Kuppusamy Vijayaraghavan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1473965/publications.pdf

Version: 2024-02-01

121 papers 9,402 citations

52 h-index 94 g-index

121 all docs

121 docs citations

121 times ranked 8841 citing authors

#	Article	IF	CITATIONS
1	Biological nitrogen removal from stormwater in bioretention cells: a critical review. Critical Reviews in Biotechnology, 2022, 42, 713-735.	5.1	14
2	Biochar-based bioretention systems for removal of chemical and microbial pollutants from stormwater: A critical review. Journal of Hazardous Materials, 2022, 422, 126886.	6.5	55
3	The importance of mineral ingredients in biochar production, properties and applications. Critical Reviews in Environmental Science and Technology, 2021, 51, 113-139.	6.6	30
4	Sustainable approach of batch and continuous biosorptive systems for praseodymium and thulium ions removal in mono and binary aqueous solutions. Environmental Technology and Innovation, 2021, 23, 101581.	3.0	17
5	Bioretention systems for stormwater management: Recent advances and future prospects. Journal of Environmental Management, 2021, 292, 112766.	3.8	81
6	Application of pinewood waste-derived biochar for the removal of nitrate and phosphate from single and binary solutions. Chemosphere, 2021, 278, 130361.	4.2	24
7	Mono―and Bimetallic Au(Core)â€Ag(Shell) Nanoparticles Mediated by <i>Ulva reticulata</i> Extracts. ChemistrySelect, 2019, 4, 11009-11014.	0.7	4
8	Biosorption of Tm(III) by free and polysulfone-immobilized Turbinaria conoides biomass. Journal of Industrial and Engineering Chemistry, 2019, 80, 318-324.	2.9	23
9	Characterization and evaluation of reactive dye adsorption onto Biochar Derived from <i>Turbinaria conoides</i> Biomass. Environmental Progress and Sustainable Energy, 2019, 38, 13143.	1.3	31
10	Recent advancements in biochar preparation, feedstocks, modification, characterization and future applications. Environmental Technology Reviews, 2019, 8, 47-64.	2.1	75
11	Improving the quality of runoff from green roofs through synergistic biosorption and phytoremediation techniques: A review. Sustainable Cities and Society, 2019, 46, 101381.	5.1	35
12	A phosphorus-enriched biochar fertilizer from bio-fermentation waste: A potential alternative source for phosphorus fertilizers. Journal of Cleaner Production, 2018, 196, 163-171.	4. 6	55
13	Removal of Cr(VI) using co-immobilized activated carbon and Bacillus subtilis: fixed-bed column study. Clean Technologies and Environmental Policy, 2017, 19, 251-258.	2.1	20
14	Assessment of samarium biosorption from aqueous solution by brown macroalga Turbinaria conoides. Journal of the Taiwan Institute of Chemical Engineers, 2017, 74, 113-120.	2.7	34
15	Preparation of growth substrate to improve runoff quality from green roofs: physico-chemical characterization, sorption and plant-support experiments. Urban Water Journal, 2017, 14, 804-810.	1.0	7
16	Valorisation of post-sorption materials: Opportunities, strategies, and challenges. Advances in Colloid and Interface Science, 2017, 242, 35-58.	7.0	85
17	<i>Portulaca grandiflora</i> as green roof vegetation: Plant growth and phytoremediation experiments. International Journal of Phytoremediation, 2017, 19, 537-544.	1.7	10
18	Plant-mediated biosynthesis of metallic nanoparticles: A review of literature, factors affecting synthesis, characterization techniques and applications. Journal of Environmental Chemical Engineering, 2017, 5, 4866-4883.	3.3	270

#	Article	IF	Citations
19	Biosynthesis of gold nanoparticles using green roof species <i>Portulaca grandiflora</i> and their cytotoxic effects against C6 glioma human cancer cells. Environmental Progress and Sustainable Energy, 2016, 35, 1732-1740.	1.3	12
20	Mono- and multi-component biosorption of lead(II), cadmium(II), copper(II) and nickel(II) ions onto coco-peat biomass. Separation Science and Technology, 2016, 51, 2725-2733.	1.3	29
21	<i>Dracaena marginata</i> biofilter: design of growth substrate and treatment of stormwater runoff. Environmental Technology (United Kingdom), 2016, 37, 1101-1109.	1.2	5
22	Green roofs: A critical review on the role of components, benefits, limitations and trends. Renewable and Sustainable Energy Reviews, 2016, 57, 740-752.	8.2	393
23	Utilization of Effective Microorganisms based water hyacinth compost as biosorbent for the removal of basic dyes. Desalination and Water Treatment, 2016, 57, 24368-24377.	1.0	19
24	Malachite green and crystal violet biosorption onto coco-peat: characterization and removal studies. Desalination and Water Treatment, 2016, 57, 6423-6431.	1.0	24
25	Interaction of Vermiculite with Pb(II), Cd(II), Cu(II) and Ni(II) Ions in Single and Quaternary Mixtures. Clean - Soil, Air, Water, 2015, 43, 1174-1180.	0.7	12
26	Investigation on removal of malachite green using EM based compost as adsorbent. Ecotoxicology and Environmental Safety, 2015, 118, 177-182.	2.9	61
27	Evaluation of Red Marine AlgaKappaphycus alvareziias Biosorbent for Methylene Blue: Isotherm, Kinetic, and Mechanism Studies. Separation Science and Technology, 2015, 50, 1120-1126.	1.3	15
28	Is biosorption suitable for decontamination of metal-bearing wastewaters? A critical review on the state-of-the-art of biosorption processes and future directions. Journal of Environmental Management, 2015, 160, 283-296.	3.8	201
29	Application of seaweed as substrate additive in green roofs: Enhancement of water retention and sorption capacity. Landscape and Urban Planning, 2015, 143, 25-32.	3.4	31
30	Biosorption Potential of Coco-Peat in the Removal of Methylene Blue from Aqueous Solutions. Separation Science and Technology, 2015, 50, 1439-1446.	1.3	10
31	Entrapment of brown seaweeds (Turbinaria conoides and Sargassum wightii) in polysulfone matrices for the removal of praseodymium ions from aqueous solutions. Journal of Rare Earths, 2015, 33, 1196-1203.	2.5	28
32	Pilot-scale evaluation of green roofs with Sargassum biomass as an additive to improve runoff quality. Ecological Engineering, 2015, 75, 70-78.	1.6	34
33	Biosorption of Cr(VI) using a novel microalga <i>Rhizoclonium hookeri</i> : equilibrium, kinetics and thermodynamic studies. Desalination and Water Treatment, 2015, 56, 194-203.	1.0	27
34	Optimization of Cu(II), Ni(II), Cd(II) and Pb(II) biosorption by red marine alga <i>Kappaphycus alvarezii</i> Desalination and Water Treatment, 2015, 55, 1816-1824.	1.0	22
35	In situ removal of dissolved and suspended contaminants from a eutrophic pond using hybrid sand-filter. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2014, 49, 1176-1186.	0.9	O
36	Experimental characterisation and evaluation of perlite as a sorbent for heavy metal ions in single and quaternary solutions. Journal of Water Process Engineering, 2014, 4, 179-184.	2.6	22

#	Article	IF	CITATIONS
37	Application of <i>Ulva</i> sp. biomass for single and binary biosorption of chromium(III) and manganese(II) ions: Equilibrium modeling. Environmental Progress and Sustainable Energy, 2014, 33, 147-153.	1.3	13
38	Design and development of green roof substrate toÂimprove runoff water quality: Plant growth experiments and adsorption. Water Research, 2014, 63, 94-101.	5.3	84
39	Can green roof act as a sink for contaminants? A methodological study to evaluate runoff quality from green roofs. Environmental Pollution, 2014, 194, 121-129.	3.7	67
40	Hybrid <i>Sargassum</i> -sand sorbent: A novel adsorbent in packed column to treat metal-bearing wastewaters from inductively coupled plasma-optical emission spectrometry. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2013, 48, 1685-1693.	0.9	18
41	A comparative evaluation of sorbents for the treatment of complex metal-bearing laboratory wastewaters. Journal of Environmental Chemical Engineering, 2013, 1, 473-479.	3.3	12
42	Synthesis, characterization and application of cellulose/polyaniline nanocomposite for the treatment of simulated textile effluent. Cellulose, 2013, 20, 1153-1166.	2.4	47
43	Reduction of nutrient contaminants into shallow eutrophic waters through vegetated treatment beds. Water Science and Technology, 2013, 68, 1280-1287.	1.2	7
44	Development of Benchâ€Scale Bioâ€Packed Column for Wastewater Treatment from Optical Emission Spectrometry. Clean - Soil, Air, Water, 2013, 41, 1093-1099.	0.7	2
45	Chicken Eggshells Remove Pb(II) Ions from Synthetic Wastewater. Environmental Engineering Science, 2013, 30, 67-73.	0.8	21
46	A field study to evaluate runoff quality from green roofs. Water Research, 2012, 46, 1337-1345.	5.3	157
47	Starch/polyaniline nanocomposite for enhanced removal of reactive dyes from synthetic effluent. Carbohydrate Polymers, 2012, 90, 1437-1444.	5.1	161
48	Interaction of Mercuric lons with Different Marine Algal Species. Bioremediation Journal, 2012, 16, 225-234.	1.0	7
49	An attempt to develop seaweed-based treatment technology for the remediation of complex metal-bearing laboratory wastewaters. Ecological Engineering, 2012, 47, 278-283.	1.6	12
50	Competitive adsorption of Reactive Orange 16 and Reactive Brilliant Blue R on polyaniline/bacterial extracellular polysaccharides composite—A novel eco-friendly polymer. Journal of Hazardous Materials, 2012, 241-242, 110-117.	6.5	87
51	Comparative Assessment of Al(III) and Cd(II) Biosorption onto Turbinaria conoides in Single and Binary Systems. Water, Air, and Soil Pollution, 2012, 223, 2923-2931.	1.1	17
52	Application of bacterial extracellular polysaccharides/polyaniline composite for the treatment of Remazol effluent. Carbohydrate Polymers, 2012, 88, 1002-1008.	5.1	49
53	Bacterial Biosorption and Biosorbents. , 2011, , 121-141.		4
54	Antimonite Removal Using Marine Algal Species. Industrial & Engineering Chemistry Research, 2011, 50, 9864-9869.	1.8	18

#	Article	IF	CITATIONS
55	Concomitant uptake of microcystin-LR and -RR by peat under various environmental conditions. Chemical Engineering Journal, 2011, 172, 754-762.	6.6	21
56	Biosynthesis of Au(0) from Au(III) via biosorption and bioreduction using brown marine alga Turbinaria conoides. Chemical Engineering Journal, 2011 , 167 , 223 - 227 .	6.6	108
57	Interaction of rare earth elements with a brown marine alga in multi-component solutions. Desalination, 2011, 265, 54-59.	4.0	60
58	Biosorption characteristics of crab shell particles for the removal of manganese(II) and zinc(II) from aqueous solutions. Desalination, 2011, 266, 195-200.	4.0	81
59	Methylene Blue Sorption onto Oxygenated Pyrolytic Tire Char: Equilibrium and Kinetic Studies. Journal of Environmental Engineering, ASCE, 2011, 137, 833-841.	0.7	7
60	Single and binary biosorption of cerium and europium onto crab shell particles. Chemical Engineering Journal, 2010, 163, 337-343.	6.6	92
61	Batch and column removal of total chromium from aqueous solution using <i>Sargassum polycystum</i> . Environmental Progress and Sustainable Energy, 2010, 29, 334-341.	1.3	17
62	Naphthalene Degradation Kinetics of <i>Micrococcus</i> sp., Isolated from Activated Sludge. Clean - Soil, Air, Water, 2010, 38, 837-842.	0.7	27
63	Bioreduction of trivalent aurum to nano-crystalline gold particles by active and inactive cells and cell-free extract of Aspergillus oryzae var. viridis. Journal of Hazardous Materials, 2010, 177, 539-545.	6.5	150
64	Experimental studies on removal of microcystin-LR by peat. Journal of Hazardous Materials, 2010, 184, 417-424.	6.5	58
65	Immobilized citric acid-treated bacterial biosorbents for the removal of cationic pollutants. Chemical Engineering Journal, 2010, 162, 662-668.	6.6	27
66	Removal of Metal Ions from Storm-Water Runoff by Low-Cost Sorbents: Batch and Column Studies. Journal of Environmental Engineering, ASCE, 2010, 136, 1113-1118.	0.7	13
67	Biosorption of Lanthanum, Cerium, Europium, and Ytterbium by a Brown Marine Alga, <i>Turbinaria Conoides</i> . Industrial & Discourse (1) and Street (2) and	1.8	122
68	Green Recovery of Gold through Biosorption, Biocrystallization, and Pyro-Crystallization. Industrial & Engineering Chemistry Research, 2010, 49, 7129-7135.	1.8	63
69	Reinforcement of carboxyl groups in the surface of Corynebacterium glutamicum biomass for effective removal of basic dyes. Bioresource Technology, 2009, 100, 6301-6306.	4.8	24
70	Application of Sargassum biomass to remove heavy metal ions from synthetic multi-metal solutions and urban storm water runoff. Journal of Hazardous Materials, 2009, 164, 1019-1023.	6.5	77
71	Treatment of complex Remazol dye effluent using sawdust- and coal-based activated carbons. Journal of Hazardous Materials, 2009, 167, 790-796.	6.5	67
72	An examination of the uptake of lanthanum from aqueous solution by crab shell particles. Chemical Engineering Journal, 2009, 152, 116-121.	6.6	31

#	Article	IF	Citations
73	Surface modification of Corynebacterium glutamicum for enhanced Reactive Red 4 biosorption. Bioresource Technology, 2009, 100, 1463-1466.	4.8	65
74	Biosorption of As(V) onto the Shells of the Crab (Portunus sanguinolentus): Equilibrium and Kinetic Studies. Industrial & Engineering Chemistry Research, 2009, 48, 3589-3594.	1.8	20
7 5	Equilibrium Isotherm Studies for the Multicomponent Adsorption of Lead, Zinc, and Cadmium onto Indonesian Peat. Industrial & Engineering Chemistry Research, 2009, 48, 2093-2099.	1.8	78
76	Elemental composition of urban street dusts and their dissolution characteristics in various aqueous media. Chemosphere, 2009, 77, 526-533.	4.2	62
77	Removal of Cr(VI) Ions by Spent Tea and Coffee Dusts: Reduction to Cr(III) and Biosorption. Industrial & Lamp; Engineering Chemistry Research, 2009, 48, 2113-2117.	1.8	115
78	An Assessment on the Interaction of a Hydrophilic Ionic Liquid with Different Sorbents. Industrial & Engineering Chemistry Research, 2009, 48, 7283-7288.	1.8	24
79	Evaluation of fermentation waste (Corynebacterium glutamicum) as a biosorbent for the treatment of nickel(II)-bearing solutions. Biochemical Engineering Journal, 2008, 41, 228-233.	1.8	25
80	Chemical modification of Corynebacterium glutamicum to improve methylene blue biosorption. Chemical Engineering Journal, 2008, 145, 1-6.	6.6	63
81	Biosorption of Nickel from Synthetic and Electroplating Industrial Solutions using a Green Marine <i>Algae Ulva reticulata </i> . Clean - Soil, Air, Water, 2008, 36, 299-305.	0.7	15
82	Biosorption of basic dyes onto <i>Azolla filiculoides</i> : equilibrium and kinetic modeling. Asia-Pacific Journal of Chemical Engineering, 2008, 3, 368-373.	0.8	7
83	Porogen effect on characteristics of banana pith carbon and the sorption of dichlorophenols. Journal of Colloid and Interface Science, 2008, 320, 22-29.	5.0	26
84	Competition of Reactive red 4, Reactive orange 16 and Basic blue 3 during biosorption of Reactive blue 4 by polysulfone-immobilized Corynebacterium glutamicum. Journal of Hazardous Materials, 2008, 153, 478-486.	6.5	63
85	Biosorption of C.I. Reactive Black 5 from aqueous solution using acid-treated biomass of brown seaweed Laminaria sp Dyes and Pigments, 2008, 76, 726-732.	2.0	170
86	Polysulfone-immobilized Corynebacterium glutamicum: A biosorbent for Reactive black 5 from aqueous solution in an up-flow packed column. Chemical Engineering Journal, 2008, 145, 44-49.	6.6	51
87	Biosorption of methylene blue from aqueous solution using free and polysulfone-immobilized Corynebacterium glutamicum: Batch and column studies. Bioresource Technology, 2008, 99, 2864-2871.	4.8	107
88	A new approach to study the decolorization of complex reactive dye bath effluent by biosorption technique. Bioresource Technology, 2008, 99, 5778-5785.	4.8	54
89	Effect of imidazoliumâ€based ionic liquids on the photosynthetic activity and growth rate of <i>Selenastrum capricornutum</i> . Environmental Toxicology and Chemistry, 2008, 27, 1583-1589.	2.2	26
90	Bacterial biosorbents and biosorption. Biotechnology Advances, 2008, 26, 266-291.	6.0	1,466

#	Article	IF	CITATIONS
91	The ecotoxicity of ionic liquids and traditional organic solvents on microalga Selenastrum capricornutum. Ecotoxicology and Environmental Safety, 2008, 71, 166-171.	2.9	170
92	Single- and Dual-Component Biosorption of Reactive Black 5 and Reactive Orange 16 onto Polysulfone-Immobilized Esterified <i>Corynebacterium </i> Engineering Chemistry Research, 2008, 47, 3179-3185.	1.8	13
93	Carbaryl Sorption by Porogen-Treated Banana Pith Carbon. Adsorption Science and Technology, 2008, 26, 679-686.	1.5	16
94	An Aminated Bacterial Biosorbent Capable of Effectively Binding Negatively Charged Pollutants in Aqueous Solution. Adsorption Science and Technology, 2008, 26, 589-598.	1.5	1
95	Biosorption of Reactive black 5 by Corynebacterium glutamicum biomass immobilized in alginate and polysulfone matrices. Chemosphere, 2007, 68, 1838-1845.	4.2	54
96	Toxicity of imidazolium salt with anion bromide to a phytoplankton Selenastrum capricornutum: Effect of alkyl-chain length. Chemosphere, 2007, 69, 1003-1007.	4.2	148
97	Chemical Modification and Immobilization of Corynebacterium glutamicumfor Biosorption of Reactive Black 5 from Aqueous Solution. Industrial & Engineering Chemistry Research, 2007, 46, 608-617.	1.8	71
98	Two and three-parameter isothermal modeling for liquid-phase sorption of Procion Blue H-B by inactive mycelial biomass of Panus fulvus. Journal of Chemical Technology and Biotechnology, 2007, 82, 389-398.	1.6	44
99	Application of seaweeds for the removal of lead from aqueous solution. Biochemical Engineering Journal, 2007, 33, 211-216.	1.8	61
100	Utilization of fermentation waste (Corynebacterium glutamicum) for biosorption of Reactive Black 5 from aqueous solution. Journal of Hazardous Materials, 2007, 141, 45-52.	6.5	153
101	EFFECT OF IMIDAZOLIUM-BASED IONIC LIQUIDS ON THE PHOTOSYNTHETIC ACTIVITY AND GROWTH RATE OF SELENASTRUM CAPRICORNUTUM. Environmental Toxicology and Chemistry, 2007, preprint, 1.	2.2	8
102	Application of Two-and Three-Parameter Isotherm Models: Biosorption of Acid Red 88 onto Azolla microphylla. Bioremediation Journal, 2006, 10, 37-44.	1.0	55
103	Biosorption of copper(II) and cobalt(II) from aqueous solutions by crab shell particles. Bioresource Technology, 2006, 97, 1411-1419.	4.8	289
104	Application of Azolla rongpong on biosorption of acid red 88, acid green 3, acid orange 7 and acid blue 15 from synthetic solutions. Chemical Engineering Journal, 2006, 122, 55-63.	6.6	67
105	Biosorption of nickel(II) ions onto Sargassum wightii: Application of two-parameter and three-parameter isotherm models. Journal of Hazardous Materials, 2006, 133, 304-308.	6.5	729
106	Seaweeds for the remediation of wastewaters contaminated with zinc(II) ions. Journal of Hazardous Materials, 2006, 136, 791-799.	6.5	114
107	Potential of Sargassum wightii biomass for copper(II) removal from aqueous solutions: Application of different mathematical models to batch and continuous biosorption data. Journal of Hazardous Materials, 2006, 137, 558-564.	6.5	120
108	Treatment of nickel containing electroplating effluents with Sargassum wightii biomass. Process Biochemistry, 2006, 41, 853-859.	1.8	57

#	Article	IF	CITATIONS
109	Biosorption of Acid Blue 15 using fresh water macroalga Azolla filiculoides: Batch and column studies. Dyes and Pigments, 2006, 71, 77-82.	2.0	110
110	Nickel Recovery from Aqueous Solution Using Crab Shell Particles. Adsorption Science and Technology, 2005, 23, 303-312.	1.5	24
111	Batch and column studies on biosorption of acid dyes on fresh water macro alga Azolla filiculoides. Journal of Hazardous Materials, 2005, 125, 121-129.	6.5	185
112	Batch and column removal of copper from aqueous solution using a brown marine alga Turbinaria ornata. Chemical Engineering Journal, 2005, 106, 177-184.	6.6	153
113	Removal and recovery of copper from aqueous solution by eggshell in a packed column. Minerals Engineering, 2005, 18, 545-547.	1.8	49
114	Biosorption of cobalt(II) and nickel(II) by seaweeds: batch and column studies. Separation and Purification Technology, 2005, 44, 53-59.	3.9	164
115	Crab shell-based biosorption technology for the treatment of nickel-bearing electroplating industrial effluents. Journal of Hazardous Materials, 2005, 119, 251-254.	6.5	47
116	Continuous Sorption of Copper and Cobalt By Crab Shell Particles in a Packed Column. Environmental Technology (United Kingdom), 2005, 26, 267-276.	1.2	32
117	Biosorption of copper, cobalt and nickel by marine green alga Ulva reticulata in a packed column. Chemosphere, 2005, 60, 419-426.	4.2	144
118	Removal of nickel(II) ions from aqueous solution using crab shell particles in a packed bed up-flow column. Journal of Hazardous Materials, 2004, 113, 223-230.	6.5	179
119	Copper removal from aqueous solution by marine green alga Ulva reticulata. Electronic Journal of Biotechnology, 2004, 7, .	1.2	3
120	Effect of chloride and condensable tannin in anaerobic degradation of tannery wastewaters. Bioprocess and Biosystems Engineering, 1999, 20, 499.	0.5	23
121	Effect of toxic substances in anaerobic treatment of tannery wastewaters. Bioprocess and Biosystems Engineering, 1997, 16, 151.	0.5	39