
Friedrich Kragler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/147386/publications.pdf Version: 2024-02-01

FDIEDDICH KDACLED

#	Article	IF	CITATIONS
1	Shoot and root single cell sequencing reveals tissue- and daytime-specific transcriptome profiles. Plant Physiology, 2022, 188, 861-878.	4.8	27
2	An Arabidopsis Callus Grafting Method to Test Cell-to-Cell Mobility of Proteins. Methods in Molecular Biology, 2022, 2457, 299-312.	0.9	0
3	Plant grafting and graft incompatibility: A review from the grapevine perspective. Scientia Horticulturae, 2022, 299, 111019.	3.6	16
4	Long-Distance Transported RNAs: From Identity to Function. Annual Review of Plant Biology, 2022, 73, 457-474.	18.7	16
5	Plant mitochondrial FMT and its mammalian homolog CLUH controls development and behavior in Arabidopsis and locomotion in mice. Cellular and Molecular Life Sciences, 2022, 79, .	5.4	2
6	The Impact of Metabolic Scion–Rootstock Interactions in Different Grapevine Tissues and Phloem Exudates. Metabolites, 2021, 11, 349.	2.9	10
7	AtHDA6 functions as an H3K18ac eraser to maintain pericentromeric CHG methylation in Arabidopsis thaliana. Nucleic Acids Research, 2021, 49, 9755-9767.	14.5	6
8	Primary carbohydrate metabolism genes participate in heat-stress memory at the shoot apical meristem of Arabidopsis thaliana. Molecular Plant, 2021, 14, 1508-1524.	8.3	58
9	Physiological Profiling of Embryos and Dormant Seeds in Two Arabidopsis Accessions Reveals a Metabolic Switch in Carbon Reserve Accumulation. Frontiers in Plant Science, 2020, 11, 588433.	3.6	4
10	Methylated RNA Immunoprecipitation Assay to Study m ⁵ C Modification in Arabidopsis. Journal of Visualized Experiments, 2020, , .	0.3	6
11	A Phenotypic Search on Graft Compatibility in Grapevine. Agronomy, 2020, 10, 706.	3.0	23
12	Expression Atlas of <i>Selaginella moellendorffii</i> Provides Insights into the Evolution of Vasculature, Secondary Metabolism, and Roots. Plant Cell, 2020, 32, 853-870.	6.6	39
13	m5C Methylation Guides Systemic Transport of Messenger RNA over Graft Junctions in Plants. Current Biology, 2019, 29, 2465-2476.e5.	3.9	149
14	Long distance <scp>RNA</scp> movement. New Phytologist, 2018, 218, 29-40.	7.3	137
15	Conceptual and Methodological Considerations on mRNA and Proteins as Intercellular and Long-Distance Signals. Plant and Cell Physiology, 2018, 59, 1700-1713.	3.1	15
16	Cellulose Synthesis and Cell Expansion Are Regulated by Different Mechanisms in Growing Arabidopsis Hypocotyls. Plant Cell, 2017, 29, 1305-1315.	6.6	67
17	Circadian, Carbon, and Light Control of Expansion Growth and Leaf Movement. Plant Physiology, 2017, 174, 1949-1968.	4.8	39
18	PlaMoM: a comprehensive database compiles plant mobile macromolecules. Nucleic Acids Research, 2017, 45, D1021-D1028.	14.5	33

FRIEDRICH KRAGLER

#	Article	IF	CITATIONS
19	Mobile Transcripts and Intercellular Communication in Plants. The Enzymes, 2016, 40, 1-29.	1.7	26
20	Limited Phosphate: Mobile RNAs convey the message. Nature Plants, 2016, 2, 16040.	9.3	8
21	tRNA-Related Sequences Trigger Systemic mRNA Transport in Plants. Plant Cell, 2016, 28, 1237-1249.	6.6	143
22	Timing Is Everything: Highly Specific and Transient Expression of a MAP Kinase Determines Auxin-Induced Leaf Venation Patterns in Arabidopsis. Molecular Plant, 2015, 8, 829.	8.3	1
23	Phytotyping ^{4D} : a lightâ€field imaging system for nonâ€invasive and accurate monitoring of spatioâ€temporal plant growth. Plant Journal, 2015, 82, 693-706.	5.7	97
24	The stability and nuclear localization of the transcription factor <scp>RAP</scp> 2.12 are dynamically regulated by oxygen concentration. Plant, Cell and Environment, 2015, 38, 1094-1103.	5.7	95
25	A bioinformatics approach to distinguish plant parasite and host transcriptomes in interface tissue by classifying RNA-Seq reads. Plant Methods, 2015, 11, 34.	4.3	23
26	Endogenous Arabidopsis messenger RNAs transported to distant tissues. Nature Plants, 2015, 1, 15025.	9.3	331
27	Analysis of the Conductivity of Plasmodesmata by Microinjection. Methods in Molecular Biology, 2015, 1217, 173-184.	0.9	6
28	Timing Is Everything: Highly Specific and Transient Expression of a MAP Kinase Determines Auxin-Induced Leaf Venation Patterns in Arabidopsis. Molecular Plant, 2014, 7, 1637-1652.	8.3	32
29	Graftâ€transmissible movement of invertedâ€repeatâ€induced si <scp>RNA</scp> signals into flowers. Plant Journal, 2014, 80, 106-121.	5.7	55
30	Phloem-mobile signals affecting flowers: applications for crop breeding. Trends in Plant Science, 2013, 18, 198-206.	8.8	28
31	Plasmodesmata: intercellular tunnels facilitating transport of macromolecules in plants. Cell and Tissue Research, 2013, 352, 49-58.	2.9	53
32	The chaperonin CCT8 facilitates spread of tobamovirus infection. Plant Signaling and Behavior, 2012, 7, 318-321.	2.4	28
33	Signaling and Phloem-Mobile Transcripts. , 2012, , 151-177.		5
34	A Subtle Interplay Between Three Pex11 Proteins Shapes <i>De Novo</i> Formation and Fission of Peroxisomes. Traffic, 2012, 13, 157-167.	2.7	59
35	PEX11 family members are membrane elongation factors that coordinate peroxisome proliferation and maintenance. Journal of Cell Science, 2010, 123, 3389-3400.	2.0	140
36	RNA in the phloem: A crisis or a return on investment?. Plant Science, 2010, 178, 99-104.	3.6	33

FRIEDRICH KRAGLER

#	Article	IF	CITATIONS
37	The Phloem-Delivered RNA Pool Contains Small Noncoding RNAs and Interferes with Translation Â. Plant Physiology, 2009, 150, 378-387.	4.8	224
38	Two-Dimensional Patterning by a Trapping/Depletion Mechanism: The Role of TTG1 and GL3 in Arabidopsis Trichome Formation. PLoS Biology, 2008, 6, e141.	5.6	135
39	MPB2C, a Microtubule-Associated Protein, Regulates Non-Cell-Autonomy of the Homeodomain Protein KNOTTED1. Plant Cell, 2007, 19, 3001-3018.	6.6	61
40	A Systemic Small RNA Signaling System in Plants. Plant Cell, 2004, 16, 1979-2000.	6.6	488
41	The plasmodesmatal transport pathway for homeotic proteins, silencing signals and viruses. Current Opinion in Plant Biology, 2004, 7, 641-650.	7.1	88
42	MPB2C, a Microtubule-Associated Plant Protein Binds to and Interferes with Cell-to-Cell Transport of Tobacco Mosaic Virus Movement Protein. Plant Physiology, 2003, 132, 1870-1883.	4.8	136
43	A subclass of plant heat shock cognate 70 chaperones carries a motif that facilitates trafficking through plasmodesmata. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 16342-16347.	7.1	140
44	Plasmodesmata. Plant Cell, 2002, 14, S303-S325.	6.6	203
45	Targeting of malate synthase 1 to the peroxisomes ofSaccharomyces cerevisiaecells depends on growth on oleic acid medium. FEBS Journal, 2002, 269, 915-922.	0.2	80
46	RNA as a long-distance information macromolecule in plants. Nature Reviews Molecular Cell Biology, 2001, 2, 849-857.	37.0	198
47	Peptide antagonists of the plasmodesmal macromolecular trafficking pathway. EMBO Journal, 2000, 19, 2856-2868.	7.8	76
48	Cellâ€toâ€cell transport of proteins: requirement for unfolding and characterization of binding to a putative plasmodesmal receptor. Plant Journal, 1998, 15, 367-381.	5.7	115
49	Plasmodesmata: Dynamics, Domains and Patterning. Annals of Botany, 1998, 81, 1-10.	2.9	78
50	Identification and analysis of the plant peroxisomal targeting signal 1 receptor NtPEX5. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 13336-13341.	7.1	92
51	Cosmic signals?. Trends in Plant Science, 1997, 2, 246-247.	8.8	0
52	A New Strategy for Isolating Genes Expressing Proteins Involved in the Import of Peroxisomal Proteins. Annals of the New York Academy of Sciences, 1996, 804, 658-659.	3.8	0
53	Regulation of Malate Synthase Activity. Annals of the New York Academy of Sciences, 1996, 804, 694-695.	3.8	5
54	The Tetratricopeptide Repeat Domain of the PAS10 Protein of Saccharomyces cerevisiae Is Essential for Binding the Peroxisomal Targeting Signal -SKL. Biochemical and Biophysical Research Communications, 1994, 204, 1016-1022.	2.1	147

3

#	Article	IF	CITATIONS
55	Two independent peroxisomal targeting signals in catalase A of Saccharomyces cerevisiae Journal of Cell Biology, 1993, 120, 665-673.	5.2	178

⁵⁶ Plasmodesmata: Protein Transport Signals and Receptors. , 0, , 53-72.