
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1471404/publications.pdf Version: 2024-02-01

ANNE DETEDS

#	Article	IF	CITATIONS
1	No evidence of constitutive innate immune senescence in a longitudinal study of a wild bird. Physiological and Biochemical Zoology, 2022, 95, 54-65.	1.5	3
2	Telomere dynamics in the first year of life, but not later in life, predict lifespan in a wild bird. Molecular Ecology, 2022, 31, 6008-6017.	3.9	11
3	Cooperative breeding and the emergence of multilevel societies in birds. Ecology Letters, 2022, 25, 766-777.	6.4	24
4	Telomere length declines with age, but relates to immune function independent of age in a wild passerine. Royal Society Open Science, 2022, 9, .	2.4	9
5	Hot and dry conditions predict shorter nestling telomeres in an endangered songbird: Implications for population persistence. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	22
6	Male fairy-wrens produce and maintain vibrant breeding colors irrespective of individual quality. Behavioral Ecology, 2021, 32, 178-187.	2.2	6
7	Physiological costs and age constraints of a sexual ornament: an experimental study in a wild bird. Behavioral Ecology, 2021, 32, 327-338.	2.2	5
8	Variability, heritability and condition-dependence of the multidimensional male colour phenotype in a passerine bird. Heredity, 2021, 127, 300-311.	2.6	3
9	Context-dependent social benefits drive cooperative predator defense in a bird. Current Biology, 2021, 31, 4120-4126.e4.	3.9	15
10	The evolution of delayed dispersal and different routes to breeding in social birds. Advances in the Study of Behavior, 2021, 53, 163-224.	1.6	7
11	No evidence for an adaptive role of early molt into breeding plumage in a female fairy wren. Behavioral Ecology, 2020, 31, 411-420.	2.2	3
12	Nest defence and offspring provisioning in a cooperative bird: individual subordinates vary in total contribution, but no division of tasks among breeders and subordinates. Behavioral Ecology and Sociobiology, 2020, 74, 1.	1.4	12
13	Fitness outcomes in relation to individual variation in constitutive innate immune function. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20201997.	2.6	15
14	Predator defense is shaped by risk, brood value and social group benefits in a cooperative breeder. Behavioral Ecology, 2020, 31, 761-771.	2.2	16
15	Rewilding immunology. Science, 2020, 369, 37-38.	12.6	22
16	Carotenoidâ€based plumage colour saturation increases with temperature in Australian passerines. Journal of Biogeography, 2020, 47, 2671-2683.	3.0	3
17	Rapid plastic breeding response to rain matches peak prey abundance in a tropical savanna bird. Journal of Animal Ecology, 2019, 88, 1799-1811.	2.8	51
18	Evolutionary drivers of seasonal plumage colours: colour change by moult correlates with sexual selection, predation risk and seasonality across passerines. Ecology Letters, 2019, 22, 1838-1849.	6.4	29

#	Article	IF	CITATIONS
19	Immunosenescence in wild animals: metaâ€analysis and outlook. Ecology Letters, 2019, 22, 1709-1722.	6.4	62
20	Multiple components of feather microstructure contribute to structural plumage colour diversity in fairy-wrens. Biological Journal of the Linnean Society, 2019, 128, 550-568.	1.6	17
21	Short-Term Climate Variation Drives Baseline Innate Immune Function and Stress in a Tropical Bird: A Reactive Scope Perspective. Physiological and Biochemical Zoology, 2019, 92, 140-151.	1.5	14
22	Conspicuous Plumage Does Not Increase Predation Risk: A Continent-Wide Test Using Model Songbirds. American Naturalist, 2019, 193, 359-372.	2.1	30
23	Persistent low avian malaria in a tropical species despite high community prevalence. International Journal for Parasitology: Parasites and Wildlife, 2019, 8, 88-93.	1.5	15
24	Australian songbird body size tracks climate variation: 82 species over 50 years. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20192258.	2.6	20
25	Earlyâ€life telomere length predicts lifespan and lifetime reproductive success in a wild bird. Molecular Ecology, 2019, 28, 1127-1137.	3.9	102
26	Increasing the accuracy and precision of relative telomere length estimates by RT qPCR. Molecular Ecology Resources, 2018, 18, 68-78.	4.8	39
27	More than kin: subordinates foster strong bonds with relatives and potential mates in a social bird. Behavioral Ecology, 2018, , .	2.2	3
28	From ornament to armament or loss of function? Breeding plumage acquisition in a genetically monogamous bird. Journal of Animal Ecology, 2018, 87, 1274-1285.	2.8	14
29	Conspicuous plumage colours are highly variable. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20162593.	2.6	23
30	No fitness benefits of early molt in a fairy-wren: relaxed sexual selection under genetic monogamy?. Behavioral Ecology, 2017, 28, 1055-1067.	2.2	9
31	Are longâ€term widespread avian body size changes related to food availability? A test using contemporaneous changes in carotenoidâ€based color. Ecology and Evolution, 2017, 7, 3157-3166.	1.9	6
32	Habitat structure is linked to the evolution of plumage colour in female, but not male, fairy-wrens. BMC Evolutionary Biology, 2017, 17, 35.	3.2	23
33	Multiple hypotheses explain variation in extraâ€pair paternity at different levels in a single bird family. Molecular Ecology, 2017, 26, 6717-6729.	3.9	51
34	Complex nest decorations of a small brown bird in the Pampas. Frontiers in Ecology and the Environment, 2017, 15, 406-407.	4.0	6
35	Bright birds are cautious: seasonally conspicuous plumage prompts risk avoidance by male superb fairy-wrens. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20170446.	2.6	23
36	The effect of colourâ€producing mechanisms on plumage sexual dichromatism in passerines and parrots. Functional Ecology, 2017, 31, 903-914.	3.6	17

ANNE PETERS

#	Article	IF	CITATIONS
37	Conservation implications of anthropogenic impacts on visual communication and camouflage. Conservation Biology, 2017, 31, 30-39.	4.7	52
38	Personality and innate immune defenses in a wild bird: Evidence for the pace-of-life hypothesis. Hormones and Behavior, 2017, 88, 31-40.	2.1	22
39	Individual and demographic consequences of reduced body condition following repeated exposure to high temperatures. Ecology, 2016, 97, 786-795.	3.2	56
40	Individual and demographic consequences of reduced body condition following repeated exposure to high temperatures. Ecology, 2016, 97, 786-95.	3.2	26
41	The influence of nest-site choice and predator sensory cues on nesting success in the Crimson Finch (<i>Neochmia phaeton</i>). Emu, 2015, 115, 317-325.	0.6	10
42	A practical framework to analyze variation in animal colors using visual models. Behavioral Ecology, 2015, 26, 367-375.	2.2	50
43	Temporal patterns of avian body size reflect linear size responses to broadscale environmental change over the last 50 years. Journal of Avian Biology, 2014, 45, 529-535.	1.2	31
44	Are natural history collections coming to an end as timeâ€series?. Frontiers in Ecology and the Environment, 2014, 12, 436-438.	4.0	24
45	Dynamic size responses to climate change: prevailing effects of rising temperature drive longâ€ŧerm body size increases in a semiâ€arid passerine. Clobal Change Biology, 2014, 20, 2062-2075.	9.5	43
46	Problems with using largeâ€scale oceanic climate indices to compare climatic sensitivities across populations and species. Ecography, 2013, 36, 249-255.	4.5	27
47	Increased conspicuousness can explain the match between visual sensitivities and blue plumage colours in fairy-wrens. Proceedings of the Royal Society B: Biological Sciences, 2013, 280, 20121771.	2.6	30
48	Colourâ€variable birds have broader ranges, wider niches and are less likely to be threatened. Journal of Evolutionary Biology, 2013, 26, 1559-1568.	1.7	24
49	Breeding synchronization facilitates extrapair mating for inbreeding avoidance. Behavioral Ecology, 2013, 24, 1390-1397.	2.2	45
50	Seasonal male plumage as a multi-component sexual signal: insights and opportunities. Emu, 2013, 113, 232-247.	0.6	25
51	Male Songbird Indicates Body Size with Low-Pitched Advertising Songs. PLoS ONE, 2013, 8, e56717.	2.5	76
52	Causes of Ring-Related Leg Injuries in Birds – Evidence and Recommendations from Four Field Studies. PLoS ONE, 2012, 7, e51891.	2.5	25
53	Sperm storage reflects within- and extra-pair mating opportunities in a cooperatively breeding bird. Behavioral Ecology and Sociobiology, 2012, 66, 1115-1123.	1.4	7
54	Testosterone treatment can increase circulating carotenoids but does not affect yellow carotenoidâ€based plumage colour in blue tits <i>Cyanistes caeruleus</i> . Journal of Avian Biology, 2012, 43, 362-368.	1.2	8

#	Article	IF	CITATIONS
55	Multiple Benefits Drive Helping Behavior in a Cooperatively Breeding Bird: An Integrated Analysis. American Naturalist, 2011, 177, 486-495.	2.1	52
56	Declining body size: a third universal response to warming?. Trends in Ecology and Evolution, 2011, 26, 285-291.	8.7	845
57	No evidence for general conditionâ€dependence of structural plumage colour in blue tits: an experiment. Journal of Evolutionary Biology, 2011, 24, 976-987.	1.7	45
58	Rejection of brood-parasitic shiny cowbird Molothrus bonariensis nestlings by the firewood-gatherer Anumbius annumbi?. Journal of Avian Biology, 2011, 42, 463-467.	1.2	12
59	The carotenoid conundrum: improved nutrition boosts plasma carotenoid levels but not immune benefits of carotenoid supplementation. Oecologia, 2011, 166, 35-43.	2.0	15
60	No evidence for offspring sex-ratio adjustment to social or environmental conditions in cooperatively breeding purple-crowned fairy-wrens. Behavioral Ecology and Sociobiology, 2011, 65, 1203-1213.	1.4	26
61	Visual mimicry of host nestlings by cuckoos. Proceedings of the Royal Society B: Biological Sciences, 2011, 278, 2455-2463.	2.6	111
62	The carotenoid-continuum: carotenoid-based plumage ranges from conspicuous to cryptic and back again. BMC Ecology, 2010, 10, 13.	3.0	25
63	No consistent female preference for higher crown UV reflectance in Blue Tits <i>Cyanistes caeruleus</i> : a mate choice experiment. Ibis, 2010, 152, 393-396.	1.9	14
64	Multiple benefits of cooperative breeding in purpleâ€crowned fairyâ€wrens: a consequence of fidelity?. Journal of Animal Ecology, 2010, 79, 757-768.	2.8	81
65	Seasonal Changes in Colour: A Comparison of Structural, Melanin- and Carotenoid-Based Plumage Colours. PLoS ONE, 2010, 5, e11582.	2.5	51
66	Fat quill secretion in pigeons: could it function as a cosmetic?. Animal Biology, 2010, 60, 69-78.	1.0	1
67	Seasonal Variation in Reproductive Output of a Neotropical Temperate Suboscine, the Firewood-gatherer (<i>Anumbius annumbi</i>). Auk, 2010, 127, 222-231.	1.4	11
68	Testosterone increases UV reflectance of sexually selected crown plumage in male blue tits. Behavioral Ecology, 2009, 20, 535-541.	2.2	50
69	Do male paternity guards ensure female fidelity in a duetting fairy-wren?. Behavioral Ecology, 2009, 20, 222-228.	2.2	33
70	ls testosterone immunosuppressive in a condition-dependent manner? An experimental test in blue tits. Journal of Experimental Biology, 2009, 212, 1811-1818.	1.7	44
71	Radical loss of an extreme extra-pair mating system. BMC Ecology, 2009, 9, 15.	3.0	67
72	Dietary flavonoids enhance conspicuousness of a melaninâ€based trait in male blackcaps but not of the female homologous trait or of sexually monochromatic traits. Journal of Evolutionary Biology, 2009, 22, 1649-1657.	1.7	11

ANNE PETERS

#	Article	IF	CITATIONS
73	Optical properties of the uropygial gland secretion: no evidence for UV cosmetics in birds. Die Naturwissenschaften, 2008, 95, 939-946.	1.6	18
74	Conditionâ€dependence of multiple carotenoidâ€based plumage traits: an experimental study. Functional Ecology, 2008, 22, 831-839.	3.6	61
75	Coordination between the sexes for territorial defence in a duetting fairy-wren. Animal Behaviour, 2008, 76, 65-73.	1.9	105
76	Life history trade-offs are influenced by the diversity, availability and interactions of dietary antioxidants. Animal Behaviour, 2008, 76, 1107-1119.	1.9	208
77	Experimental manipulation of testosterone and condition during molt affects activity and vocalizations of male blue tits. Hormones and Behavior, 2008, 54, 263-269.	2.1	28
78	Sources of individual variation in plasma testosterone levels. Philosophical Transactions of the Royal Society B: Biological Sciences, 2008, 363, 1711-1723.	4.0	161
79	Quantifying Variability of Avian Colours: Are Signalling Traits More Variable?. PLoS ONE, 2008, 3, e1689.	2.5	49
80	Cosmetic Coloration in Birds: Occurrence, Function, and Evolution. American Naturalist, 2007, 169, S145-S158.	2.1	80
81	The Conditionâ€Dependent Development of Carotenoidâ€Based and Structural Plumage in Nestling Blue Tits: Males and Females Differ. American Naturalist, 2007, 169, S122-S136.	2.1	69
82	Fertilization success and UV ornamentation in blue tits Cyanistes caeruleus: correlational and experimental evidence. Behavioral Ecology, 2007, 18, 399-409.	2.2	45
83	Testosterone and carotenoids: an integrated view of trade-offs between immunity and sexual signalling. BioEssays, 2007, 29, 427-430.	2.5	68
84	Brood sex ratio and male UV ornamentation in blue tits (Cyanistes caeruleus): correlational evidence and an experimental test. Behavioral Ecology and Sociobiology, 2007, 61, 853-862.	1.4	32
85	Territorial responses of male blue tits, Cyanistes caeruleus, to UV-manipulated neighbours. Journal of Ornithology, 2007, 148, 179.	1.1	18
86	Testosterone treatment of female Superb Fairy-wrens Malurus cyaneus induces a male-like prenuptial moult, but no coloured plumage. Ibis, 2006, 149, 121-127.	1.9	22
87	Age-dependent association between testosterone and crown UV coloration in male blue tits (Parus) Tj ETQq1 1	0.784314 1.4	rg₿Ţ /Overl○
88	Seasonal changes in blue tit crown color: do they signal individual quality?. Behavioral Ecology, 2006, 17, 790-798.	2.2	81
89	Male sexual attractiveness and parental effort in blue tits: a test of the differential allocation hypothesis. Animal Behaviour, 2005, 70, 877-888.	1.9	88
90	Paternity in mallards: effects of sperm quality and female sperm selection for inbreeding avoidance. Behavioral Ecology, 2005, 16, 825-833.	2.2	92

#	Article	IF	CITATIONS
91	The evolution of egg rejection by cuckoo hosts in Australia and Europe. Behavioral Ecology, 2005, 16, 686-692.	2.2	110
92	Tradeâ€Offs between Immune Investment and Sexual Signaling in Male Mallards. American Naturalist, 2004, 164, 51-59.	2.1	98
93	Paternity analysis reveals opposing selection pressures on crown coloration in the blue tit (Parus) Tj ETQq1 1 0.78	34314 rgB 2.6	T /Overlock
94	Extra-pair paternity and mate-guarding behaviour in the brown thornbill. Australian Journal of Zoology, 2002, 50, 565.	1.0	8
95	Testosterone treatment suppresses paternal care in superb fairy-wrens, Malurus cyaneus, despite their concurrent investment in courtship. Behavioral Ecology and Sociobiology, 2002, 51, 538-547.	1.4	68
96	Testosterone and the trade-off between mating and paternal effort in extrapair-mating superb fairy-wrens. Animal Behaviour, 2002, 64, 103-112.	1.9	40
97	The annual testosterone profile in cooperatively breeding superb fairy-wrens, Malurus cyaneus , reflects their extreme infidelity. Behavioral Ecology and Sociobiology, 2001, 50, 519-527.	1.4	101
98	Testosterone is involved in acquisition and maintenance of sexually selected male plumage in superb fairy-wrens, Malurus cyaneus. Behavioral Ecology and Sociobiology, 2000, 47, 438-445.	1.4	114
99	Testosterone treatment is immunosuppressive in superb fairy–wrens, yet free–living males with high testosterone are more immunocompetent. Proceedings of the Royal Society B: Biological Sciences, 2000, 267, 883-889.	2.6	241
100	Evidence for Lack of Inbreeding Avoidance by Selective Mating in a Simultaneous Hermaphrodite. Invertebrate Biology, 1996, 115, 99.	0.9	16
101	Do simultaneous hermaphrodites choose their mates? Effects of body size in a planarian flatworm. Freshwater Biology, 1996, 36, 623-630.	2.4	28
102	Mating Behaviour in a Hermaphroditic Flatworm with Reciprocal Insemination: Do They Assess Their Mates during Copulation?. Ethology, 1996, 102, 236-251.	1.1	28
103	Impact of Artificial Lighting on the Seaward Orientation of Hatchling Loggerhead Turtles. Journal of Herpetology, 1994, 28, 112.	0.5	34
104	Incest avoidance, extrapair paternity, and territory quality drive divorce in a year-round territorial bird. Behavioral Ecology, 0, , arw101.	2.2	5
105	Predator suppression by a toxic invader does not cascade to prey due to predation by alternate predators. Biological Invasions, 0, , .	2.4	1