
Timothy D Griffiths

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1469156/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Processing of Temporal Pitch and Melody Information in Auditory Cortex. Neuron, 2002, 36, 767-776.	8.1	655
2	The planum temporale as a computational hub. Trends in Neurosciences, 2002, 25, 348-353.	8.6	562
3	What is an auditory object?. Nature Reviews Neuroscience, 2004, 5, 887-892.	10.2	417
4	Distinct Neural Substrates of Duration-Based and Beat-Based Auditory Timing. Journal of Neuroscience, 2011, 31, 3805-3812.	3.6	351
5	Properties of the Internal Clock: First- and Second-Order Principles of Subjective Time. Annual Review of Psychology, 2014, 65, 743-771.	17.7	309
6	Frontotemporal dementia and its subtypes: a genome-wide association study. Lancet Neurology, The, 2014, 13, 686-699.	10.2	302
7	Analysis of temporal structure in sound by the human brain. Nature Neuroscience, 1998, 1, 422-427.	14.8	282
8	Perception of Sound-Source Motion by the Human Brain. Neuron, 2002, 34, 139-148.	8.1	265
9	Music and the brain: disorders of musical listening. Brain, 2006, 129, 2533-2553.	7.6	264
10	Right parietal cortex is involved in the perception of sound movement in humans. Nature Neuroscience, 1998, 1, 74-79.	14.8	251
11	Cortical Thickness in Congenital Amusia: When Less Is Better Than More. Journal of Neuroscience, 2007, 27, 13028-13032.	3.6	249
12	Brain responses in humans reveal ideal observer-like sensitivity to complex acoustic patterns. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E616-25.	7.1	229
13	Morphometry of the amusic brain: a two-site study. Brain, 2006, 129, 2562-2570.	7.6	207
14	Characterization of deficits in pitch perception underlying 'tone deafness'. Brain, 2004, 127, 801-810.	7.6	196
15	An Open Resource for Non-human Primate Imaging. Neuron, 2018, 100, 61-74.e2.	8.1	190
16	Encoding of the temporal regularity of sound in the human brainstem. Nature Neuroscience, 2001, 4, 633-637.	14.8	189
17	A Unified Model of Time Perception Accounts for Duration-Based and Beat-Based Timing Mechanisms. Frontiers in Integrative Neuroscience, 2011, 5, 90.	2.1	181
18	How Can Hearing Loss Cause Dementia?. Neuron, 2020, 108, 401-412.	8.1	169

#	Article	IF	CITATIONS
19	Dissociation of duration-based and beat-based auditory timing in cerebellar degeneration. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 11597-11601.	7.1	162
20	A Brain System for Auditory Working Memory. Journal of Neuroscience, 2016, 36, 4492-4505.	3.6	154
21	A common neural substrate for the analysis of pitch and duration pattern in segmented sound?. NeuroReport, 1999, 10, 3825-3830.	1.2	149
22	The Brain Basis for Misophonia. Current Biology, 2017, 27, 527-533.	3.9	148
23	An Integrative Tinnitus Model Based on Sensory Precision. Trends in Neurosciences, 2016, 39, 799-812.	8.6	145
24	Neural signatures of perceptual inference. ELife, 2016, 5, e11476.	6.0	138
25	The spectrum of hearing loss due to mitochondrial DNA defects. Brain, 2000, 123, 82-92.	7.6	132
26	Orthogonal representation of sound dimensions in the primate midbrain. Nature Neuroscience, 2011, 14, 423-425.	14.8	128
27	Evidence for a sound movement area in the human cerebral cortex. Nature, 1996, 383, 425-427.	27.8	127
28	A Common Cortical Substrate Activated by Horizontal and Vertical Sound Movement in the Human Brain. Current Biology, 2002, 12, 1584-1590.	3.9	125
29	Features versus Feelings: Dissociable Representations of the Acoustic Features and Valence of Aversive Sounds. Journal of Neuroscience, 2012, 32, 14184-14192.	3.6	121
30	Brain Bases for Auditory Stimulus-Driven Figure–Ground Segregation. Journal of Neuroscience, 2011, 31, 164-171.	3.6	118
31	Hearing and dementia. Journal of Neurology, 2016, 263, 2339-2354.	3.6	115
32	Human brain areas involved in the analysis of auditory movement. , 2000, 9, 72-80.		114
33	Inattentional Deafness: Visual Load Leads to Time-Specific Suppression of Auditory Evoked Responses. Journal of Neuroscience, 2015, 35, 16046-16054.	3.6	109
34	The most common type of FTLD-FUS (aFTLD-U) is associated with a distinct clinical form of frontotemporal dementia but is not related to mutations in the FUS gene. Acta Neuropathologica, 2011, 122, 99-110.	7.7	108
35	Hierarchical Processing of Auditory Objects in Humans. PLoS Computational Biology, 2007, 3, e100.	3.2	107
36	Direct Recordings of Pitch Responses from Human Auditory Cortex. Current Biology, 2010, 20,	3.9	100

^{1128-1132.}

#	Article	IF	CITATIONS
37	Auditory sequence processing reveals evolutionarily conserved regions of frontal cortex in macaques and humans. Nature Communications, 2015, 6, 8901.	12.8	99
38	Accelerating the Evolution of Nonhuman Primate Neuroimaging. Neuron, 2020, 105, 600-603.	8.1	92
39	Musically tone-deaf individuals have difficulty discriminating intonation contours extracted from speech. Brain and Cognition, 2005, 59, 310-313.	1.8	90
40	How the Human Brain Recognizes Speech in the Context of Changing Speakers. Journal of Neuroscience, 2010, 30, 629-638.	3.6	86
41	Transcranial Magnetic Theta-Burst Stimulation of the Human Cerebellum Distinguishes Absolute, Duration-Based from Relative, Beat-Based Perception of Subsecond Time Intervals. Frontiers in Psychology, 2010, 1, 171.	2.1	84
42	Single-subject oscillatory gamma responses in tinnitus. Brain, 2012, 135, 3089-3100.	7.6	84
43	Intracranial Mapping of a Cortical Tinnitus System using Residual Inhibition. Current Biology, 2015, 25, 1208-1214.	3.9	83
44	Metricality-enhanced temporal encoding and the subjective perception of rhythmic sequences. Cortex, 2009, 45, 72-79.	2.4	77
45	Reading skills are related to global, but not local, acoustic pattern perception. Nature Neuroscience, 2003, 6, 343-344.	14.8	75
46	The basal ganglia in perceptual timing: Timing performance in Multiple System Atrophy and Huntington's disease. Neuropsychologia, 2014, 52, 73-81.	1.6	74
47	Neural Correlates of Auditory Figure-Ground Segregation Based on Temporal Coherence. Cerebral Cortex, 2016, 26, 3669-3680.	2.9	74
48	Absence of auditory 'global interference' in autism. Brain, 2003, 126, 2703-2709.	7.6	73
49	A unified framework for the organization of the primate auditory cortex. Frontiers in Systems Neuroscience, 2013, 7, 11.	2.5	72
50	A neural basis for the perception of voices in external auditory space. Brain, 2003, 126, 161-169.	7.6	71
51	Pathological correlates of frontotemporal lobar degeneration in the elderly. Acta Neuropathologica, 2011, 121, 365-371.	7.7	70
52	Direct Physiologic Evidence of a Heteromodal Convergence Region for Proper Naming in Human Left Anterior Temporal Lobe. Journal of Neuroscience, 2015, 35, 1513-1520.	3.6	69
53	An Information Theoretic Characterisation of Auditory Encoding. PLoS Biology, 2007, 5, e288.	5.6	67
54	Encoding of Spectral Correlation over Time in Auditory Cortex. Journal of Neuroscience, 2008, 28, 13268-13273.	3.6	67

#	Article	IF	CITATIONS
55	Representation of interaural time delay in the human auditory midbrain. Nature Neuroscience, 2006, 9, 1096-1098.	14.8	66
56	Cortical processing of complex sound: a way forward?. Trends in Neurosciences, 2004, 27, 181-185.	8.6	65
57	Faster decline of pitch memory over time in congenital amusia. Advances in Cognitive Psychology, 2010, 6, 15-22.	0.5	65
58	Segregation of complex acoustic scenes based on temporal coherence. ELife, 2013, 2, e00699.	6.0	65
59	Rhythm deficits in â€~tone deafness'. Brain and Cognition, 2006, 62, 24-29.	1.8	64
60	Mapping unpleasantness of sounds to their auditory representation. Journal of the Acoustical Society of America, 2008, 124, 3810-3817.	1.1	63
61	A brain basis for musical hallucinations. Cortex, 2014, 52, 86-97.	2.4	62
62	Accumulation of dipeptide repeat proteins predates that of <scp>TDP</scp> â€43 in frontotemporal lobar degeneration associated with hexanucleotide repeat expansions in <scp><i>C9ORF72</i></scp> gene. Neuropathology and Applied Neurobiology, 2015, 41, 601-612.	3.2	62
63	Neural Representation of Auditory Size in the Human Voice and in Sounds from Other Resonant Sources. Current Biology, 2007, 17, 1123-1128.	3.9	61
64	Predictive Coding and Pitch Processing in the Auditory Cortex. Journal of Cognitive Neuroscience, 2011, 23, 3084-3094.	2.3	61
65	Mapping Pitch Representation in Neural Ensembles with fMRI. Journal of Neuroscience, 2012, 32, 13343-13347.	3.6	60
66	Core auditory processing deficits in primary progressive aphasia. Brain, 2016, 139, 1817-1829.	7.6	60
67	Neural prediction of higher-order auditory sequence statistics. NeuroImage, 2011, 54, 2267-2277.	4.2	59
68	Sequence learning modulates neural responses and oscillatory coupling in human and monkey auditory cortex. PLoS Biology, 2017, 15, e2000219.	5.6	56
69	Distinct critical cerebellar subregions for components of verbal working memory. Neuropsychologia, 2012, 50, 189-197.	1.6	55
70	Cortical Activation during Perception of a Rotating Wide-Field Acoustic Stimulus. NeuroImage, 1999, 10, 84-90.	4.2	53
71	Central auditory processing disorders. Current Opinion in Neurology, 2002, 15, 31-33.	3.6	53
72	â€~Normal' hearing thresholds and fundamental auditory grouping processes predict difficulties with speech-in-noise perception. Scientific Reports, 2019, 9, 16771.	3.3	53

#	Article	IF	CITATIONS
73	Primate auditory prototype in the evolution of the arcuate fasciculus. Nature Neuroscience, 2020, 23, 611-614.	14.8	53
74	Characterisation of the BOLD response time course at different levels of the auditory pathway in non-human primates. NeuroImage, 2010, 50, 1099-1108.	4.2	51
75	fMRI Evidence for a Cortical Hierarchy of Pitch Pattern Processing. PLoS ONE, 2008, 3, e1470.	2.5	50
76	Fundamental deficits of auditory perception in Wernicke's aphasia. Cortex, 2013, 49, 1808-1822.	2.4	49
77	The Neural Processing of Complex Sounds. Annals of the New York Academy of Sciences, 2001, 930, 133-142.	3.8	47
78	Detection of the arcuate fasciculus in congenital amusia depends on the tractography algorithm. Frontiers in Psychology, 2015, 6, 9.	2.1	45
79	Functional Imaging of Pitch Analysis. Annals of the New York Academy of Sciences, 2003, 999, 40-49.	3.8	44
80	Resource allocation and prioritization in auditory working memory. Cognitive Neuroscience, 2013, 4, 12-20.	1.4	43
81	Navigating the Auditory Scene: An Expert Role for the Hippocampus. Journal of Neuroscience, 2012, 32, 12251-12257.	3.6	42
82	Human Auditory Cortex Neurochemistry Reflects the Presence and Severity of Tinnitus. Journal of Neuroscience, 2015, 35, 14822-14828.	3.6	41
83	The right hemisphere supports but does not replace left hemisphere auditory function in patients with persisting aphasia. Brain, 2013, 136, 1901-1912.	7.6	40
84	Auditory sequence analysis and phonological skill. Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 4496-4504.	2.6	39
85	Grapheme-color and tone-color synesthesia is associated with structural brain changes in visual regions implicated in color, form, and motion. Cognitive Neuroscience, 2012, 3, 29-35.	1.4	39
86	Mapping effective connectivity in the human brain with concurrent intracranial electrical stimulation and BOLD-fMRI. Journal of Neuroscience Methods, 2017, 277, 101-112.	2.5	39
87	A C6orf10/LOC101929163 locus is associated with age of onset in C9orf72 carriers. Brain, 2018, 141, 2895-2907.	7.6	39
88	Sensitivity to the temporal structure of rapid sound sequences — An MEG study. NeuroImage, 2015, 110, 194-204.	4.2	38
89	The topography of frequency and time representation in primate auditory cortices. ELife, 2015, 4, .	6.0	38
90	Frontal processing and auditory perception. NeuroReport, 2000, 11, 919-922.	1.2	37

#	Article	IF	CITATIONS
91	Central auditory pathologies. British Medical Bulletin, 2002, 63, 107-120.	6.9	35
92	Representations of specific acoustic patterns in the auditory cortex and hippocampus. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20141000.	2.6	35
93	Sensory Systems: Auditory Action Streams?. Current Biology, 2008, 18, R387-R388.	3.9	34
94	The Motor Basis for Misophonia. Journal of Neuroscience, 2021, 41, 5762-5770.	3.6	34
95	Gamma band pitch responses in human auditory cortex measured with magnetoencephalography. NeuroImage, 2012, 59, 1904-1911.	4.2	32
96	Cortical Mechanisms for the Segregation and Representation of Acoustic Textures. Journal of Neuroscience, 2010, 30, 2070-2076.	3.6	31
97	Working memory for time intervals in auditory rhythmic sequences. Frontiers in Psychology, 2014, 5, 1329.	2.1	31
98	Brain Bases of Working Memory for Time Intervals in Rhythmic Sequences. Frontiers in Neuroscience, 2016, 10, 239.	2.8	31
99	Auditory motion-specific mechanisms in the primate brain. PLoS Biology, 2017, 15, e2001379.	5.6	31
100	The Contribution of the Cerebellum to Cognition in Spinocerebellar Ataxia Type 6. Behavioural Neurology, 2010, 23, 3-15.	2.1	31
101	Approaches to the cortical analysis of auditory objects. Hearing Research, 2007, 229, 46-53.	2.0	30
102	Responses to Interaural Time Delay in Human Cortex. Journal of Neurophysiology, 2008, 100, 2712-2718.	1.8	30
103	Individually customisable non-invasive head immobilisation system for non-human primates with an option for voluntary engagement. Journal of Neuroscience Methods, 2016, 269, 46-60.	2.5	30
104	Auditory temporal-regularity processing correlates with language and literacy skill in early adulthood. Cognitive Neuroscience, 2013, 4, 225-230.	1.4	29
105	Common fronto-temporal effective connectivity in humans and monkeys. Neuron, 2021, 109, 852-868.e8.	8.1	28
106	Artificial grammar learning in vascular and progressive non-fluent aphasias. Neuropsychologia, 2017, 104, 201-213.	1.6	27
107	Autistic Traits and Enhanced Perceptual Representation of Pitch and Time. Journal of Autism and Developmental Disorders, 2018, 48, 1350-1358.	2.7	26
108	Cortical responses to changes in acoustic regularity are differentially modulated by attentional load. NeuroImage, 2012, 59, 1932-1941.	4.2	25

#	Article	IF	CITATIONS
109	Exposing Pathological Sensory Predictions in Tinnitus Using Auditory Intensity Deviant Evoked Responses. Journal of Neuroscience, 2019, 39, 10096-10103.	3.6	25
110	Structure predicts function: Combining non-invasive electrophysiology with in-vivo histology. Neurolmage, 2015, 108, 377-385.	4.2	23
111	Speech-in-noise detection is related to auditory working memory precision for frequency. Scientific Reports, 2020, 10, 13997.	3.3	23
112	Large-Scale Analysis of Auditory Segregation Behavior Crowdsourced via a Smartphone App. PLoS ONE, 2016, 11, e0153916.	2.5	22
113	Resource allocation models of auditory working memory. Brain Research, 2016, 1640, 183-192.	2.2	21
114	Oscillatory correlates of auditory working memory examined with human electrocorticography. Neuropsychologia, 2021, 150, 107691.	1.6	21
115	Difficulties with Speech-in-Noise Perception Related to Fundamental Grouping Processes in Auditory Cortex. Cerebral Cortex, 2021, 31, 1582-1596.	2.9	21
116	The contribution of the cerebellum to cognition in Spinocerebellar Ataxia Type 6. Behavioural Neurology, 2010, 23, 3-15.	2.1	21
117	A distinct low-level mechanism for interaural timing analysis in human hearing. NeuroReport, 1998, 9, 3383-3386.	1.2	19
118	Auditory working memory for objects vs. features. Frontiers in Neuroscience, 2015, 9, 13.	2.8	19
119	Direct electrophysiological mapping of human pitch-related processing in auditory cortex. NeuroImage, 2019, 202, 116076.	4.2	19
120	Analyzing Pitch Chroma and Pitch Height in the Human Brain. Annals of the New York Academy of Sciences, 2003, 999, 212-214.	3.8	18
121	Mapping the temporal pole with a specialized electrode array: technique and preliminary results. Physiological Measurement, 2014, 35, 323-337.	2.1	18
122	The functional anatomy of central auditory processing. Practical Neurology, 2015, 15, 302-308.	1.1	18
123	Pre- and post-target cortical processes predict speech-in-noise performance. Neurolmage, 2021, 228, 117699.	4.2	18
124	Merging functional and structural properties of the monkey auditory cortex. Frontiers in Neuroscience, 2014, 8, 198.	2.8	17
125	The Newcastle Auditory Battery (NAB). Hearing Research, 2001, 154, 165-169.	2.0	16
126	Training Improves Acoustic Pattern Perception. Current Biology, 2004, 14, 322-325.	3.9	16

#	Article	IF	CITATIONS
127	Auditory figure-ground analysis in rostral belt and parabelt of the macaque monkey. Scientific Reports, 2018, 8, 17948.	3.3	16
128	Evolutionarily conserved neural signatures involved in sequencing predictions and their relevance for language. Current Opinion in Behavioral Sciences, 2018, 21, 145-153.	3.9	16
129	Temporal predictions based on a gradual change in tempo. Journal of the Acoustical Society of America, 2012, 131, 4013-4022.	1.1	15
130	Exploring the role of auditory analysis in atypical compared to typical language development. Hearing Research, 2014, 308, 129-140.	2.0	15
131	Neural phase locking predicts BOLD response in human auditory cortex. NeuroImage, 2018, 169, 286-301.	4.2	14
132	Auditory, Phonological, and Semantic Factors in the Recovery From Wernicke's Aphasia Poststroke: Predictive Value and Implications for Rehabilitation. Neurorehabilitation and Neural Repair, 2019, 33, 800-812.	2.9	14
133	Multivoxel codes for representing and integrating acoustic features in human cortex. NeuroImage, 2020, 217, 116661.	4.2	12
134	Subthalamic deep brain stimulation in Parkinson× ³ s disease has no significant effect on perceptual timing in the hundreds of milliseconds range. Neuropsychologia, 2014, 57, 29-37.	1.6	10
135	Characterizing memory loss in patients with autoimmune limbic encephalitis hippocampal lesions. Hippocampus, 2019, 29, 1114-1120.	1.9	10
136	Gene Expression Imputation Across Multiple Tissue Types Provides Insight Into the Genetic Architecture of Frontotemporal Dementia and Its Clinical Subtypes. Biological Psychiatry, 2021, 89, 825-835.	1.3	10
137	Capturing creativity. Brain, 2007, 131, 6-7.	7.6	9
138	Primary sleep disorders can cause long-term sleep disturbance in patients with autoimmune mediated limbic encephalitis. Clinical Neurology and Neurosurgery, 2013, 115, 1079-1082.	1.4	9
139	"Change Deafness―Arising from Inter-feature Masking within a Single Auditory Object. Journal of Cognitive Neuroscience, 2014, 26, 514-528.	2.3	9
140	A perceptual pitch boundary in a non-human primate. Frontiers in Psychology, 2014, 5, 998.	2.1	8
141	Response: Commentary: The Brain Basis for Misophonia. Frontiers in Behavioral Neuroscience, 2017, 11, 127.	2.0	8
142	The distribution and nature of responses to broadband sounds associated with pitch in the macaque auditory cortex. Cortex, 2019, 120, 340-352.	2.4	8
143	Neuronal figure-ground responses in primate primary auditory cortex. Cell Reports, 2021, 35, 109242.	6.4	8
144	Laterality Effects in Perceived Spatial Location of Hallucination-Like Voices. Perceptual and Motor Skills, 2003, 97, 246-250.	1.3	7

#	Article	IF	CITATIONS
145	Tone deafness: a model complex cortical phenotype. Clinical Medicine, 2008, 8, 592-595.	1.9	7
146	Limbic-predominant age-related TDP-43 encephalopathy (LATE). Brain, 2019, 142, e42-e42.	7.6	7
147	Auditory beat perception is related to speech output fluency in post-stroke aphasia. Scientific Reports, 2021, 11, 3168.	3.3	6
148	Cortical Mechanisms for Pitch Representation. Journal of Neuroscience, 2012, 32, 13333-13334.	3.6	5
149	Niemann-Pick type C: contemporary diagnosis and treatment of a classical disorder. Practical Neurology, 2019, 19, 420-423.	1.1	5
150	Auditory Object Analysis. Springer Handbook of Auditory Research, 2012, , 199-223.	0.7	5
151	The Neural Processing of Complex Sounds. , 2003, , 168-177.		5
152	Disorders of Musical Cognition. , 2012, , .		4
153	Mendelian randomization implies no direct causal association between leukocyte telomere length and amyotrophic lateral sclerosis. Scientific Reports, 2020, 10, 12184.	3.3	4
154	MRI monitoring of macaque monkeys in neuroscience: Case studies, resource and normative data comparisons. NeuroImage, 2021, 230, 117778.	4.2	4
155	Dynamics underlying auditoryâ€objectâ€boundary detection in primary auditory cortex. European Journal of Neuroscience, 2021, 54, 7274-7288.	2.6	3
156	MEG correlates of temporal regularity relevant to pitch perception in human auditory cortex. NeuroImage, 2022, 249, 118879.	4.2	3
157	EEG Responses to auditory figure-ground perception. Hearing Research, 2022, 422, 108524.	2.0	3
158	Disorders of the auditory brain. , 2010, , .		2
159	Left Frontal White Matter Links to Rhythm Processing Relevant to Speech Production in Apraxia of Speech. Neurobiology of Language (Cambridge, Mass), 2022, 3, 515-537.	3.1	2
160	Pitch discrimination is better for synthetic timbre than natural musical instrument timbres despite familiarity. Journal of the Acoustical Society of America, 2022, 152, 31-42.	1.1	2
161	Sorting Out Sound. Neuron, 2007, 56, 580-581.	8.1	1
162	Sounds Familiar?. Neuron, 2010, 66, 475-476.	8.1	1

#	Article	IF	CITATIONS
163	A Dynamic System for the Analysis of Acoustic Features and Valence of Aversive Sounds in the Human Brain. Advances in Experimental Medicine and Biology, 2013, 787, 463-472.	1.6	1
164	Neural Basis of Working Memory for Time Intervals. Procedia, Social and Behavioral Sciences, 2014, 126, 269-270.	0.5	1
165	Driving Working Memory. Neuron, 2017, 94, 5-6.	8.1	1
166	Left frontal white matter atrophy links to timing mechanisms relevant for apraxia of speech. Alzheimer's and Dementia, 2020, 16, e044713.	0.8	1
167	Simultaneous auditory agnosia: Systematic description of a new type of auditory segregation deficit following a right hemisphere lesion. Cortex, 2021, 135, 92-107.	2.4	1
168	OUP accepted manuscript. Cerebral Cortex, 2021, , .	2.9	1
169	Clinical Reasoning: A 72-year-old man with a progressive cognitive and cerebellar syndrome. Neurology, 2020, 95, e2707-e2710.	1.1	0
170	Shaping new sounds. ELife, 2020, 9, .	6.0	0