
Davin E Larson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/14680/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The THEMIS ESA Plasma Instrument and In-flight Calibration. Space Science Reviews, 2008, 141, 277-302.	8.1	893
2	A three-dimensional plasma and energetic particle investigation for the wind spacecraft. Space Science Reviews, 1995, 71, 125-153.	8.1	731
3	The Mars Atmosphere and Volatile Evolution (MAVEN) Mission. Space Science Reviews, 2015, 195, 3-48.	8.1	563
4	Tail Reconnection Triggering Substorm Onset. Science, 2008, 321, 931-935.	12.6	551
5	THEMIS observations of an earthwardâ€propagating dipolarization front. Geophysical Research Letters, 2009, 36, .	4.0	523
6	Solar Wind Electrons Alphas and Protons (SWEAP) Investigation: Design of the Solar Wind and Coronal Plasma Instrument Suite for Solar Probe Plus. Space Science Reviews, 2016, 204, 131-186.	8.1	439
7	The Space Physics Environment Data Analysis System (SPEDAS). Space Science Reviews, 2019, 215, 9.	8.1	332
8	Kinetic structure of the sharp injection/dipolarization front in the flowâ€braking region. Geophysical Research Letters, 2009, 36, .	4.0	219
9	WindSpacecraft Observations of Solar Impulsive Electron Events Associated with Solar Type III Radio Bursts. Astrophysical Journal, 1998, 503, 435-445.	4.5	192
10	MAVEN observations of the response of Mars to an interplanetary coronal mass ejection. Science, 2015, 350, aad0210.	12.6	166
11	The Evolution and Role of Solar Wind Turbulence in the Inner Heliosphere. Astrophysical Journal, Supplement Series, 2020, 246, 53.	7.7	166
12	The Solar Probe Cup on the Parker Solar Probe. Astrophysical Journal, Supplement Series, 2020, 246, 43.	7.7	154
13	Multiple overshoot and rebound of a bursty bulk flow. Geophysical Research Letters, 2010, 37, .	4.0	153
14	Sharp Alfvénic Impulses in the Near-Sun Solar Wind. Astrophysical Journal, Supplement Series, 2020, 246, 45.	7.7	115
15	The Solar Probe ANalyzers—Electrons on the Parker Solar Probe. Astrophysical Journal, Supplement Series, 2020, 246, 74.	7.7	114
16	<i>Parker Solar Probe</i> Enters the Magnetically Dominated Solar Corona. Physical Review Letters, 2021, 127, 255101.	7.8	104
17	Magnetic Connectivity of the Ecliptic Plane within 0.5 au: Potential Field Source Surface Modeling of the First Parker Solar Probe Encounter. Astrophysical Journal, Supplement Series, 2020, 246, 23.	7.7	100

18 Discovery of diffuse aurora on Mars. Science, 2015, 350, aad0313.

12.6 98

#	Article	IF	CITATIONS
19	Magnetic Field Kinks and Folds in the Solar Wind. Astrophysical Journal, Supplement Series, 2020, 246, 32.	7.7	86
20	The MAVEN Solar Energetic Particle Investigation. Space Science Reviews, 2015, 195, 153-172.	8.1	79
21	The IMPACT Solar Wind Electron Analyzer (SWEA). Space Science Reviews, 2008, 136, 227-239.	8.1	76
22	Ion-scale Electromagnetic Waves in the Inner Heliosphere. Astrophysical Journal, Supplement Series, 2020, 246, 66.	7.7	67
23	The Role of Alfvén Wave Dynamics on the Large-scale Properties of the Solar Wind: Comparing an MHD Simulation with Parker Solar Probe E1 Data. Astrophysical Journal, Supplement Series, 2020, 246, 24.	7.7	66
24	Parker Solar Probe In Situ Observations of Magnetic Reconnection Exhausts during Encounter 1. Astrophysical Journal, Supplement Series, 2020, 246, 34.	7.7	65
25	Cross Helicity Reversals in Magnetic Switchbacks. Astrophysical Journal, Supplement Series, 2020, 246, 67.	7.7	61
26	Thin current sheet in the substorm late growth phase: Modeling of THEMIS observations. Journal of Geophysical Research, 2009, 114, .	3.3	60
27	Plasma sheet thickness during a bursty bulk flow reversal. Journal of Geophysical Research, 2010, 115, .	3.3	60
28	Case studies of mirror-mode structures observed by THEMIS in the near-Earth tail during substorms. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	56
29	Proton Temperature Anisotropy Variations in Inner Heliosphere Estimated with the First <i>Parker Solar Probe</i> Observations. Astrophysical Journal, Supplement Series, 2020, 246, 70.	7.7	56
30	Enhanced Energy Transfer Rate in Solar Wind Turbulence Observed near the Sun from <i>Parker Solar Probe</i> . Astrophysical Journal, Supplement Series, 2020, 246, 48.	7.7	56
31	Relating Streamer Flows to Density and Magnetic Structures at the Parker Solar Probe. Astrophysical Journal, Supplement Series, 2020, 246, 37.	7.7	52
32	Measures of Scale-dependent Alfvénicity in the First <i>PSP</i> Solar Encounter. Astrophysical Journal, Supplement Series, 2020, 246, 58.	7.7	51
33	The Heliospheric Current Sheet in the Inner Heliosphere Observed by the Parker Solar Probe. Astrophysical Journal, Supplement Series, 2020, 246, 47.	7.7	50
34	Characteristic Scales of Magnetic Switchback Patches Near the Sun and Their Possible Association With Solar Supergranulation and Granulation. Astrophysical Journal, 2021, 919, 96.	4.5	50
35	Evolution of Solar Wind Turbulence from 0.1 to 1 au during the First Parker Solar Probe–Solar Orbiter Radial Alignment. Astrophysical Journal Letters, 2021, 912, L21.	8.3	49
36	THEMIS observations of electron cyclotron harmonic emissions, ULF waves, and pulsating auroras. Journal of Geophysical Research, 2010, 115, .	3.3	46

#	Article	IF	CITATIONS
37	Exploring Solar Wind Origins and Connecting Plasma Flows from the <i>Parker Solar Probe</i> to 1 au: Nonspherical Source Surface and Alfvénic Fluctuations. Astrophysical Journal, Supplement Series, 2020, 246, 54.	7.7	46
38	Density Fluctuations in the Solar Wind Based on Type III Radio Bursts Observed by Parker Solar Probe. Astrophysical Journal, Supplement Series, 2020, 246, 57.	7.7	45
39	Global Aurora on Mars During the September 2017 Space Weather Event. Geophysical Research Letters, 2018, 45, 7391-7398.	4.0	44
40	Solar Wind Streams and Stream Interaction Regions Observed by the Parker Solar Probe with Corresponding Observations at 1 au. Astrophysical Journal, Supplement Series, 2020, 246, 36.	7.7	43
41	A uniform-twist magnetic flux rope in the solar wind. , 1999, , .		42
42	Kinetic ballooning/interchange instability in a bent plasma sheet. Journal of Geophysical Research, 2012, 117, .	3.3	41
43	Clustering of Intermittent Magnetic and Flow Structures near Parker Solar Probe's First Perihelion—A Partial-variance-of-increments Analysis. Astrophysical Journal, Supplement Series, 2020, 246, 31.	7.7	37
44	The Radial Dependence of Proton-scale Magnetic Spectral Break in Slow Solar Wind during <i>PSP</i> Encounter 2. Astrophysical Journal, Supplement Series, 2020, 246, 55.	7.7	36
45	Flux transport, dipolarization, and current sheet evolution during a double-onset substorm. Journal of Geophysical Research, 2011, 116, .	3.3	35
46	Modeling solar energetic particle events using ENLIL heliosphere simulations. Space Weather, 2017, 15, 934-954.	3.7	35
47	Statistics and Polarization of Type III Radio Bursts Observed in the Inner Heliosphere. Astrophysical Journal, Supplement Series, 2020, 246, 49.	7.7	35
48	Shock Connectivity and the Late Cycle 24 Solar Energetic Particle Events in July and September 2017. Space Weather, 2018, 16, 557-568.	3.7	34
49	Analysis of the Internal Structure of the Streamer Blowout Observed by the Parker Solar Probe During the First Solar Encounter. Astrophysical Journal, Supplement Series, 2020, 246, 63.	7.7	34
50	Coronal Electron Temperature Inferred from the Strahl Electrons in the Inner Heliosphere: Parker Solar Probe and Helios Observations. Astrophysical Journal, 2020, 892, 88.	4.5	34
51	Plasma Waves near the Electron Cyclotron Frequency in the Near-Sun Solar Wind. Astrophysical Journal, Supplement Series, 2020, 246, 21.	7.7	30
52	Constraining Ion-Scale Heating and Spectral Energy Transfer in Observations of Plasma Turbulence. Physical Review Letters, 2020, 125, 025102.	7.8	29
53	Source and Propagation of a Streamer Blowout Coronal Mass Ejection Observed by the Parker Solar Probe. Astrophysical Journal, Supplement Series, 2020, 246, 69.	7.7	29
54	Alfvénic versus non-Alfvénic turbulence in the inner heliosphere as observed by Parker Solar Probe. Astronomy and Astrophysics, 2021, 650, A21.	5.1	29

#	Article	IF	CITATIONS
55	Fast tailward flows in the plasma sheet boundary layer during a substorm on 9 March 2008: THEMIS observations. Journal of Geophysical Research, 2011, 116, .	3.3	25
56	Exploring the Solar Wind from Its Source on the Corona into the Inner Heliosphere during the First Solar Orbiter–Parker Solar Probe Quadrature. Astrophysical Journal Letters, 2021, 920, L14.	8.3	25
57	Parker Solar Probe Evidence for Scattering of Electrons in the Young Solar Wind by Narrowband Whistler-mode Waves. Astrophysical Journal Letters, 2021, 911, L29.	8.3	24
58	The Enhancement of Proton Stochastic Heating in the Near-Sun Solar Wind. Astrophysical Journal, Supplement Series, 2020, 246, 30.	7.7	23
59	Prevalence of magnetic reconnection in the near-Sun heliospheric current sheet. Astronomy and Astrophysics, 2021, 650, A13.	5.1	23
60	The Electromagnetic Signature of Outward Propagating Ion-scale Waves. Astrophysical Journal, 2020, 899, 74.	4.5	23
61	Kinetic properties of bursty bulk flow events. Geophysical Research Letters, 2000, 27, 1847-1850.	4.0	22
62	Multipoint in situ and groundâ€based observations during auroral intensifications. Journal of Geophysical Research, 2008, 113, .	3.3	22
63	Inferred Linear Stability of Parker Solar Probe Observations Using One- and Two-component Proton Distributions. Astrophysical Journal, 2021, 909, 7.	4.5	22
64	Small-scale Magnetic Flux Ropes in the First Two Parker Solar Probe Encounters. Astrophysical Journal, 2020, 903, 76.	4.5	22
65	Structure, force balance, and evolution of incompressible cross-tail current sheet thinning. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	21
66	Narrowband oblique whistler-mode waves: comparing properties observed by Parker Solar Probe at & & & & & & & & & & & & & & & & & &	5.1	20
67	Multiâ€point observations of the inner boundary of the plasma sheet during geomagnetic disturbances. Geophysical Research Letters, 2008, 35, .	4.0	19
68	Parker Solar Probe Evidence for the Absence of Whistlers Close to the Sun to Scatter Strahl and to Regulate Heat Flux. Astrophysical Journal Letters, 2022, 924, L33.	8.3	19
69	Evidence of Subproton cale Magnetic Holes in the Venusian Magnetosheath. Geophysical Research Letters, 2021, 48, e2020GL090329.	4.0	18
70	Shadowing and anisotropy of solar energetic ions at Mars measured by MAVEN during the March 2015 solar storm. Journal of Geophysical Research: Space Physics, 2016, 121, 2818-2829.	2.4	16
71	Plasma Double Layers at the Boundary Between Venus and the Solar Wind. Geophysical Research Letters, 2020, 47, e2020GL090115.	4.0	16
72	Radial Evolution of a CIR: Observations From a Nearly Radially Aligned Event Between Parker Solar Probe and STEREOâ€A. Geophysical Research Letters, 2021, 48, e2020GL091376.	4.0	16

#	Article	IF	CITATIONS
73	Improving the Alfvén Wave Solar Atmosphere Model Based on Parker Solar Probe Data. Astrophysical Journal, 2022, 925, 146.	4.5	16
74	CMEs and SEPs During November–December 2020: A Challenge for Realâ€Time Space Weather Forecasting. Space Weather, 2022, 20, .	3.7	16
75	Parker Solar Probe Observations of Solar Wind Energetic Proton Beams Produced by Magnetic Reconnection in the Near‧un Heliospheric Current Sheet. Geophysical Research Letters, 2022, 49, .	4.0	15
76	Ambipolar Electric Field and Potential in the Solar Wind Estimated from Electron Velocity Distribution Functions. Astrophysical Journal, 2021, 921, 83.	4.5	14
77	Multicomponent plasma distributions in the tail current sheet associated with substorms. Geophysical Research Letters, 2000, 27, 843-846.	4.0	12
78	Auroral signatures of the plasma injection and dipolarization in the inner magnetosphere. Journal of Geophysical Research, 2010, 115, .	3.3	12
79	Electron Bernstein waves and narrowband plasma waves near the electron cyclotron frequency in the near-Sun solar wind. Astronomy and Astrophysics, 2021, 650, A97.	5.1	12
80	Energetic Particle Showers Over Mars from Comet C/2013 A1 Siding Spring. Journal of Geophysical Research: Space Physics, 2018, 123, 8778-8796.	2.4	11
81	The contribution of alpha particles to the solar wind angular momentum flux in the inner heliosphere. Astronomy and Astrophysics, 2021, 650, A17.	5.1	11
82	Kinetic‣cale Turbulence in the Venusian Magnetosheath. Geophysical Research Letters, 2021, 48, e2020GL090783.	4.0	11
83	The Solar Wind Angular Momentum Flux as Observed by Parker Solar Probe. Astrophysical Journal Letters, 2020, 902, L4.	8.3	11
84	Kinetic-scale Spectral Features of Cross Helicity and Residual Energy in the Inner Heliosphere. Astrophysical Journal, Supplement Series, 2020, 246, 52.	7.7	10
85	On the Temporal Variability of the "Strahl―andÂltsÂRelationship with Solar Wind Characteristics: STEREO SWEA Observations. Solar Physics, 2009, 259, 311-321.	2.5	9
86	Plasma properties, switchback patches, and low <i>α</i> -particle abundance in slow Alfvénic coronal hole wind at 0.13 au. Monthly Notices of the Royal Astronomical Society, 2021, 508, 236-244.	4.4	9
87	Modeling Ion Beams, Kinetic Instabilities, and Waves Observed by the Parker Solar Probe near Perihelia. Astrophysical Journal, 2022, 926, 185.	4.5	7
88	Variability of Precipitating Ion Fluxes During the September 2017 Event at Mars. Journal of Geophysical Research: Space Physics, 2019, 124, 420-432.	2.4	6
89	Density and Velocity Fluctuations of Alpha Particles in Magnetic Switchbacks. Astrophysical Journal, 2022, 933, 43.	4.5	6
90	The transition from slow to fast solar wind: Charge state composition and electron observations. , 1999, , .		5

#	Article	IF	CITATIONS
91	Correcting Parker Solar Probe Electron Measurements for Spacecraft Magnetic and Electric Fields. Journal of Geophysical Research: Space Physics, 2019, 124, 7369-7384.	2.4	3
92	An Improved Technique for Measuring Plasma Density to High Frequencies on the Parker Solar Probe. Astrophysical Journal, 2022, 926, 220.	4.5	3
93	Suprathermal Ion Energy Spectra and Anisotropies near the Heliospheric Current Sheet Crossing Observed by the Parker Solar Probe during Encounter 7. Astrophysical Journal, 2022, 927, 62.	4.5	3
94	Solar Wind Electrons Alphas and Protons (SWEAP) Science Operations Center initial design and implementation. Proceedings of SPIE, 2014, , .	0.8	1
95	Revolutionizing Our Understanding of Particle Energization in Space Plasmas Using On-Board Wave-Particle Correlator Instrumentation. Frontiers in Astronomy and Space Sciences, 0, 9, .	2.8	1