Jochen Huehn

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1471446/publications.pdf

Version: 2024-02-01

57758 27406 12,832 109 44 106 citations h-index g-index papers 114 114 114 15873 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Epigenetic Control of the foxp3 Locus in Regulatory T Cells. PLoS Biology, 2007, 5, e38.	5.6	1,068
2	Selective depletion of Foxp3+ regulatory T cells induces a scurfy-like disease. Journal of Experimental Medicine, 2007, 204, 57-63.	8.5	807
3	Guidelines for the use of flow cytometry and cell sorting in immunological studies (second edition). European Journal of Immunology, 2019, 49, 1457-1973.	2.9	766
4	De novo fatty acid synthesis controls the fate between regulatory T and T helper 17 cells. Nature Medicine, 2014, 20, 1327-1333.	30.7	694
5	DNA methylation controls <i>Foxp3</i> gene expression. European Journal of Immunology, 2008, 38, 1654-1663.	2.9	688
6	T Cell Receptor Stimulation-Induced Epigenetic Changes and Foxp3 Expression Are Independent and Complementary Events Required for Treg Cell Development. Immunity, 2012, 37, 785-799.	14.3	621
7	DNA demethylation in the human <i>FOXP3</i> locus discriminates regulatory T cells from activated FOXP3 ⁺ conventional T cells. European Journal of Immunology, 2007, 37, 2378-2389.	2.9	620
8	Developmental Stage, Phenotype, and Migration Distinguish Naive- and Effector/Memory-like CD4+ Regulatory T Cells. Journal of Experimental Medicine, 2004, 199, 303-313.	8.5	565
9	Plasticity of Foxp3+ T Cells Reflects Promiscuous Foxp3 Expression in Conventional T Cells but Not Reprogramming of Regulatory T Cells. Immunity, 2012, 36, 262-275.	14.3	534
10	Neuropilin 1 is expressed on thymus-derived natural regulatory T cells, but not mucosa-generated induced Foxp3+ T reg cells. Journal of Experimental Medicine, 2012, 209, 1723-1742.	8.5	530
11	Epigenetic control of FOXP3 expression: the key to a stable regulatory T-cell lineage?. Nature Reviews Immunology, 2009, 9, 83-89.	22.7	468
12	Glutamine-dependent \hat{l} ±-ketoglutarate production regulates the balance between T helper 1 cell and regulatory T cell generation. Science Signaling, 2015, 8, ra97.	3.6	372
13	Quantitative DNA Methylation Analysis of <i>FOXP3</i> as a New Method for Counting Regulatory T Cells in Peripheral Blood and Solid Tissue. Cancer Research, 2009, 69, 599-608.	0.9	308
14	Loss of FOXP3 expression in natural human CD4 ⁺ CD25 ⁺ regulatory T cells upon repetitive <i>in vitro</i> stimulation. European Journal of Immunology, 2009, 39, 1088-1097.	2.9	298
15	Selective Depletion of Foxp3+ Regulatory T Cells Improves Effective Therapeutic Vaccination against Established Melanoma. Cancer Research, 2010, 70, 7788-7799.	0.9	228
16	Active Demethylation of the <i>Foxp3</i> Locus Leads to the Generation of Stable Regulatory T Cells within the Thymus. Journal of Immunology, 2013, 190, 3180-3188.	0.8	228
17	Migration matters: regulatory T-cell compartmentalization determines suppressive activity in vivo. Blood, 2005, 106, 3097-3104.	1.4	225
18	Guidelines for the use of flow cytometry and cell sorting in immunological studies (third edition). European Journal of Immunology, 2021, 51, 2708-3145.	2.9	198

#	Article	IF	Citations
19	Methylation matters: binding of Ets-1 to the demethylated Foxp3 gene contributes to the stabilization of Foxp3 expression in regulatory T cells. Journal of Molecular Medicine, 2010, 88, 1029-1040.	3.9	188
20	Homing to suppress: address codes for Treg migration. Trends in Immunology, 2005, 26, 632-636.	6.8	163
21	Microbiome Dependent Regulation of Tregs and Th17 Cells in Mucosa. Frontiers in Immunology, 2019, 10, 426.	4.8	163
22	Dendritic cells govern induction and reprogramming of polarized tissue-selective homing receptor patterns of T cells: important roles for soluble factors and tissue microenvironments. European Journal of Immunology, 2005, 35, 1056-1065.	2.9	149
23	Distinctive role of CCR7 in migration and functional activity of naive―and effector/memoryâ€like Treg subsets. European Journal of Immunology, 2007, 37, 1575-1583.	2.9	142
24	Loss of Epigenetic Modification Driven by the Foxp3 Transcription Factor Leads to Regulatory T Cell Insufficiency. Immunity, 2012, 36, 717-730.	14.3	139
25	Lymph Node Stromal Cells Support Dendritic Cell-Induced Gut-Homing of T Cells. Journal of Immunology, 2009, 183, 6395-6402.	0.8	128
26	Induction of organ-selective CD4+ regulatory T cell homing. European Journal of Immunology, 2007, 37, 978-989.	2.9	115
27	Roquin Suppresses the PI3K-mTOR Signaling Pathway to Inhibit T Helper Cell Differentiation and Conversion of Treg to Tfr Cells. Immunity, 2017, 47, 1067-1082.e12.	14.3	109
28	Epigenetic and transcriptional control of Foxp3+ regulatory T cells. Seminars in Immunology, 2015, 27, 10-18.	5.6	105
29	Epigenetic mechanisms regulating T-cell responses. Journal of Allergy and Clinical Immunology, 2018, 142, 728-743.	2.9	100
30	Blimp1 Prevents Methylation of Foxp3 and Loss of Regulatory T Cell Identity at Sites of Inflammation. Cell Reports, 2019, 26, 1854-1868.e5.	6.4	91
31	A Major Role for Myeloid-Derived Suppressor Cells and a Minor Role for Regulatory T Cells in Immunosuppression during <i>Staphylococcus aureus</i> Infection. Journal of Immunology, 2015, 194, 1100-1111.	0.8	89
32	Effectors of Th1 and Th17 cells act on astrocytes and augment their neuroinflammatory properties. Journal of Neuroinflammation, 2017, 14, 204.	7.2	88
33	ll̂ºBNS Protein Mediates Regulatory T Cell Development via Induction of the Foxp3 Transcription Factor. Immunity, 2012, 37, 998-1008.	14.3	82
34	Self-Limitation of Th1-Mediated Inflammation by IFN-Î ³ . Journal of Immunology, 2006, 176, 2857-2863.	0.8	79
35	CD8 ⁺ Foxp3 ⁺ T cells share developmental and phenotypic features with classical CD4 ⁺ Foxp3 ⁺ regulatory T cells but lack potent suppressive activity. European Journal of Immunology, 2011, 41, 716-725.	2.9	78
36	Single-cell chromatin accessibility landscape identifies tissue repair program in human regulatory TÂcells. Immunity, 2021, 54, 702-720.e17.	14.3	78

#	Article	IF	CITATIONS
37	Neonatally imprinted stromal cell subsets induce tolerogenic dendritic cells in mesenteric lymph nodes. Nature Communications, 2018, 9, 3903.	12.8	69
38	The Cytotoxic Necrotizing Factor of Yersinia pseudotuberculosis (CNFY) Enhances Inflammation and Yop Delivery during Infection by Activation of Rho GTPases. PLoS Pathogens, 2013, 9, e1003746.	4.7	66
39	Effector molecules released by Th1 but not Th17 cells drive an M1 response in microglia. Brain, Behavior, and Immunity, 2014, 37, 248-259.	4.1	65
40	Regulatory (FOXP3 ⁺) T cells as target for immune therapy of cervical intraepithelial neoplasia and cervical cancer. Cancer Science, 2009, 100, 1112-1117.	3.9	60
41	Experience-Driven Development: Effector/Memory-Like αE+Foxp3+ Regulatory T Cells Originate from Both Naive T Cells and Naturally Occurring Naive-Like Regulatory T Cells. Journal of Immunology, 2008, 180, 146-155.	0.8	58
42	Promiscuous Foxp3â€cre activity reveals a differential requirement for CD28 in Foxp3 ⁺ and Foxp3 ^{â^'} T cells. Immunology and Cell Biology, 2015, 93, 417-423.	2.3	53
43	Epigenetic modification of the human CCR6 gene is associated with stable CCR6 expression in T cells. Blood, 2011, 117, 2839-2846.	1.4	50
44	Foxp3+ Regulatory T Cells Delay Expulsion of Intestinal Nematodes by Suppression of IL-9-Driven Mast Cell Activation in BALB/c but Not in C57BL/6 Mice. PLoS Pathogens, 2014, 10, e1003913.	4.7	47
45	Alloantigen-Induced Regulatory T Cells Generated in Presence of Vitamin C Display Enhanced Stability of Foxp3 Expression and Promote Skin Allograft Acceptance. Frontiers in Immunology, 2017, 8, 748.	4.8	45
46	Salt generates antiinflammatory Th17 cells but amplifies pathogenicity in proinflammatory cytokine microenvironments. Journal of Clinical Investigation, 2020, 130, 4587-4600.	8.2	42
47	<scp>F</scp> oxp3 ⁺ <scp>T</scp> reg cells in the inflamed <scp>CNS</scp> are insensitive to <scp>IL</scp> â€6â€driven <scp>IL</scp> â€17 production. European Journal of Immunology, 2012, 42, 1174-1179.	2.9	40
48	Development of a unique epigenetic signature during <i>in vivo</i> Th17 differentiation. Nucleic Acids Research, 2015, 43, 1537-1548.	14.5	38
49	Transmaternal Helicobacter pylori exposure reduces allergic airway inflammation in offspring through regulatory T cells. Journal of Allergy and Clinical Immunology, 2019, 143, 1496-1512.e11.	2.9	38
50	Retinoic acidâ€induced gut tropism improves the protective capacity of Treg in acute but not in chronic gut inflammation. European Journal of Immunology, 2010, 40, 2539-2548.	2.9	37
51	Activated protein C protects from GvHD via PAR2/PAR3 signalling in regulatory T-cells. Nature Communications, 2017, 8, 311.	12.8	35
52	Integrin \hat{l}_{\pm} E (CD103) Is Involved in Regulatory T-Cell Function in Allergic Contact Hypersensitivity. Journal of Investigative Dermatology, 2015, 135, 2982-2991.	0.7	32
53	Inhibition of the JAK/STAT Signaling Pathway in Regulatory T Cells Reveals a Very Dynamic Regulation of Foxp3 Expression. PLoS ONE, 2016, 11, e0153682.	2.5	30
54	To Be or Not to Be a T _{reg} Cell: Lineage Decisions Controlled by Epigenetic Mechanisms. Science Signaling, 2011, 4, pe4.	3.6	29

#	Article	IF	CITATIONS
55	Advantages of Foxp3 ⁺ regulatory T cell depletion using DEREG mice. Immunity, Inflammation and Disease, 2014, 2, 162-165.	2.7	28
56	IFN- \hat{l}^3 Producing Th1 Cells Induce Different Transcriptional Profiles in Microglia and Astrocytes. Frontiers in Cellular Neuroscience, 2018, 12, 352.	3.7	28
57	miR-181a/b-1 controls thymic selection of Treg cells and tunes their suppressive capacity. PLoS Biology, 2019, 17, e2006716.	5.6	28
58	Induced and thymusâ€derived <scp>F</scp> oxp3 ⁺ regulatory <scp>T</scp> cells share a common niche. European Journal of Immunology, 2014, 44, 460-468.	2.9	27
59	Interleukin-10 expression during the acute phase is a putative prerequisite for delayed viral elimination in a murine model for multiple sclerosis. Journal of Neuroimmunology, 2012, 249, 27-39.	2.3	26
60	Vitamin C supports conversion of human $\hat{I}^{\hat{J}}$ T cells into FOXP3-expressing regulatory cells by epigenetic regulation. Scientific Reports, 2020, 10, 6550.	3.3	25
61	The Treg-Specific Demethylated Region Stabilizes Foxp3 Expression Independently of NF-κB Signaling. PLoS ONE, 2014, 9, e88318.	2.5	24
62	A Mathematical Model of Immune Activation with a Unified Self-Nonself Concept. Frontiers in Immunology, 2013, 4, 474.	4.8	23
63	Efficient IL-2R signaling differentially affects the stability, function, and composition of the regulatory T-cell pool. Cellular and Molecular Immunology, 2021, 18, 398-414.	10.5	21
64	Generation of Foxp3+CD25â^' Regulatory T-Cell Precursors Requires c-Rel and lκBNS. Frontiers in Immunology, 2019, 10, 1583.	4.8	20
65	Recirculating IL-1R2+ Tregs fine-tune intrathymic Treg development under inflammatory conditions. Cellular and Molecular Immunology, 2021, 18, 182-193.	10.5	20
66	Unique properties of thymic antigen-presenting cells promote epigenetic imprinting of alloantigen-specific regulatory T cells. Oncotarget, 2017, 8, 35542-35557.	1.8	19
67	Thymus-derived Foxp3+ regulatory T cells upregulate $ROR\hat{l}^3$ t expression under inflammatory conditions. Journal of Molecular Medicine, 2018, 96, 1387-1394.	3.9	18
68	Dynamic Imprinting of the Treg Cell-Specific Epigenetic Signature in Developing Thymic Regulatory T Cells. Frontiers in Immunology, 2019, 10, 2382.	4.8	18
69	The microbiota is dispensable for the early stages of peripheral regulatory T cell induction within mesenteric lymph nodes. Cellular and Molecular Immunology, 2021, 18, 1211-1221.	10.5	17
70	Limited role of regulatory T cells during acute Theiler virus-induced encephalitis in resistant C57BL/6 mice. Journal of Neuroinflammation, 2014, 11, 180.	7.2	16
71	Transcriptional Control of Regulatory T cells. Current Topics in Microbiology and Immunology, 2014, 381, 83-124.	1.1	16
72	c-REL and IκBNS Govern Common and Independent Steps of Regulatory T Cell Development from Novel CD122-Expressing Pre-Precursors. Journal of Immunology, 2017, 199, 920-930.	0.8	16

#	Article	IF	CITATIONS
73	Chimeric antigen receptor–induced BCL11B suppression propagates NK-like cell development. Journal of Clinical Investigation, 2019, 129, 5108-5122.	8.2	16
74	First Insight into the Kinome of Human Regulatory T Cells. PLoS ONE, 2012, 7, e40896.	2.5	16
75	Nitric oxide controls proliferation of Leishmania major by inhibiting the recruitment of permissive host cells. Immunity, 2021, 54, 2724-2739.e10.	14.3	16
76	A Signal Integration Model of Thymic Selection and Natural Regulatory T Cell Commitment. Journal of Immunology, 2014, 193, 5983-5996.	0.8	15
77	K2P18.1 translates T cell receptor signals into thymic regulatory T cell development. Cell Research, 2022, 32, 72-88.	12.0	14
78	Yersinia pseudotuberculosis supports Th17 differentiation and limits de novo regulatory T cell induction by directly interfering with T cell receptor signaling. Cellular and Molecular Life Sciences, 2017, 74, 2839-2850.	5.4	13
79	Mesenteric lymph node stromal cellâ€derived extracellular vesicles contribute to peripheral de novo induction of Foxp3 ⁺ regulatory T cells. European Journal of Immunology, 2017, 47, 2142-2152.	2.9	13
80	Intact interleukin-10 receptor signaling protects from hippocampal damage elicited by experimental neurotropic virus infection of SJL mice. Scientific Reports, 2018, 8, 6106.	3.3	13
81	The Transcription Factor MAZR/PATZ1 Regulates the Development of FOXP3+ Regulatory T Cells. Cell Reports, 2019, 29, 4447-4459.e6.	6.4	13
82	Cytotoxic <scp>CD</scp> 8 ⁺ <scp>T</scp> cell ablation enhances the capacity of regulatory T cells to delay viral elimination in <scp>T</scp> heiler's murine encephalomyelitis. Brain Pathology, 2018, 28, 349-368.	4.1	12
83	Staphylococcus aureus Alpha-Toxin Limits Type 1 While Fostering Type 3 Immune Responses. Frontiers in Immunology, 2020, 11, 1579.	4.8	12
84	Mesenteric Lymph Node Transplantation in Mice to Study Immune Responses of the Gastrointestinal Tract. Frontiers in Immunology, 2021, 12, 689896.	4.8	12
85	Single-cell transcriptional profiling of splenic fibroblasts reveals subset-specific innate immune signatures in homeostasis and during viral infection. Communications Biology, 2021, 4, 1355.	4.4	12
86	Foxp3 ⁺ regulatory Tâ€cell homeostasis quantitatively differs in murine peripheral lymph nodes and spleen. European Journal of Immunology, 2015, 45, 153-166.	2.9	11
87	Viral Infection of the Central Nervous System Exacerbates Interleukin-10 Receptor Deficiency-Mediated Colitis in SJL Mice. PLoS ONE, 2016, 11, e0161883.	2.5	11
88	Microenvironment Matters. Progress in Molecular Biology and Translational Science, 2015, 136, 35-56.	1.7	10
89	TCR signalling network organization at the immunological synapses of murine regulatory T cells. European Journal of Immunology, 2017, 47, 2043-2058.	2.9	9
90	Regulation of neuroinflammatory properties of glial cells by T cell effector molecules. Neural Regeneration Research, 2018, 13, 234.	3.0	9

#	Article	IF	Citations
91	Lymph node stromal cell subsetsâ€"Emerging specialists for tailored tissue-specific immune responses. International Journal of Medical Microbiology, 2021, 311, 151492.	3.6	7
92	Tissue-specific induction of CCR6 and Nrp1 during early CD4+ T cell differentiation. European Journal of Microbiology and Immunology, 2016, 6, 219-226.	2.8	6
93	Epigenetic orchestration of thymic Treg cell development. Nature Immunology, 2017, 18, 144-146.	14.5	6
94	Transcriptome analysis following neurotropic virus infection reveals faulty innate immunity and delayed antigen presentation in mice susceptible to virusâ€induced demyelination. Brain Pathology, 2021, 31, e13000.	4.1	6
95	Protection against autoimmunity is driven by thymic epithelial cell–mediated regulation of T _{reg} development. Science Immunology, 2021, 6, eabf3111.	11.9	6
96	Impact of CCR7 on T-Cell Response and Susceptibility to Yersinia pseudotuberculosis Infection. Journal of Infectious Diseases, 2017, 216, 752-760.	4.0	5
97	Tbx21 and Foxp3 Are Epigenetically Stabilized in T-Bet+ Tregs That Transiently Accumulate in Influenza A Virus-Infected Lungs. International Journal of Molecular Sciences, 2021, 22, 7522.	4.1	5
98	Acute neonatal Listeria monocytogenes infection causes long-term, organ-specific changes in immune cell subset composition. European Journal of Microbiology and Immunology, 2020, 10, 98-106.	2.8	5
99	The guanine-nucleotide exchange factor CalDAG GEFI fine-tunes functional properties of regulatory T cells. European Journal of Microbiology and Immunology, 2017, 7, 112-126.	2.8	4
100	Yersinia pseudotuberculosis modulates regulatory T cell stability via injection of yersinia outer proteins in a type III secretion system-dependent manner. European Journal of Microbiology and Immunology, 2018, 8, 101-106.	2.8	4
101	Microbiome and Gut Immunity: T Cells. , 2018, , 119-140.		4
102	Comment on "Cutting Edge: Epigenetic Regulation of Foxp3 Defines a Stable Population of CD4+ Regulatory T Cells in Tumors from Mice and Humansâ€, Journal of Immunology, 2015, 194, 3533.1-3533.	0.8	3
103	Influenza A virusâ€induced thymus atrophy differentially affects dynamics of conventional and regulatory Tâ€cell development in mice. European Journal of Immunology, 2021, 51, 1166-1181.	2.9	3
104	The thymic microenvironment gradually modulates the phenotype of thymusâ€homing peripheral conventional dendritic cells. Immunity, Inflammation and Disease, 2022, 10, 175-188.	2.7	3
105	Lymph node stromal cells support the maturation of preâ€×scp>DCs into <scp>cDC</scp> â€like cells via colonyâ€stimulating factor 1. Immunology, 2022, 166, 475-491.	4.4	3
106	Impact of gut microenvironment on epigenetic signatures of intestinal T helper cell subsets. Immunology Letters, 2022, 246, 27-27.	2.5	2
107	Enhancement of Antiviral T-Cell Responses by Vitamin C Suggests New Strategies to Improve Manufacturing of Virus-Specific T Cells for Adoptive Immunotherapy. Biology, 2022, 11, 536.	2.8	1
108	Already ENLIGHTâ€TENed? Equipping young immunologists with a combination of researchâ€related and transferrable competencies. European Journal of Immunology, 2018, 48, 1926-1928.	2.9	0

#	Article	IF	CITATIONS
109	Generation of Sequencing Libraries for Building Immune Cell Methylomes. Methods in Molecular Biology, 2021, 2285, 265-276.	0.9	0