Kenneth ThorÃ, Martinsen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1468196/publications.pdf Version: 2024-02-01

	567281	477307
1,626	15	29
citations	h-index	g-index
32	32	4169
docs citations	times ranked	citing authors
	citations 32	1,62615citationsh-index3232

#	Article	IF	CITATIONS
1	TRY plant trait database – enhanced coverage and open access. Global Change Biology, 2020, 26, 119-188.	9.5	1,038
2	Lake metabolism scales with lake morphometry and catchment conditions. Aquatic Sciences, 2012, 74, 155-169.	1.5	94
3	Decadeâ€long time delays in nutrient and plant species dynamics during eutrophication and reâ€oligotrophication of Lake Fure 1900–2015. Journal of Ecology, 2017, 105, 690-700.	4.0	54
4	From soaking wet to bone dry: predicting plant community composition along a steep hydrological gradient. Journal of Vegetation Science, 2015, 26, 619-630.	2.2	46
5	Distance decay 2.0 – A global synthesis of taxonomic and functional turnover in ecological communities. Global Ecology and Biogeography, 2022, 31, 1399-1421.	5.8	40
6	Global patterns and determinants of lake macrophyte taxonomic, functional and phylogenetic beta diversity. Science of the Total Environment, 2020, 723, 138021.	8.0	38
7	Water temperature dynamics and the prevalence of daytime stratification in small temperate shallow lakes. Hydrobiologia, 2019, 826, 247-262.	2.0	28
8	Waterâ€level fluctuations affect sediment properties, carbon flux and growth of the isoetid <i>Littorella uniflora</i> in oligotrophic lakes. Freshwater Biology, 2016, 61, 301-315.	2.4	27
9	Recovery of lake vegetation following reduced eutrophication and acidification. Freshwater Biology, 2017, 62, 1847-1857.	2.4	26
10	Photosynthesis and calcification of charophytes. Aquatic Botany, 2018, 149, 46-51.	1.6	25
11	Shallow plant-dominated lakes – extreme environmental variability, carbon cycling and ecological species challenges. Annals of Botany, 2019, 124, 355-366.	2.9	22
12	Remarkable richness of aquatic macrophytes in 3-years old re-established Lake Fil, Denmark. Ecological Engineering, 2016, 95, 375-383.	3.6	19
13	From drought to flood: Sudden carbon inflow causes whole-lake anoxia and massive fish kill in a large shallow lake. Science of the Total Environment, 2020, 739, 140072.	8.0	18
14	The carbon pump supports high primary production in a shallow lake. Aquatic Sciences, 2019, 81, 1.	1.5	17
15	Elements of lake macrophyte metacommunity structure: Global variation and communityâ€environment relationships. Limnology and Oceanography, 2020, 65, 2883-2895.	3.1	16
16	High rates and close diel coupling of primary production and ecosystem respiration in small, oligotrophic lakes. Aquatic Sciences, 2017, 79, 995-1007.	1.5	15
17	Carbon dioxide efflux and ecosystem metabolism of small forest lakes. Aquatic Sciences, 2020, 82, 1.	1.5	15
18	Technical note: A simple and cost-efficient automated floating chamber for continuous measurements of carbon dioxide gas flux on lakes. Biogeosciences, 2018, 15, 5565-5573.	3.3	14

Kenneth ThorÃ, Martinsen

#	Article	IF	CITATIONS
19	The Dangers of Being a Small, Oligotrophic and Light Demanding Freshwater Plant across a Spatial and Historical Eutrophication Gradient in Southern Scandinavia. Frontiers in Plant Science, 2018, 9, 66.	3.6	13
20	Carbon dioxide fluxes of air-exposed sediments and desiccating ponds. Biogeochemistry, 2019, 144, 165-180.	3.5	10
21	Temporal development of biodiversity of macrophytes in newly established lakes. Freshwater Biology, 2020, 65, 379-389.	2.4	10
22	Large pools and fluxes of carbon, calcium and phosphorus in dense charophyte stands in ponds. Science of the Total Environment, 2021, 765, 142792.	8.0	8
23	Wind drives fast changes of light climate in a large, shallow re-established lake. Science of the Total Environment, 2022, 806, 151354.	8.0	8
24	Carbon Dioxide Partial Pressure and Emission Throughout the Scandinavian Stream Network. Global Biogeochemical Cycles, 2020, 34, e2020GB006703.	4.9	7
25	Early ecosystem responses to watershed restoration along a headwater stream. Ecological Engineering, 2018, 116, 154-162.	3.6	5
26	External Phosphorus Loading in New Lakes. Water (Switzerland), 2022, 14, 1008.	2.7	5
27	Photosynthesis, growth, and distribution of plants in lowland streams—A synthesis and new data analyses of 40Âyears research. Freshwater Biology, 2022, 67, 1255-1271.	2.4	3
28	Litter legacy after spruce plantation removal hampers initial vegetation establishment. Basic and Applied Ecology, 2020, 42, 4-14.	2.7	2
29	Environmental drivers and sources of stream oxygen consumption in an agricultural lake catchment. Ecological Engineering, 2022, 176, 106516.	3.6	2