Novel ATP Binding Protein Superfamily,. Biochemistry, 2006, 45, 14880-14895.	1.2	26
117	Mono-, Di-, Tri-, and Tetra-Substituted Fluorotyrosines:Â New Probes for Enzymes That Use Tyrosyl Radicals in Catalysisâ€. Journal of the American Chemical Society, 2006, 128, 1569-1579.	6.6	126
118	pH Rate Profiles of FnY356â^'R2s (n= 2, 3, 4) inEscherichiacoliRibonucleotide Reductase:Â Evidence that Y356Is a Redox-Active Amino Acid along the Radical Propagation Pathway. Journal of the American Chemical Society, 2006, 128, 1562-1568.	6.6	114
119	Site-Specific Replacement of Y356with 3,4-Dihydroxyphenylalanine in the β2 Subunit ofE.coliRibonucleotide Reductase. Journal of the American Chemical Society, 2006, 128, 2522-2523.	6.6	84
120	Electron Transfer Reactions of Fluorotyrosyl Radicals. Journal of the American Chemical Society, 2006, 128, 13654-13655.	6.6	49
121	Proton-coupled electron transfer: the mechanistic underpinning for radical transport and catalysis in biology. Philosophical Transactions of the Royal Society B: Biological Sciences, 2006, 361, 1351-1364.	1.8	262
122	Ribonucleotide Reductases. Advances in Enzymology and Related Areas of Molecular Biology, 2006, 63, 349-419.	1.3	48
123	Nuclear localization of the Saccharomyces cerevisiae ribonucleotide reductase small subunit requires a karyopherin and a WD40 repeat protein. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 1422-1427.	3.3	41
124	Polyhydroxybutyrate (PHB) Synthases (PhaC): Toward understanding elongation granule formation and chain termination FASEB Journal, 2006, 20, A888.	0.2	0
125	Kinetic Studies of Polyhydroxybutyrate Granule Formation in Wautersia eutropha H16 by Transmission Electron Microscopy. Journal of Bacteriology, 2005, 187, 3814-3824.	1.0	111
126	NONTEMPLATE-DEPENDENT POLYMERIZATION PROCESSES: Polyhydroxyalkanoate Synthases as a Paradigm. Annual Review of Biochemistry, 2005, 74, 433-480.	5.0	132

#	Article	IF	CITATIONS
127	Analysis of Transient Polyhydroxybutyrate Production in Wautersia eutropha H16 by Quantitative Western Analysis and Transmission Electron Microscopy. Journal of Bacteriology, 2005, 187, 3825-3832.	1.0	62
128	The Active Form of theSaccharomyces cerevisiaeRibonucleotide Reductase Small Subunit Is a Heterodimerin Vitroandin Vivoâ€. Biochemistry, 2005, 44, 15366-15377.	1.2	33
129	EPR Distance Measurements Support a Model for Long-Range Radical Initiation inE. coliRibonucleotide Reductase. Journal of the American Chemical Society, 2005, 127, 15014-15015.	6.6	102
130	Structure of the Nitrogen-Centered Radical Formed during Inactivation ofE. coliRibonucleotide Reductase by 2â€~-Azido-2â€~-deoxyuridine-5â€~-diphosphate: Trapping of the 3â€~-Ketonucleotide. Journal of tl American Chemical Society, 2005, 127, 7729-7738.	166.6	49
131	Detection of Intermediates from the Polymerization Reaction Catalyzed by a D302A Mutant of Class III Polyhydroxyalkanoate (PHA) Synthase. Biochemistry, 2005, 44, 1495-1503.	1.2	33
132	In Vitro Analysis of the Chain Termination Reaction in the Synthesis of Poly-(R)-β-hydroxybutyrate by the Class III Synthase fromAllochromatiumvinosum. Biomacromolecules, 2005, 6, 2113-2119.	2.6	30
133	Class III Polyhydroxybutyrate Synthase:  Involvement in Chain Termination and Reinitiation. Biochemistry, 2005, 44, 8369-8377.	1.2	31
134	pH dependence of charge transfer between tryptophan and tyrosine in dipeptides. Biochimica Et Biophysica Acta - Bioenergetics, 2005, 1706, 232-238.	0.5	43
135	Site-Specific Replacement of a Conserved Tyrosine in Ribonucleotide Reductase with an Aniline Amino Acid:À A Mechanistic Probe for a Redox-Active Tyrosine. Journal of the American Chemical Society, 2004, 126, 16702-16703.	6.6	41
136	Turning on ribonucleotide reductase by light-initiated amino acid radical generation. Proceedings of the United States of America, 2004, 101, 6882-6887.	3.3	52
137	Bleomycins: new methods will allow reinvestigation of old issues. Current Opinion in Chemical Biology, 2004, 8, 175-181.	2.8	59
138	A Model for theBacillus subtilisFormylglycinamide Ribonucleotide Amidotransferase Multiprotein Complexâ€,â€j. Biochemistry, 2004, 43, 10343-10352.	1.2	26
139	The Formylglycinamide Ribonucleotide Amidotransferase Complex fromBacillus subtilis:Â Metabolite-Mediated Complex Formationâ€. Biochemistry, 2004, 43, 10314-10327.	1.2	29
140	Structures of the Yeast Ribonucleotide Reductase Rnr2 and Rnr4 Homodimers,. Biochemistry, 2004, 43, 7736-7742.	1.2	43
141	Radical Initiation in the Class I Ribonucleotide Reductase: Long-Range Proton-Coupled Electron Transfer?. ChemInform, 2003, 34, no.	0.1	2
142	Polyhydroxyalkanoate (PHA) Homeostasis: The Role of the PHA Synthase. ChemInform, 2003, 34, no.	0.1	0
143	Di-iron-tyrosyl radical ribonucleotide reductases. Current Opinion in Chemical Biology, 2003, 7, 183-188.	2.8	120
144	Pulsed ELDOR Spectroscopy Measures the Distance between the Two Tyrosyl Radicals in the R2 Subunit of theE. coliRibonucleotide Reductase. Journal of the American Chemical Society, 2003, 125, 14988-14989.	6.6	60

#	Article	lF	CITATIONS
145	2,3-Difluorotyrosine at Position 356 of Ribonucleotide Reductase R2:  A Probe of Long-Range Proton-Coupled Electron Transfer. Journal of the American Chemical Society, 2003, 125, 10506-10507.	6.6	60
146	Radical Initiation in the Class I Ribonucleotide Reductase:  Long-Range Proton-Coupled Electron Transfer?. Chemical Reviews, 2003, 103, 2167-2202.	23.0	770
147	Polyhydroxyalkanoate (PHA) homeostasis: the role of the PHA synthase. Natural Product Reports, 2003, 20, 445.	5.2	143
148	Generation of the R2 Subunit of Ribonucleotide Reductase by Intein Chemistry:Â Insertion of 3-Nitrotyrosine at Residue 356 as a Probe of the Radical Initiation Processâ€. Biochemistry, 2003, 42, 14541-14552.	1.2	79
149	Radicals with a controlled lifestyle. Chemical Communications, 2003, , 2511.	2.2	63
150	Pre-Steady-State and Steady-State Kinetic Analysis ofE. coliClass I Ribonucleotide Reductase. Biochemistry, 2003, 42, 10071-10083.	1.2	121
151	Ralstonia eutropha H16 Encodes Two and Possibly Three Intracellular Poly[d -(â^')-3-Hydroxybutyrate] Depolymerase Genes. Journal of Bacteriology, 2003, 185, 3788-3794.	1.0	101
152	Subcellular localization of yeast ribonucleotide reductase regulated by the DNA replication and damage checkpoint pathways. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 6628-6633.	3.3	133
153	The Ralstonia eutropha PhaR Protein Couples Synthesis of the PhaP Phasin to the Presence of Polyhydroxybutyrate in Cells and Promotes Polyhydroxybutyrate Production. Journal of Bacteriology, 2002, 184, 59-66.	1.0	148
154	Solution structure of the hydroperoxide of Co(III) phleomycin complexed with d(CCAGGCCTGG)2: evidence for binding by partial intercalation. Nucleic Acids Research, 2002, 30, 4881-4891.	6.5	18
155	Nanosecond Generation of Tyrosyl Radicals via Laser-Initiated Decaging of Oxalate-Modified Amino Acids. Journal of Organic Chemistry, 2002, 67, 6820-6822.	1.7	6
156	The crystal structure of class II ribonucleotide reductase reveals how an allosterically regulated monomer mimics a dimer. Nature Structural Biology, 2002, 9, 293-300.	9.7	187
157	Mechanistic Studies on Class I Polyhydroxybutyrate (PHB) Synthase fromRalstonia eutropha:Â Class I and III Synthases Share a Similar Catalytic Mechanismâ€. Biochemistry, 2001, 40, 1011-1019.	1.2	90
158	Class I and III Polyhydroxyalkanoate Synthases from Ralstonia eutropha and Allochromatium vinosum: Characterization and Substrate Specificity Studies. Archives of Biochemistry and Biophysics, 2001, 394, 87-98.	1.4	134
159	High-Frequency (140-GHz) Time Domain EPR and ENDOR Spectroscopy:Â The Tyrosyl Radicalâ^'Diiron Cofactor in Ribonucleotide Reductase from Yeast. Journal of the American Chemical Society, 2001, 123, 3569-3576.	6.6	53
160	Solution Structure of Co(III)-Bleomycin-OOH Bound to a Phosphoglycolate Lesion Containing Oligonucleotide:  Implications for Bleomycin-Induced Double-Strand DNA Cleavage. Biochemistry, 2001, 40, 5894-5905.	1.2	67
161	The evolution of ribonucleotide reduction revisited. Trends in Biochemical Sciences, 2001, 26, 93-99.	3.7	84
162	New Insight into the Role of the PhaP Phasin of Ralstonia eutropha in Promoting Synthesis of Polyhydroxybutyrate. Journal of Bacteriology, 2001, 183, 2394-2397.	1.0	123

#	Article	IF	CITATIONS
163	Modular evolution of the purine biosynthetic pathway. Current Opinion in Chemical Biology, 2000, 4, 567-572.	2.8	93
164	Ribonucleotide reductases: the link between an RNA and a DNA world?. Current Opinion in Structural Biology, 2000, 10, 731-736.	2.6	92
165	Clarity through structures. Current Opinion in Structural Biology, 2000, 10, 709-710.	2.6	3
166	Lipases Provide a New Mechanistic Model for Polyhydroxybutyrate (PHB) Synthases:  Characterization of the Functional Residues in Chromatium vinosum PHB Synthase. Biochemistry, 2000, 39, 3927-3936.	1.2	106
167	Mechanistic Investigations of Ribonucleotide Reductases. , 1999, , 163-203.		44
168	Crystal structure of Escherichia coli PurE, an unusual mutase in the purine biosynthetic pathway. Structure, 1999, 7, 1395-1406.	1.6	50
169	X-ray crystal structure of aminoimidazole ribonucleotide synthetase (PurM), from the Escherichia coli purine biosynthetic pathway at 2.5 Ã resolution. Structure, 1999, 7, 1155-1166.	1.6	68
170	Studies on the Catalysis of Carbonâ~'Cobalt Bond Homolysis by Ribonucleoside Triphosphate Reductase: Evidence for Concerted Carbonâ~'Cobalt Bond Homolysis and Thiyl Radical Formationâ€. Biochemistry, 1999, 38, 1221-1233.	1.2	81
171	PHA Synthase from Chromatium vinosum:  Cysteine 149 Is Involved in Covalent Catalysis. Biochemistry, 1999, 38, 826-837.	1.2	92
172	Evidence for the Direct Transfer of the Carboxylate of N5-Carboxyaminoimidazole Ribonucleotide (N5-CAIR) To Generate 4-Carboxy-5-aminoimidazole Ribonucleotide Catalyzed by Escherichia coli PurE, an N5-CAIR Mutase. Biochemistry, 1999, 38, 3012-3018.	1.2	43
173	Three-Dimensional Structure ofN5-Carboxyaminoimidazole Ribonucleotide Synthetase: A Member of the ATP Grasp Protein Superfamilyâ€,‡. Biochemistry, 1999, 38, 15480-15492.	1.2	52
174	Class II Ribonucleotide Reductases Catalyze Carbonâ^ Cobalt Bond Reformation on Every Turnover. Journal of the American Chemical Society, 1999, 121, 7463-7468.	6.6	29
175	Harnessing free radicals: formation and function of the tyrosyl radical in ribonucleotide reductase. Trends in Biochemical Sciences, 1998, 23, 438-443.	3.7	149
176	Gemcitabine 5â€~-Triphosphate Is a Stoichiometric Mechanism-Based Inhibitor of Lactobacillus leichmannii Ribonucleoside Triphosphate Reductase:  Evidence for Thiyl Radical-Mediated Nucleotide Radical Formation. Biochemistry, 1998, 37, 5528-5535.	1.2	24
177	Definition of the Effect and Role of the Bleomycin A2 Valerate Substituents:  Preorganization of a Rigid, Compact Conformation Implicated in Sequence-Selective DNA Cleavage. Journal of the American Chemical Society, 1998, 120, 9149-9158.	6.6	42
178	EXAFS Characterization of the Intermediate X Generated During the Assembly of theEscherichia coliRibonucleotide Reductase R2 Diferric Tyrosyl Radical Cofactor. Journal of the American Chemical Society, 1998, 120, 849-860.	6.6	186
179	Protein Radicals in Enzyme Catalysis. [Chem. Rev. 1998, 98, 705â~'762. Chemical Reviews, 1998, 98, 2661-2662.	23.0	35
180	X-ray Crystal Structure of Glycinamide Ribonucleotide Synthetase fromEscherichia coliâ€,‡. Biochemistry, 1998, 37, 15647-15662.	1.2	57

#	Article	IF	CITATIONS
181	Characterization of a Substrate-Derived Radical Detected during the Inactivation of Ribonucleotide Reductase fromEscherichia coliby 2â€~-Fluoromethylene-2â€~-deoxycytidine 5â€~-Diphosphate. Journal of the American Chemical Society, 1998, 120, 3823-3835.	6.6	50
182	A Systematic Evaluation of the Bleomycin A2 l-Threonine Side Chain:  Its Role in Preorganization of a Compact Conformation Implicated in Sequence-Selective DNA Cleavage. Journal of the American Chemical Society, 1998, 120, 9139-9148.	6.6	53
183	The Core Structure of X Generated in the Assembly of the Diiron Cluster of Ribonucleotide Reductase:Â17O2and H217O ENDOR. Journal of the American Chemical Society, 1998, 120, 12910-12919.	6.6	119
184	Detection of a New Substrate-Derived Radical during Inactivation of Ribonucleotide Reductase fromEscherichia coliby Gemcitabine 5â€~-Diphosphateâ€. Biochemistry, 1998, 37, 6419-6426.	1.2	69
185	Direct EPR Spectroscopic Evidence for an Allylic Radical Generated from (E)-2â€~Fluoromethylene-2â€~-deoxycytidine 5â€~-Diphosphate byE.coliRibonucleotide Reductase. Journal of the American Chemical Society, 1998, 120, 4252-4253.	6.6	29
186	Protein Radicals in Enzyme Catalysis. Chemical Reviews, 1998, 98, 705-762.	23.0	1,401
187	Structure Determination by Combination of CW and Pulsed '2-D' Orientation-Selective 1,2H Q-Band Electron-Nuclear Double Resonance. ACS Symposium Series, 1998, , 2-15.	0.5	1
188	Mechanistic analyses of site-specific degradation in DNA-RNA hybrids by prototypic DNA cleavers. Nucleic Acids Research, 1997, 25, 1836-1845.	6.5	6
189	Effects of hypoxanthine substitution on bleomycin-mediated DNA strand degradation in DNA-RNA hybrids. Nucleic Acids Research, 1997, 25, 1846-1853.	6.5	6
190	Generation of a Tryptophan Radical in High Quantum Yield from a Novel Amino Acid Analog Using Near-UV/Visible Light. Journal of the American Chemical Society, 1997, 119, 6457-6460.	6.6	20
191	Identification of the Protonated Oxygenic Ligands of Ribonucleotide Reductase Intermediate X by Q-Band1,2H CW and Pulsed ENDOR. Journal of the American Chemical Society, 1997, 119, 9816-9824.	6.6	114
192	PHA synthase activity controls the molecular weight and polydispersity of polyhydroxybutyrate in vivo. Nature Biotechnology, 1997, 15, 63-67.	9.4	196
193	Inactivation of Ribonucleotide Reductase by (E)-2â€~-Fluoromethylene-2â€~-deoxycytidine 5â€~-Diphosphate: A Paradigm for Nucleotide Mechanism-Based Inhibitorsâ€. Biochemistry, 1996, 35, 8381-8391.	1.2	67
194	Studies of Co·Bleomycin A2 Green:  Its Detailed Structural Characterization by NMR and Molecular Modeling and Its Sequence-Specific Interaction with DNA Oligonucleotides. Journal of the American Chemical Society, 1996, 118, 1268-1280.	6.6	108
195	Reconsideration of X, the Diiron Intermediate Formed during Cofactor Assembly inE. coliRibonucleotide Reductase. Journal of the American Chemical Society, 1996, 118, 7551-7557.	6.6	253
196	Catalysis and regulation. Current Opinion in Structural Biology, 1996, 6, 733-735.	2.6	0
197	Bleomycins:  A Structural Model for Specificity, Binding, and Double Strand Cleavage. Accounts of Chemical Research, 1996, 29, 322-330.	7.6	218
198	Rapid Freezeâ^'Quench ENDOR of the Radical X Intermediate ofEscherichia coliRibonucleotide Reductase Using17O2, H217O, and2H2O. Journal of the American Chemical Society, 1996, 118, 281-282.	6.6	105

#	Article	IF	CITATIONS
199	Design of a Fluoro-olefin Cytidine Nucleoside as a Bioprecursor of a Mechanism-Based Inhibitor of Ribonucleotide Reductase. ACS Symposium Series, 1996, , 246-264.	0.5	5
200	Ribonucleotide reductases: radical enzymes with suicidal tendencies. Chemistry and Biology, 1995, 2, 793-801.	6.2	182
201	[20] Use of rapid kinetics methods to study the assembly of the diferric-tyrosyl radical cofactor of E. coli ribonucleotide reductase. Methods in Enzymology, 1995, 258, 278-303.	0.4	65
202	Circular Dichroism and Magnetic Circular Dichroism Studies of the Fully Reduced Binuclear Non-Heme Iron Active Site in the Escherichia coli R2 Subunit of Ribonucleoside Diphosphate Reductase. Journal of the American Chemical Society, 1995, 117, 12664-12678.	6.6	62
203	EPR Investigations of the Inactivation of E. coli Ribonucleotide Reductase with 2'-Azido-2'-deoxyuridine 5'-Diphosphate: Evidence for the Involvement of the Thiyl Radical of C225-R1. Journal of the American Chemical Society, 1995, 117, 8908-8916.	6.6	83
204	Controlling radical reactions. Nature, 1994, 370, 502-502.	13.7	23
205	Reactions Catalyzed by 5-Aminoimidazole Ribonucleotide Carboxylases from Escherichia coli and Gallus gallus: A Case for Divergent Catalytic Mechanisms?. Biochemistry, 1994, 33, 11927-11934.	1.2	66
206	Mechanism of Assembly of the Tyrosyl Radical-Diiron(III) Cofactor of E. coli Ribonucleotide Reductase. 2. Kinetics of The Excess Fe2+ Reaction by Optical, EPR, and Moessbauer Spectroscopies. Journal of the American Chemical Society, 1994, 116, 8015-8023.	6.6	179
207	Mechanism of Assembly of the Tyrosyl Radical-Diiron(III) Cofactorof E. coli Ribonucleotide Reductase. 3. Kinetics of the Limiting Fe2+ Reaction by Optical, EPR, and Moessbauer Spectroscopies. Journal of the American Chemical Society, 1994, 116, 8024-8032.	6.6	154
208	N5-Carboxyaminoimidazole Ribonucleotide: Evidence for a New Intermediate and Two New Enzymic Activities in the de Novo Purine Biosynthetic Pathway of Escherichia coli. Biochemistry, 1994, 33, 2269-2278.	1.2	99
209	Coenzyme B12-Dependent Ribonucleotide Reductase: Evidence for the Participation of Five Cysteine Residues in Ribonucleotide Reduction. Biochemistry, 1994, 33, 12676-12685.	1.2	117
210	High-frequency (139.5 GHz) EPR spectroscopy of the tyrosyl radical in Escherichia coli ribonucleotide reductase. Journal of the American Chemical Society, 1993, 115, 6420-6421.	6.6	121
211	Isotope effects on the cleavage of DNA by bleomycin: Mechanism and modulation. Biochemistry, 1993, 32, 2601-2609.	1.2	75
212	An ENDOR study of the tyrosyl free radical in ribonucleotide reductase from Escherichia coli. Journal of the American Chemical Society, 1989, 111, 8076-8083.	6.6	187
213	Location of the redox-active thiols of ribonucleotide reductase: sequence similarity between the Escherichia coli and Lactobacillus leichmannii enzymes. Biochemistry, 1987, 26, 6905-6909.	1.2	82
214	Products of the inactivation of ribonucleoside diphosphate reductase from Escherichia coli with 2'-azido-2'-deoxyuridine 5'-diphosphate. Biochemistry, 1987, 26, 3408-3416.	1.2	61
215	Mechanism of inactivation of Escherichia coli ribonucleotide reductase by 2'-chloro-2'-deoxyuridine 5'-diphosphate: evidence for generation of a 2'-deoxy-3'-ketonucleotide via a net 1,2 hydrogen shift. Biochemistry, 1985, 24, 7214-7221.	1.2	43
216	Inorganic pyrophosphate is released from 2'-chloro-2'-deoxyuridine 5'-diphosphate by ribonucleoside diphosphate reductase. Journal of the American Chemical Society, 1980, 102, 2505-2507.	6.6	48