

## List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1470674/publications.pdf Version: 2024-02-01

| 111<br>papers | 26,288<br>citations | 23567<br>58<br>h-index | 24982<br>109<br>g-index |
|---------------|---------------------|------------------------|-------------------------|
| 112           | 112                 | 112                    | 36353                   |
| all docs      | docs citations      | times ranked           | citing authors          |

νανιτι

| #  | Article                                                                                                                                                                                                                            | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | The hepatokine TSK maintains myofiber integrity and exercise endurance and contributes to muscle regeneration. JCI Insight, 2022, 7, .                                                                                             | 5.0  | 5         |
| 2  | Histone deacetylase 6 inhibition restores leptin sensitivity and reduces obesity. Nature Metabolism, 2022, 4, 44-59.                                                                                                               | 11.9 | 20        |
| 3  | Reprogramming of Hepatic Metabolism and Microenvironment in Nonalcoholic Steatohepatitis.<br>Annual Review of Nutrition, 2022, 42, 91-113.                                                                                         | 10.1 | 20        |
| 4  | Deletion of the Feeding-Induced Hepatokine TSK Ameliorates the Melanocortin Obesity Syndrome.<br>Diabetes, 2021, 70, 2081-2091.                                                                                                    | 0.6  | 6         |
| 5  | Regulation of hepatic circadian metabolism by the E3 ubiquitin ligase HRD1-controlled CREBH/PPARα<br>transcriptional program. Molecular Metabolism, 2021, 49, 101192.                                                              | 6.5  | 14        |
| 6  | Endothelium-protective, histone-neutralizing properties of the polyanionic agent defibrotide. JCI<br>Insight, 2021, 6, .                                                                                                           | 5.0  | 23        |
| 7  | Hepatic Small Ubiquitinâ€Related Modifier (SUMO)–Specific Protease 2 Controls Systemic Metabolism<br>Through SUMOylationâ€Dependent Regulation of Liver–Adipose Tissue Crosstalk. Hepatology, 2021, 74,<br>1864-1883.              | 7.3  | 27        |
| 8  | hnRNPU/TrkB Defines a Chromatin Accessibility Checkpoint for Liver Injury and Nonalcoholic<br>Steatohepatitis Pathogenesis. Hepatology, 2020, 71, 1228-1246.                                                                       | 7.3  | 27        |
| 9  | Hepatic Slug epigenetically promotes liver lipogenesis, fatty liver disease, and type 2 diabetes. Journal of Clinical Investigation, 2020, 130, 2992-3004.                                                                         | 8.2  | 29        |
| 10 | Single-Cell RNA Profiling Reveals Adipocyte to Macrophage Signaling Sufficient to Enhance<br>Thermogenesis. Cell Reports, 2020, 32, 107998.                                                                                        | 6.4  | 60        |
| 11 | BAF60a Deficiency in Vascular Smooth Muscle Cells Prevents Abdominal Aortic Aneurysm by Reducing<br>Inflammation and Extracellular Matrix Degradation. Arteriosclerosis, Thrombosis, and Vascular<br>Biology, 2020, 40, 2494-2507. | 2.4  | 31        |
| 12 | The obesity-induced adipokine sST2 exacerbates adipose T <sub>reg</sub> and ILC2 depletion and promotes insulin resistance. Science Advances, 2020, 6, eaay6191.                                                                   | 10.3 | 43        |
| 13 | BAF60a deficiency uncouples chromatin accessibility and cold sensitivity from white fat browning.<br>Nature Communications, 2020, 11, 2379.                                                                                        | 12.8 | 20        |
| 14 | A Single ell Perspective of the Mammalian Liver in Health and Disease. Hepatology, 2020, 71, 1467-1473.                                                                                                                            | 7.3  | 29        |
| 15 | Sel1L-Hrd1 ER-associated degradation maintains β cell identity via TGF-β signaling. Journal of Clinical<br>Investigation, 2020, 130, 3499-3510.                                                                                    | 8.2  | 52        |
| 16 | Landscape of Intercellular Crosstalk in Healthy and NASH Liver Revealed by Single-Cell Secretome Gene<br>Analysis. Molecular Cell, 2019, 75, 644-660.e5.                                                                           | 9.7  | 488       |
| 17 | Sustained ER stress promotes hyperglycemia by increasing glucagon action through the deubiquitinating enzyme USP14. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 21732-21738.       | 7.1  | 39        |
| 18 | Function and Mechanism of Long Noncoding RNAs in Adipocyte Biology. Diabetes, 2019, 68, 887-896.                                                                                                                                   | 0.6  | 65        |

| #  | Article                                                                                                                                                              | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | GPNMB: expanding the code for liver–fat communication. Nature Metabolism, 2019, 1, 507-508.                                                                          | 11.9 | 5         |
| 20 | Regulation of hepatic autophagy by stressâ€sensing transcription factor CREBH. FASEB Journal, 2019, 33,<br>7896-7914.                                                | 0.5  | 18        |
| 21 | Mapping the molecular signatures of diet-induced NASH and its regulation by the hepatokine Tsukushi.<br>Molecular Metabolism, 2019, 20, 128-137.                     | 6.5  | 86        |
| 22 | The hepatokine Tsukushi gates energy expenditure via brown fat sympathetic innervation. Nature<br>Metabolism, 2019, 1, 251-260.                                      | 11.9 | 53        |
| 23 | Brown fat activation mitigates alcohol-induced liver steatosis and injury in mice. Journal of Clinical Investigation, 2019, 129, 2305-2317.                          | 8.2  | 39        |
| 24 | Bmal1 in Perivascular Adipose Tissue Regulates Resting-Phase Blood Pressure Through Transcriptional<br>Regulation of Angiotensinogen. Circulation, 2018, 138, 67-79. | 1.6  | 77        |
| 25 | The SWI/SNF chromatin-remodeling factors BAF60a, b, and c in nutrient signaling and metabolic control. Protein and Cell, 2018, 9, 207-215.                           | 11.0 | 27        |
| 26 | Uncoupling Exercise Bioenergetics From Systemic Metabolic Homeostasis by Conditional Inactivation of Baf60 in Skeletal Muscle. Diabetes, 2018, 67, 85-97.            | 0.6  | 14        |
| 27 | Proteome-wide analysis of USP14 substrates revealed its role in hepatosteatosis via stabilization of FASN. Nature Communications, 2018, 9, 4770.                     | 12.8 | 81        |
| 28 | KDM4B protects against obesity and metabolic dysfunction. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E5566-E5575.   | 7.1  | 47        |
| 29 | The long noncoding RNA Blnc1 orchestrates homeostatic adipose tissue remodeling to preserve metabolic health. Molecular Metabolism, 2018, 14, 60-70.                 | 6.5  | 42        |
| 30 | Long noncoding RNA licensing of obesity-linked hepatic lipogenesis and NAFLD pathogenesis. Nature<br>Communications, 2018, 9, 2986.                                  | 12.8 | 122       |
| 31 | PGC-1α Controls Skeletal Stem Cell Fate and Bone-Fat Balance in Osteoporosis and Skeletal Aging by<br>Inducing TAZ. Cell Stem Cell, 2018, 23, 193-209.e5.            | 11.1 | 108       |
| 32 | Slit2 Modulates the Inflammatory Phenotype of Orbit-Infiltrating Fibrocytes in Graves' Disease.<br>Journal of Immunology, 2018, 200, 3942-3949.                      | 0.8  | 31        |
| 33 | CD34â~' Orbital Fibroblasts From Patients With Thyroid-Associated Ophthalmopathy Modulate TNF-α<br>Expression in CD34+ Fibroblasts and Fibrocytes. , 2018, 59, 2615. |      | 18        |
| 34 | NRG1-Fc improves metabolic health via dual hepatic and central action. JCI Insight, 2018, 3, .                                                                       | 5.0  | 37        |
| 35 | The Micro-Managing Fat: Exosomes as a New Messenger. Trends in Endocrinology and Metabolism, 2017, 28, 541-542.                                                      | 7.1  | 7         |
| 36 | Glucose Sensing by Skeletal Myocytes Couples Nutrient Signaling to Systemic Homeostasis. Molecular<br>Cell, 2017, 66, 332-344.e4.                                    | 9.7  | 40        |

| #  | Article                                                                                                                                                                                                                | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Conserved function of the long noncoding RNA Blnc1 in brown adipocyte differentiation. Molecular<br>Metabolism, 2017, 6, 101-110.                                                                                      | 6.5  | 65        |
| 38 | Zbtb7b engages the long noncoding RNA Blnc1 to drive brown and beige fat development and<br>thermogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2017,<br>114, E7111-E7120. | 7.1  | 68        |
| 39 | Nrg4 promotes fuel oxidation and a healthy adipokine profile to ameliorate diet-induced metabolic<br>disorders. Molecular Metabolism, 2017, 6, 863-872.                                                                | 6.5  | 97        |
| 40 | Lipogenic transcription factor ChREBP mediates fructose-induced metabolic adaptations to prevent hepatotoxicity. Journal of Clinical Investigation, 2017, 127, 2855-2867.                                              | 8.2  | 79        |
| 41 | Hepatic neuregulin 4 signaling defines an endocrine checkpoint for steatosis-to-NASH progression.<br>Journal of Clinical Investigation, 2017, 127, 4449-4461.                                                          | 8.2  | 127       |
| 42 | CREBH Couples Circadian Clock With Hepatic Lipid Metabolism. Diabetes, 2016, 65, 3369-3383.                                                                                                                            | 0.6  | 59        |
| 43 | The brown fat secretome: metabolic functions beyond thermogenesis. Trends in Endocrinology and Metabolism, 2015, 26, 231-237.                                                                                          | 7.1  | 164       |
| 44 | The Liver Clock Controls Cholesterol Homeostasis through Trib1 Protein-mediated Regulation of PCSK9/Low Density Lipoprotein Receptor (LDLR) Axis. Journal of Biological Chemistry, 2015, 290, 31003-31012.             | 3.4  | 31        |
| 45 | Long Noncoding RNAs: A New Regulatory Code in Metabolic Control. Trends in Biochemical Sciences, 2015, 40, 586-596.                                                                                                    | 7.5  | 164       |
| 46 | A Diet-Sensitive BAF60a-Mediated Pathway Links Hepatic Bile Acid Metabolism to Cholesterol<br>Absorption and Atherosclerosis. Cell Reports, 2015, 13, 1658-1669.                                                       | 6.4  | 26        |
| 47 | Periostin promotes liver steatosis and hypertriglyceridemia through downregulation of PPARα.<br>Journal of Clinical Investigation, 2014, 124, 3501-3513.                                                               | 8.2  | 110       |
| 48 | Yin Yang 1 promotes hepatic steatosis through repression of farnesoid X receptor in obese mice. Gut, 2014, 63, 170-178.                                                                                                | 12.1 | 87        |
| 49 | Otopetrin 1 Protects Mice From Obesity-Associated Metabolic Dysfunction Through Attenuating Adipose Tissue Inflammation. Diabetes, 2014, 63, 1340-1352.                                                                | 0.6  | 35        |
| 50 | The Functional Pitch of an Organ: Quantification of Tissue Texture with Photoacoustic Spectrum<br>Analysis. Radiology, 2014, 271, 248-254.                                                                             | 7.3  | 83        |
| 51 | The brown fat–enriched secreted factor Nrg4 preserves metabolic homeostasis through attenuation of hepatic lipogenesis. Nature Medicine, 2014, 20, 1436-1443.                                                          | 30.7 | 354       |
| 52 | A Long Noncoding RNA Transcriptional Regulatory Circuit Drives Thermogenic Adipocyte<br>Differentiation. Molecular Cell, 2014, 55, 372-382.                                                                            | 9.7  | 224       |
| 53 | Metabolic Crosstalk: Molecular Links Between Glycogen and Lipid Metabolism in Obesity. Diabetes, 2014, 63, 2935-2948.                                                                                                  | 0.6  | 69        |
| 54 | The Baf60c/Deptor Pathway Links Skeletal Muscle Inflammation to Glucose Homeostasis in Obesity.<br>Diabetes, 2014, 63, 1533-1545.                                                                                      | 0.6  | 40        |

| #  | Article                                                                                                                                                                                                                                                                                      | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | PGC-1 Coactivator Activity Is Required for Murine Erythropoiesis. Molecular and Cellular Biology, 2014, 34, 1956-1965.                                                                                                                                                                       | 2.3  | 22        |
| 56 | Exercise Induces Hippocampal BDNF through a PGC-1α/FNDC5 Pathway. Cell Metabolism, 2013, 18, 649-659.                                                                                                                                                                                        | 16.2 | 925       |
| 57 | Autophagy Deficiency by Hepatic FIP200 Deletion Uncouples Steatosis From Liver Injury in NAFLD.<br>Molecular Endocrinology, 2013, 27, 1643-1654.                                                                                                                                             | 3.7  | 95        |
| 58 | Baf60c drives glycolytic metabolism in the muscle and improves systemic glucose homeostasis through Deptor-mediated Akt activation. Nature Medicine, 2013, 19, 640-645.                                                                                                                      | 30.7 | 121       |
| 59 | Inhibition of AMPK Catabolic Action by GSK3. Molecular Cell, 2013, 50, 407-419.                                                                                                                                                                                                              | 9.7  | 191       |
| 60 | Stimulated Raman scattering imaging by continuous-wave laser excitation. Optics Letters, 2013, 38, 1479.                                                                                                                                                                                     | 3.3  | 36        |
| 61 | Peroxisome Proliferator-activated Receptor Î <sup>3</sup> Coactivator 1β (PGC-1β) Protein Attenuates Vascular Lesion<br>Formation by Inhibition of Chromatin Loading of Minichromosome Maintenance Complex in Smooth<br>Muscle Cells. Journal of Biological Chemistry, 2013, 288, 4625-4636. | 3.4  | 8         |
| 62 | KLF11 mediates PPARÎ <sup>3</sup> cerebrovascular protection in ischaemic stroke. Brain, 2013, 136, 1274-1287.                                                                                                                                                                               | 7.6  | 78        |
| 63 | Functions of autophagy in normal and diseased liver. Autophagy, 2013, 9, 1131-1158.                                                                                                                                                                                                          | 9.1  | 384       |
| 64 | STRUCTURAL INSIGHT INTO THE POLYMORPHISM OF NNQNTF PROTOFIBRIL: IMPORTANCE OF INTERFACIAL WATER, POLAR AND AROMATIC RESIDUES. Journal of Theoretical and Computational Chemistry, 2013, 12, 1341012.                                                                                         | 1.8  | 0         |
| 65 | The Biological Clock is Regulated by Adrenergic Signaling in Brown Fat but is Dispensable for Cold-Induced Thermogenesis. PLoS ONE, 2013, 8, e70109.                                                                                                                                         | 2.5  | 33        |
| 66 | SEC24A deficiency lowers plasma cholesterol through reduced PCSK9 secretion. ELife, 2013, 2, e00444.                                                                                                                                                                                         | 6.0  | 104       |
| 67 | A MicroRNA Circuitry Links Macrophage Polarization to Metabolic Homeostasis. Circulation, 2012, 125, 2815-2817.                                                                                                                                                                              | 1.6  | 11        |
| 68 | Circadian regulation of autophagy rhythm through transcription factor C/EBPβ. Autophagy, 2012, 8, 124-125.                                                                                                                                                                                   | 9.1  | 25        |
| 69 | Ubiquitin-Specific Protease 2 Regulates Hepatic Gluconeogenesis and Diurnal Glucose Metabolism<br>Through 111²-Hydroxysteroid Dehydrogenase 1. Diabetes, 2012, 61, 1025-1035.                                                                                                                | 0.6  | 40        |
| 70 | Circadian autophagy rhythm: a link between clock and metabolism?. Trends in Endocrinology and Metabolism, 2012, 23, 319-325.                                                                                                                                                                 | 7.1  | 75        |
| 71 | Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.                                                                                                                                                                                   | 9.1  | 3,122     |
| 72 | Peroxisomal Localization and Circadian Regulation of Ubiquitin-Specific Protease 2. PLoS ONE, 2012, 7, e47970.                                                                                                                                                                               | 2.5  | 19        |

| #  | Article                                                                                                                                                                                                                                           | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Circadian Metabolic Regulation through Crosstalk between Casein Kinase 1δ and Transcriptional<br>Coactivator PGC-1α. Molecular Endocrinology, 2011, 25, 2084-2093.                                                                                | 3.7  | 18        |
| 74 | PGC-1 coactivators in the control of energy metabolism. Acta Biochimica Et Biophysica Sinica, 2011, 43, 248-257.                                                                                                                                  | 2.0  | 174       |
| 75 | Temporal orchestration of circadian autophagy rhythm by C/EBPβ. EMBO Journal, 2011, 30, 4642-4651.                                                                                                                                                | 7.8  | 194       |
| 76 | Parvalbumin Deficiency and GABAergic Dysfunction in Mice Lacking PGC-1α. Journal of Neuroscience, 2010, 30, 7227-7235.                                                                                                                            | 3.6  | 96        |
| 77 | Neuronal Inactivation of Peroxisome Proliferator-activated Receptor γ Coactivator 1α (PGC-1α) Protects<br>Mice from Diet-induced Obesity and Leads to Degenerative Lesions. Journal of Biological Chemistry,<br>2010, 285, 39087-39095.           | 3.4  | 64        |
| 78 | Regulation of Hepatic ApoC3 Expression by PGC-1β Mediates Hypolipidemic Effect of Nicotinic Acid. Cell<br>Metabolism, 2010, 12, 411-419.                                                                                                          | 16.2 | 69        |
| 79 | Celastrol Attenuates Hypertension-Induced Inflammation and Oxidative Stress in Vascular Smooth<br>Muscle Cells via Induction of Heme Oxygenase-1. American Journal of Hypertension, 2010, 23, 895-903.                                            | 2.0  | 71        |
| 80 | Molecular control of circadian metabolic rhythms. Journal of Applied Physiology, 2009, 107, 1959-1964.                                                                                                                                            | 2.5  | 26        |
| 81 | A Sweet Path to Insulin Resistance Through PGC-1β. Cell Metabolism, 2009, 9, 215-216.                                                                                                                                                             | 16.2 | 10        |
| 82 | Minireview: The PGC-1 Coactivator Networks: Chromatin-Remodeling and Mitochondrial Energy<br>Metabolism. Molecular Endocrinology, 2009, 23, 2-10.                                                                                                 | 3.7  | 88        |
| 83 | Genome-wide Coactivation Analysis of PGC-1α Identifies BAF60a as a Regulator of Hepatic Lipid<br>Metabolism. Cell Metabolism, 2008, 8, 105-117.                                                                                                   | 16.2 | 144       |
| 84 | Integration of energy metabolism and the mammalian clock. Cell Cycle, 2008, 7, 453-457.                                                                                                                                                           | 2.6  | 49        |
| 85 | Paradoxical effects of increased expression of PGC-1α on muscle mitochondrial function and insulin-stimulated muscle glucose metabolism. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 19926-19931. | 7.1  | 257       |
| 86 | Muscle-specific expression of PPARÎ <sup>3</sup> coactivator-1α improves exercise performance and increases peak<br>oxygen uptake. Journal of Applied Physiology, 2008, 104, 1304-1312.                                                           | 2.5  | 322       |
| 87 | TEAD mediates YAP-dependent gene induction and growth control. Genes and Development, 2008, 22, 1962-1971.                                                                                                                                        | 5.9  | 1,943     |
| 88 | Transcriptional coactivator PGC-1 $\hat{l}_{\pm}$ integrates the mammalian clock and energy metabolism. Nature, 2007, 447, 477-481.                                                                                                               | 27.8 | 570       |
| 89 | Suppression of Reactive Oxygen Species and Neurodegeneration by the PGC-1 Transcriptional Coactivators. Cell, 2006, 127, 397-408.                                                                                                                 | 28.9 | 1,948     |
| 90 | Complementary action of the PGC-1 coactivators in mitochondrial biogenesis and brown fat differentiation. Cell Metabolism, 2006, 3, 333-341.                                                                                                      | 16.2 | 548       |

| #   | Article                                                                                                                                                                                                                                                   | IF                 | CITATIONS      |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|----------------|
| 91  | Hypomorphic mutation of PGC-1Î <sup>2</sup> causes mitochondrial dysfunction and liver insulin resistance. Cell Metabolism, 2006, 4, 453-464.                                                                                                             | 16.2               | 162            |
| 92  | Lipid Mediator Informatics and Proteomics in Inflammation-Resolution. Scientific World Journal, The, 2006, 6, 589-614.                                                                                                                                    | 2.1                | 31             |
| 93  | Defects in energy homeostasis in Leigh syndrome French Canadian variant through PGC-1Â/LRP130 complex. Genes and Development, 2006, 20, 2996-3009.                                                                                                        | 5.9                | 86             |
| 94  | PGC-1α protects skeletal muscle from atrophy by suppressing FoxO3 action and atrophy-specific gene<br>transcription. Proceedings of the National Academy of Sciences of the United States of America, 2006,<br>103, 16260-16265.                          | 7.1                | 841            |
| 95  | Partnership of PGC-1α and HNF4α in the Regulation of Lipoprotein Metabolism*. Journal of Biological<br>Chemistry, 2006, 281, 14683-14690.                                                                                                                 | 3.4                | 76             |
| 96  | Hyperlipidemic Effects of Dietary Saturated Fats Mediated through PGC-1Î <sup>2</sup> Coactivation of SREBP. Cell, 2005, 120, 261-273.                                                                                                                    | 28.9               | 579            |
| 97  | Nutritional Regulation of Hepatic Heme Biosynthesis and Porphyria through PGC-1α. Cell, 2005, 122, 505-515.                                                                                                                                               | 28.9               | 347            |
| 98  | Transcriptional coactivator PGC-1α controls the energy state and contractile function of cardiac muscle. Cell Metabolism, 2005, 1, 259-271.                                                                                                               | 16.2               | 608            |
| 99  | Metabolic control through the PGC-1 family of transcription coactivators. Cell Metabolism, 2005, 1, 361-370.                                                                                                                                              | 16.2               | 1,826          |
| 100 | Suppression of mitochondrial respiration through recruitment of p160 myb binding protein to PGC-1Â:<br>modulation by p38 MAPK. Genes and Development, 2004, 18, 278-289.                                                                                  | 5.9                | 263            |
| 101 | Defects in Adaptive Energy Metabolism with CNS-Linked Hyperactivity in PGC-1α Null Mice. Cell, 2004, 119, 121-135.                                                                                                                                        | 28.9               | 1,074          |
| 102 | PGC-1β in the Regulation of Hepatic Glucose and Energy Metabolism. Journal of Biological Chemistry, 2003, 278, 30843-30848.                                                                                                                               | 3.4                | 212            |
| 103 | An autoregulatory loop controls peroxisome proliferator-activated receptor γ coactivator 1α expression in muscle. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 7111-7116.                                  | 7.1                | 633            |
| 104 | Bioenergetic Analysis of Peroxisome Proliferator-activated Receptor γ Coactivators 1α and 1β (PGC-1α and) Tj                                                                                                                                              | ETQ <u>q</u> 0 0 C | ) rgBT /Overlc |
| 105 | Peroxisome Proliferator-activated Receptor Î <sup>3</sup> Coactivator 1Î <sup>2</sup> (PGC-1Î <sup>2</sup> ), A Novel PGC-1-related Transcription<br>Coactivator Associated with Host Cell Factor. Journal of Biological Chemistry, 2002, 277, 1645-1648. | 3.4                | 463            |
| 106 | Reactivation of a Hematopoietic Endocrine Program of Pregnancy Contributes to Recovery from Thrombocytopenia. Molecular Endocrinology, 2002, 16, 1386-1393.                                                                                               | 3.7                | 29             |
| 107 | Transcriptional co-activator PGC-1Î $\pm$ drives the formation of slow-twitch muscle fibres. Nature, 2002, 418, 797-801.                                                                                                                                  | 27.8               | 2,232          |
|     |                                                                                                                                                                                                                                                           |                    |                |

<sup>108</sup>Cytokine Stimulation of Energy Expenditure through p38 MAP Kinase Activation of PPARÎ<sup>3</sup> Coactivator-1.<br/>Molecular Cell, 2001, 8, 971-982.9.7661

| #   | Article                                                                                                                                            | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Induction of Megakaryocyte Differentiation by a Novel Pregnancy-specific Hormone. Journal of<br>Biological Chemistry, 1999, 274, 21485-21489.      | 3.4 | 42        |
| 110 | A Novel Megakaryocyte Differentiation Factor from Mouse Placenta. Trends in Cardiovascular<br>Medicine, 1999, 9, 167-171.                          | 4.9 | 5         |
| 111 | Identification of Trophoblast-Specific Regulatory Elements in the Mouse Placental Lactogen II Gene.<br>Molecular Endocrinology, 1998, 12, 418-427. | 3.7 | 15        |