Federico Rossetti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1471721/publications.pdf

Version: 2024-02-01

109 papers 5,725 citations

38 h-index 72 g-index

128 all docs 128 docs citations

128 times ranked 3964 citing authors

#	Article	IF	CITATIONS
1	Lateral slab deformation and the origin of the western Mediterranean arcs. Tectonics, 2004, 23, n/a-n/a.	2.8	680
2	History of subduction and back-arc extension in the Central Mediterranean. Geophysical Journal International, 2001, 145, 809-820.	2.4	565
3	Midcrustal shear zones in postorogenic extension: Example from the northern Tyrrhenian Sea. Journal of Geophysical Research, 1998, 103, 12123-12160.	3.3	456
4	Mantle dynamics in the Mediterranean. Reviews of Geophysics, 2014, 52, 283-332.	23.0	394
5	Subduction, convergence and the mode of backarc extension in the Mediterranean region. Bulletin - Societie Geologique De France, 2008, 179, 525-550.	2.2	136
6	Subduction polarity reversal at the junction between the Western Alps and the Northern Apennines, Italy. Tectonophysics, 2008, 450, 34-50.	2.2	125
7	Alpine structural and metamorphic signature of the Sila Piccola Massif nappe stack (Calabria, Italy): Insights for the tectonic evolution of the Calabrian Arc. Tectonics, 2001, 20, 112-133.	2.8	119
8	The Miocene tectono-sedimentary evolution of the southern Tyrrhenian Sea: stratigraphy, structural and palaeomagnetic data from the on-shore Amantea basin (Calabrian Arc, Italy). Basin Research, 2002, 14, 147-168.	2.7	117
9	Alpine orogenic P-T-t-deformation history of the Catena Costiera area and surrounding regions (Calabrian Arc, southern Italy): The nappe edifice of north Calabria revised with insights on the Tyrrhenian-Apennine system formation. Tectonics, 2004, 23, n/a-n/a.	2.8	103
10	Contrasting styles of (U)HP rock exhumation along the Cenozoic Adriaâ€Europe plate boundary (Western Alps, Calabria, Corsica). Geochemistry, Geophysics, Geosystems, 2015, 16, 1786-1824.	2.5	102
11	Early Cretaceous migmatitic mafic granulites from the Sabzevar range (NE Iran): implications for the closure of the Mesozoic peri-Tethyan oceans in central Iran. Terra Nova, 2010, 22, 26-34.	2.1	97
12	Syn- versus post-orogenic extension: the case study of Giglio Island (Northern Tyrrhenian Sea, Italy). Tectonophysics, 1999, 304, 71-93.	2.2	87
13	Role of d�collement material with different rheological properties in the structure of the Aljibe thrust imbricate (Flysch Trough, Gibraltar Arc): an analogue modelling approach. Journal of Structural Geology, 2003, 25, 867-881.	2.3	81
14	Extensional tectonics in the Amantea basin (Calabria, Italy): a comparison between structural and magnetic anisotropy data. Tectonophysics, 1999, 307, 33-49.	2.2	78
15	The role of extensional tectonics at different crustal levels on granite ascent and emplacement: an example from Tuscany (Italy). Tectonophysics, 2002, 354, 71-83.	2.2	75
16	Tectonic setting and geochronology of the Cadomian (Ediacaran-Cambrian) magmatism in Central Iran, Kuh-e-Sarhangi region (NW Lut Block). Journal of Asian Earth Sciences, 2015, 102, 24-44.	2.3	74
17	Tectonic evolution of arcuate mountain belts on top of a retreating subduction slab: The example of the Calabrian Arc. Journal of Geophysical Research, 2007, 112 , .	3.3	65
18	An AMS, structural and paleomagnetic study of quaternary deformation in eastern Sicily. Journal of Structural Geology, 2004, 26, 29-46.	2.3	64

#	Article	IF	CITATIONS
19	Structural architecture and displacement accommodation mechanisms at the termination of the Priestley Fault, northern Victoria Land, Antarctica. Tectonophysics, 2001, 341, 141-161.	2.2	60
20	The calc-alkaline and adakitic volcanism of the Sabzevar structural zone (NE Iran): Implications for the Eocene magmatic flare-up in Central Iran. Lithos, 2016, 248-251, 517-535.	1.4	60
21	Timing and modes of granite magmatism in the core of the Alboran Domain, Rif chain, northern Morocco: Implications for the Alpine evolution of the western Mediterranean. Tectonics, 2010, 29, n/a-n/a.	2.8	59
22	Sand-box modelling of basement-controlled transfer zones in extensional domains. Terra Nova, 1999, 11, 149-156.	2.1	56
23	Intraplate termination of transform faulting within the Antarctic continent. Earth and Planetary Science Letters, 2007, 260, 115-126.	4.4	54
24	Recent extension driven by mantle upwelling beneath the Admiralty Mountains (East Antarctica). Tectonics, 2008, 27, .	2.8	54
25	40Ar–39Ar dating of pseudotachylytes: the effect of clast-hosted extraneous argon in Cenozoic fault-generated friction melts from the West Antarctic Rift System. Earth and Planetary Science Letters, 2004, 223, 349-364.	4.4	52
26	The architecture of brittle postorogenic extension: Results from an integrated structural and paleomagnetic study in north Calabria (southern Italy). Bulletin of the Geological Society of America, 2007, 119, 221-239.	3.3	51
27	Patterns of fluid flow in the contact aureole of the Late Miocene Monte Capanne pluton (Elba Island,) Tj ETQq1 1 743-760.	0.784314 3.1	rgBT /Overl 51
28	Tectonic and denudational history of the Rennick Graben (North Victoria Land): Implications for the evolution of rifting between East and West Antarctica. Tectonics, 2003, 22, n/a-n/a.	2.8	50
29	Anatomy of the magmatic plumbing system of Los Humeros Caldera (Mexico): implications for geothermal systems. Solid Earth, 2020, 11, 125-159.	2.8	48
30	Pressure–temperature–deformation–time of the ductile Alpine shearing in Corsica: From orogenic construction to collapse. Lithos, 2015, 218-219, 99-116.	1.4	46
31	Evolution of experimental thrust wedges accreted from along-strike tapered, silicone-floored multilayers. Journal of the Geological Society, 2007, 164, 73-85.	2.1	45
32	Eocene initiation of Ross Sea dextral faulting and implications for East Antarctic neotectonics. Journal of the Geological Society, 2006, 163, 119-126.	2.1	44
33	A counter-clockwise P-T path for the Voltri Massif eclogites (Ligurian Alps, Italy). Journal of Metamorphic Geology, 2005, 23, 533-555.	3.4	43
34	Rheological properties of paraffin as an analogue material for viscous crustal deformation. Journal of Structural Geology, 1999, 21, 413-417.	2.3	40
35	Pliocene–Pleistocene HT–LP metamorphism during multiple granitic intrusions in the southern branch of the Larderello geothermal field (southern Tuscany, Italy). Journal of the Geological Society, 2008, 165, 247-262.	2.1	40
36	Cenozoic noncoaxial transtension along the western shoulder of the Ross Sea, Antarctica, and the emplacement of McMurdo dyke arrays. Terra Nova, 2000, 12, 60-66.	2.1	39

#	Article	IF	CITATIONS
37	Tectonics, hydrothermalism, and paleoclimate recorded by Quaternary travertines and their spatio-temporal distribution in the Albegna basin, central Italy: Insights on Tyrrhenian margin neotectonics. Lithosphere, 2016, 8, 335-358.	1.4	39
38	Early Carboniferous subduction-zone metamorphism preserved within the Palaeo-Tethyan Rasht ophiolites (western Alborz, Iran). Journal of the Geological Society, 2017, 174, 741-758.	2.1	39
39	Fluid flow within the damage zone of the Boccheggiano extensional fault (Larderello–Travale) Tj ETQq1 1 0.784 mineralization in extensional settings. Geological Magazine, 2011, 148, 558-579.	314 rgBT / 1.5	Overlock 10 38
40	Growth of a Pleistocene giant carbonate vein and nearby thermogene travertine deposits at Semproniano, southern Tuscany, Italy: Estimate of CO2 leakage. Tectonophysics, 2016, 690, 219-239.	2.2	38
41	The Postâ€Eocene Evolution of the Doruneh Fault Region (Central Iran): The Intraplate Response to the Reorganization of the Arabiaâ€Eurasia Collision Zone. Tectonics, 2017, 36, 3038-3064.	2.8	38
42	Structural and kinematic constraints to the exhumation of the Alpujarride Complex (Central Betic) Tj ETQq0 0 0 rg	zBT/Overlo	ogk 10 Tf 50
43	Consistent kinematic architecture in the damage zones of intraplate strike-slip fault systems in North Victoria Land, Antarctica and implications for fault zone evolution. Journal of Structural Geology, 2006, 28, 50-63.	2.3	36
44	Clinopyroxene–rutile phyllonites from the East Tenda Shear Zone (Alpine Corsica, France): pressure–temperature–time constraints to the Alpine reworking of Variscan Corsica. Journal of the Geological Society, 2012, 169, 723-732.	2.1	35
45	Intraplate strike-slip tectonics as an alternative to mantle plume activity for the Cenozoic rift magmatism in the Ross Sea region, Antarctica. Geological Society Special Publication, 2003, 210, 145-158.	1.3	34
46	Asbestos fibre identification vs. evaluation of asbestos hazard in ophiolitic rock mélanges, a case study from the Ligurian Alps (Italy). Environmental Earth Sciences, 2014, 72, 3679-3698.	2.7	34
47	Brittle architecture of the Lanterman Fault and its impact on the final terrane assembly in north Victoria Land, Antarctica. Journal of the Geological Society, 2002, 159, 159-173.	2.1	33
48	Structural and thermochronological constraints to the evolution of the West Antarctic Rift System in central Victoria Land. Tectonics, 2008, 27, .	2.8	33
49	Pressure-temperature-deformation-time (P-T-d-t) exhumation history of the Voltri Massif HP complex, Ligurian Alps, Italy. Tectonics, 2010, 29, n/a-n/a.	2.8	33
50	Early Miocene strike-slip tectonics and granite emplacement in the Alboran Domain (Rif Chain,) Tj ETQq0 0 0 rgBT 2013, 608, 774-791.	/Overlock 2.2	10 Tf 50 22 31
51	Compressional reworking of the East African Orogen in the Uluguru Mountains of eastern Tanzania at <i>c.</i> 550â€fMa: implications for the final assembly of Gondwana. Terra Nova, 2008, 20, 59-67.	2.1	29
52	Insights from the Apennines metamorphic complexes and their bearing on the kinematics evolution of the orogen. Geological Society Special Publication, 2009, 311, 235-256.	1.3	29
53	Magmatism and crustal extension: Constraining activation of the ductile shearing along the Gediz detachment, Menderes Massif (western Turkey). Lithos, 2017, 282-283, 145-162.	1.4	28
54	The longâ€term evolution of the Doruneh Fault region (Central Iran): A key to understanding the spatioâ€temporal tectonic evolution in the hinterland of the Zagros convergence zone. Geological Journal, 2019, 54, 1454-1479.	1.3	28

#	Article	IF	CITATIONS
55	Hercynian anatexis in the envelope of the Beni Bousera peridotites (Alboran Domain, Morocco): Implications for the tectono-metamorphic evolution of the deep crustal roots of the Mediterranean region. Gondwana Research, 2020, 83, 157-182.	6.0	27
56	Long-lived, Eocene-Miocene stationary magmatism in NW Iran along a transform plate boundary. Gondwana Research, 2020, 85, 237-262.	6.0	27
57	Post-Neogene right-lateral strike–slip tectonics at the north-western edge of the Lut Block (Kuh-e–Sarhangi Fault), Central Iran. Tectonophysics, 2013, 589, 220-233.	2.2	26
58	Spatio-temporal evolution of intraplate strike-slip faulting: The Neogene–Quaternary Kuh-e-Faghan Fault, central Iran. Bulletin of the Geological Society of America, 2016, 128, 374-396.	3.3	26
59	The influence of backstop dip and convergence velocity in the growth of viscous doubly-vergent orogenic wedges: insights from thermomechanical laboratory experiments. Journal of Structural Geology, 2002, 24, 953-962.	2.3	25
60	Development of an Intrawedge Tectonic Mélange by Outâ€ofâ€Sequence Thrusting, Buttressing, and Intraformational Rheological Contrast, Mt. Massico Ridge, Apennines, Italy. Tectonics, 2019, 38, 1223-1249.	2.8	25
61	Convergence rate-dependent growth of experimental viscous orogenic wedges. Earth and Planetary Science Letters, 2000, 178, 367-372.	4.4	24
62	Structural compartmentalisation of a geothermal system, the Torre Alfina field (central Italy). Tectonophysics, 2013, 608, 482-498.	2.2	24
63	Paleozoic siliciclastic rocks from northern Victoria Land (Antarctica): Provenance, timing of deformation, and implications for the Antarctica-Australia connection. Bulletin of the Geological Society of America, 2014, 126, 1416-1438.	3.3	24
64	Feedback between fluid infiltration and rheology along a regional ductile-to-brittle shear zone: The East Tenda Shear Zone (Alpine Corsica). Tectonics, 2014, 33, 253-280.	2.8	24
65	Styles and regimes of orogenic thickening in the Peloritani Mountains (Sicily, Italy): new constraints on the tectono-metamorphic evolution of the Apennine belt. Geological Magazine, 2008, 145, 552-569.	1.5	23
66	Linking rock fabric to fibrous mineralisation: a basic tool for the asbestos hazard. Natural Hazards and Earth System Sciences, 2011, 11, 1267-1280.	3.6	23
67	Transantarctic Basin: new insights from fission track and structural data from the USARP Mountains and adjacent areas (Northern Victoria Land, Antarctica). Basin Research, 2006, 18, 497-520.	2.7	22
68	Geomorphic signal of active faulting at the northern edge of Lut Block: Insights on the kinematic scenario of Central Iran. Tectonics, 2016, 35, 76-102.	2.8	22
69	Multiphase magma intrusion, ore-enhancement and hydrothermal carbonatisation in the Siah-Kamar porphyry Mo deposit, Urumieh-Dokhtar magmatic zone, NW Iran. Ore Geology Reviews, 2019, 110, 102930.	2.7	22
70	Tschermak fractionation in calc-alkaline magmas: the Eocene Sabzevar volcanism (NE Iran). Arabian Journal of Geosciences, $2016, 9, 1$.	1.3	21
71	Deformation and fluid flow during orogeny at the palaeo-Pacific active margin of Gondwana: the Early Palaeozoic Robertson Bay accretionary complex (north Victoria Land, Antarctica). Journal of Metamorphic Geology, 2006, 24, 33-53.	3.4	20

Longâ \in lived orogenic construction along the paleoâ \in Pacific margin of Gondwana (Deep Freeze Range,) Tj ETQq0 0.0 rgBT /Oygrlock 10 20 longâ \in Pacific margin of Gondwana (Deep Freeze Range,) Tj ETQq0 0.0 rgBT /Oygrlock 10 longâ \in Pacific margin of Gondwana (Deep Freeze Range,) Tj ETQq0 0.0 rgBT /Oygrlock 10 longâ \in Pacific margin of Gondwana (Deep Freeze Range,) Tj ETQq0 0.0 rgBT /Oygrlock 10 longâ \in Pacific margin of Gondwana (Deep Freeze Range,) Tj ETQq0 0.0 rgBT /Oygrlock 10 longâ \in Pacific margin of Gondwana (Deep Freeze Range,) Tj ETQq0 0.0 rgBT /Oygrlock 10 longâ \in Pacific margin of Gondwana (Deep Freeze Range,) Tj ETQq0 0.0 rgBT /Oygrlock 10 longâ \in Pacific margin of Gondwana (Deep Freeze Range,) Tj ETQq0 0.0 rgBT /Oygrlock 10 longâ \in Pacific margin of Gondwana (Deep Freeze Range,) Tj ETQq0 0.0 rgBT /Oygrlock 10 longâ \in Pacific margin of Gondwana (Deep Freeze Range,) Tj ETQq0 0.0 rgBT /Oygrlock 10 longâ \in Pacific margin of Gondwana (Deep Freeze Range,) Tj ETQq0 0.0 rgBT /Oygrlock 10 longâ \in Pacific margin of Gondwana (Deep Freeze Range) Tj ETQq0 0.0 rgBT /Oygrlock 10 longâ \in Pacific margin of Gondwana (Deep Freeze Range) Tj ETQq0 0.0 rgBT /Oygrlock 10 longâ \in Pacific margin of Gondwana (Deep Freeze Range) Tj ETQq0 0.0 rgBT /Oygrlock 10 longâ \in Pacific margin of Gondwana (Deep Freeze Range) Tj ETQq0 0.0 rgBT /Oygrlock 10 longâ \in Pacific margin of Gondwana (Deep Freeze Range) Tj ETQq0 0.0 rgBT /Oygrlock 10 longâ \in Pacific margin of Gondwana (Deep Freeze Range) Tj ETQq0 0.0 rgBT /Oygrlock 10 longâ \in Pacific margin of Gondwana (Deep Freeze Range) Tj ETQq0 0.0 rgBT /Oygrlock 10 longâ \in Pacific margin of Gondwana (Deep Freeze Range) Tj ETQq0 0.0 rgBT /Oygrlock 10 longâ \in Pacific margin of Gondwana (Deep Freeze Range) Tj ETQq0 0.0 rgBT /Oygrlock 10 longâ \in Pacific margin of Gondwana (Deep Freeze Range) Tj ETQq0 0.0 rgBT /Oygrlock 10 longâ \in Pacific margin of Gondwana (Deep Freeze Range) Tj ETQq0 0.0 rgBT /Oygrlock 10 longâ \in Pacific margin of Gondwana (Deep Freeze Range) Tj ETQq0 0.0 rgBT /Oygrlock 10 longâ

#	Article	IF	CITATIONS
73	A way to hydrothermal paroxysm, Colli Albani volcano, Italy. Bulletin of the Geological Society of America, 2015, 127, 672-687.	3.3	20
74	Hematite (U-Th)/He thermochronometry constrains intraplate strike-slip faulting on the Kuh-e-Faghan Fault, central Iran. Tectonophysics, 2018, 728-729, 41-54.	2.2	19
7 5	Magmatic Mn-rich garnets in volcanic settings: Age and longevity of the magmatic plumbing system of the Miocene Ramadas volcanism (NW Argentina). Lithos, 2018, 322, 238-249.	1.4	19
76	Estimating the depth and evolution of intrusions at resurgent calderas: Los Humeros (Mexico). Solid Earth, 2020, 11, 527-545.	2.8	19
77	Retrogressive fabric development during exhumation of the Voltri Massif (Ligurian Alps, Italy): arguments for an extensional origin and implications for the Alps–Apennines linkage. International Journal of Earth Sciences, 2009, 98, 1077-1093.	1.8	18
78	Metamorphic history and geodynamic significance of the Early Cretaceous Sabzevar granulites (Sabzevar structural zone, NE Iran). Solid Earth, 2011, 2, 219-243.	2.8	18
79	Cenozoic erosion of the Transantarctic Mountains: A source-to-sink thermochronological study. Tectonophysics, 2014, 630, 158-165.	2.2	18
80	Extrusion vs. accretion at the frictional-viscous d \tilde{A} © collement transition in experimental thrust wedges: the role of convergence velocity. Terra Nova, 2006, 18, 241-247.	2.1	17
81	The pressure–temperature–time–deformation history of the Beni Mzala unit (Upper Sebtides, Rif belt,) Tj E Mediterranean. Journal of Metamorphic Geology, 2021, 39, 591-615.	TQq1 1 0.7 3.4	784314 rg <mark>B</mark> 16
82	Tectonic and climatic signals from apatite detrital fission track analysis of the Cape Roberts Project core records, South Victoria Land, Antarctica. Tectonophysics, 2013, 594, 80-90.	2.2	15
83	Miocene-to-Quaternary oblique rifting signature in the Western Ross Sea from fault patterns in the McMurdo Volcanic Group, north Victoria Land, Antarctica. Tectonophysics, 2015, 656, 74-90.	2.2	15
84	The Gediz Supradetachment System (SW Turkey): Magmatism, Tectonics, and Sedimentation During Crustal Extension. Tectonics, 2019, 38, 1414-1440.	2.8	15
85	Disproving the Presence of Paleozoic†Triassic Metamorphic Rocks on the Island of Zannone (Central) Tj ETQq1 1 2020, 39, e2020TC006296.	0.78431 2.8	4 rgBT /Ove 15
86	Slab Folding and Surface Deformation of the Iran Mobile Belt. Tectonics, 2021, 40, e2020TC006300.	2.8	15
87	Timing of Alpine Orogeny and Postorogenic Extension in the Alboran Domain, Inner Rif Chain, Morocco. Tectonics, 2021, 40, e2021TC006707.	2.8	13
88	Composition and evolution of fluids during skarn development in the Monte Capanne thermal aureole, Elba Island, central Italy. Geofluids, 2008, 8, 167-180.	0.7	12
89	Evidence of a full West Antarctic Ice Sheet back to the early Oligocene: insight from double dating of detrital apatites in Ross Sea sediments Terra Nova, 2015, 27, 238-246.	2.1	12
90	Pluton emplacement in the Northern Tyrrhenian area, Italy. Geological Society Special Publication, 2000, 174, 55-77.	1.3	11

#	Article	IF	CITATIONS
91	Variability in uplift, exhumation and crustal deformation along the Transantarctic Mountains front in southern Victoria Land, Antarctica. Tectonophysics, 2018, 745, 229-244.	2.2	11
92	Flow trajectories in analogue viscous orogenic wedges: Insights on natural orogens. Tectonophysics, 2010, 484, 119-126.	2.2	10
93	The emplacement of the Late Miocene Monte Capanne intrusion (Elba Island, Central Italy): constraints from magnetic fabric analyses. International Journal of Earth Sciences, 2012, 101, 787-802.	1.8	10
94	First records of syn-diagenetic non-tectonic folding in quaternary thermogene travertines caused by hydrothermal incremental veining. Tectonophysics, 2017, 700-701, 60-79.	2.2	9
95	The role of trapped fluids during the development and deformation of a carbonate/shale intra-wedge tectonic mélange (Mt. Massico, Southern Apennines, Italy). Journal of Structural Geology, 2020, 138, 104086.	2.3	9
96	Middle Pleistocene fluid infiltration with 10–15Âka recurrence within the seismic cycle of the active Monte Morrone Fault System (central Apennines, Italy). Tectonophysics, 2022, 827, 229269.	2.2	6
97	Modeling of temperature-dependent strength in orogenic wedges: First results from a new thermomechanical apparatus., 2001,,.		5
98	Hydrolithology of the area between Tuscany, Latium and Umbria regions (Italy). Journal of Maps, 2015, 11, 464-479.	2.0	4
99	Topography, structural and exhumation history of the Admiralty Mountains region, northern Victoria Land, Antarctica. Geoscience Frontiers, 2020, 11, 1841-1858.	8.4	4
100	Reply to Norini and Groppelli's comment on "Estimating the depth and evolution of intrusions at resurgent calderas: Los Humeros (Mexico)―by Urbani et al. (2020). Solid Earth, 2021, 12, 1111-1124.	2.8	4
101	Reply to the comment by G. Capponi et al. on "Subduction polarity reversal at the junction between the Western Alps and the Northern Apennines, Italyâ€, by G. Vignaroli et al. (Tectonophysics, 2008, 450,) Tj ETQq1	1 0 <i>2</i> 7. 8 431	4 rgBT /Over
102	Tectonic structures and commercial compartments in active quarrying: a case history from northern Italy. Bulletin of Engineering Geology and the Environment, 2017, 76, 477-496.	3.5	3
103	Polyphase post-Variscan thinning of the North Pyrenean crust: Constraints from the P-T-t-deformation history of the exhumed Variscan lower crust (Saleix Massif, France). Tectonophysics, 2021, 820, 229122.	2.2	3
104	Re-equilibration textures of fluid inclusionsin exhumed high-pressure rocks: the exampleof the Tuscan Archipelago (NorthernTyrrhenian Sea, Italy). Mineralogy and Petrology, 2001, 71, 139-147.	1.1	2
105	Reply to the comment on "First records of syn-diagenetic non-tectonic folding in Quaternary thermogene travertines caused by hydrothermal incremental veining―by Billi et alii. Tectonophysics, 2017, 721, 501-512.	2.2	2
106	Structurally controlled growth of fibrous amphibole in tectonized metagabbro: constraints on asbestos concentrations in non-serpentinized rocks. Journal of the Geological Society, 2020, 177, 103-119.	2.1	2
107	Special issue on Mesozoic-Cenozoic tectono-magmatic evolution of Iran. International Geology Review, 2020, 62, 1611-1614.	2.1	2

Alpine subduction zone metamorphism in the Palaeozoic successions of the Monti Romani (Northern) Tj ETQq0 0 0,rgBT /Overlock 10 To

#	Article	IF	CITATIONS
109	Field Trip 2 - General Architecture and tectonic evolution of Alpine Corsica. Insights from a transect between Bastia and the Balagne region Journal of the Virtual Explorer, 0, 39, .	0.0	O