Jean Christophe Loison

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1467897/publications.pdf

Version: 2024-02-01

145 papers

5,244 citations

38 h-index 106344 65 g-index

147 all docs

 $\begin{array}{c} 147 \\ \text{docs citations} \end{array}$

times ranked

147

3119 citing authors

#	Article	IF	CITATIONS
1	An Experimental and Theoretical Investigation of the Gas-Phase C(³ P) + N ₂ O Reaction. Low Temperature Rate Constants and Astrochemical Implications. Journal of Physical Chemistry A, 2022, 126, 940-950.	2.5	4
2	The ALMA-PILS survey: First tentative detection of 3-hydroxypropenal (HOCHCHCHO) in the interstellar medium and chemical modeling of the C ₃ H ₄ O ₂ isomers. Astronomy and Astrophysics, 2022, 660, L6.	5.1	11
3	Photoelectron spectroscopy of low valent organophosphorus compounds, P–CH ₃ , H–Pî€CH ₂ and Pî€CH ₂ . Physical Chemistry Chemical Physics, 2022, 24, 10993-10999). ^{2.8}	5
4	Kinetic Study of the Gas-Phase O(¹ D) + CH ₃ OH and O(¹ D) + CH ₃ CN Reactions: Low-Temperature Rate Constants and Atomic Hydrogen Product Yields. Journal of Physical Chemistry A, 2022, 126, 3903-3913.	2.5	3
5	Tunneling motion and splitting in the CH2OH radical: (Sub-)millimeter wave spectrum analysis. Journal of Chemical Physics, 2022, 156, .	3.0	3
6	Photoionization spectroscopy of the SiH free radical in the vacuum-ultraviolet range. Journal of Chemical Physics, 2022, 157, .	3.0	4
7	Characterisation of the first electronically excited state of protonated acetylene C2H3+ by coincident imaging photoelectron spectroscopy. Molecular Physics, 2021, 119, e1825851.	1.7	4
8	The ALMA-PILS survey: first detection of the unsaturated 3-carbon molecules Propenal (C ₂ H ₃ CHO) and Propylene (C ₃ H ₆) towards IRAS 16293–2422 B. Astronomy and Astrophysics, 2021, 645, A53.	5.1	28
9	Gas phase Elemental abundances in Molecular cloudS (GEMS). Astronomy and Astrophysics, 2021, 646, A5.	5.1	17
10	Photoionization Cross Section of the NH ₂ Free Radical in the 11.1–15.7 eV Energy Range. Journal of Physical Chemistry A, 2021, 125, 2764-2769.	2.5	4
11	Chemical compositions of five <i>Planck</i> cold clumps. Astronomy and Astrophysics, 2021, 647, A172.	5.1	5
12	Kinetic Study of the Gas-Phase C(³ P) + CH ₃ CN Reaction at Low Temperatures: Rate Constants, H-Atom Product Yields, and Astrochemical Implications. ACS Earth and Space Chemistry, 2021, 5, 824-833.	2.7	7
13	Threshold Photoelectron Spectroscopy of the CH ₂ 1, CHI, and CI Radicals. Journal of Physical Chemistry A, 2021, 125, 6122-6130.	2.5	1
14	Efficiency of non-thermal desorptions in cold-core conditions. Astronomy and Astrophysics, 2021, 652, A63.	5.1	26
15	One dimension photochemical models in global mean conditions in question: Application to Titan. lcarus, 2021, 364, 114477.	2.5	3
16	High resolution threshold photoelectron spectrum and autoionization processes of S2 up to 15.0ÂeV. Journal of Molecular Spectroscopy, 2021, 381, 111533.	1.2	3
17	1D photochemical model of the ionosphere and the stratosphere of Neptune. Icarus, 2020, 335, 113375.	2.5	12
18	Photoelectron spectroscopy of boron-containing reactive intermediates using synchrotron radiation: BH ₂ , BH, and BF. Physical Chemistry Chemical Physics, 2020, 22, 1027-1034.	2.8	11

#	Article	IF	CITATIONS
19	Threshold photoelectron spectroscopy of the methoxy radical. Journal of Chemical Physics, 2020, 153, 031101.	3.0	9
20	Identifying isomers of peroxy radicals in the gas phase: 1-C ₃ H ₇ O ₂ <i>vs.</i> 2-C ₃ H ₇ O ₂ . Chemical Communications, 2020, 56, 15525-15528.	4.1	12
21	Threshold photoelectron spectroscopy of the HO2 radical. Journal of Chemical Physics, 2020, 153, 124306.	3.0	7
22	Tunneling Enhancement of the Gas-Phase CH + CO ₂ Reaction at Low Temperature. Journal of Physical Chemistry A, 2020, 124, 10717-10725.	2.5	1
23	Quasi-symmetry effects in the threshold photoelectron spectrum of methyl isocyanate. Journal of Chemical Physics, 2020, 153, 074308.	3.0	О
24	Gas-grain model of carbon fractionation in dense molecular clouds. Monthly Notices of the Royal Astronomical Society, 2020, 498, 4663-4679.	4.4	23
25	VUV photoionization of the CH2NC radical: adiabatic ionization energy and cationic vibrational mode wavenumber determinations. Physical Chemistry Chemical Physics, 2020, 22, 12496-12501.	2.8	7
26	A kinetic study of the N($\langle \sup 2 \langle \sup D \rangle + C \langle \sup 2 \langle \sup H \langle \sup 4 \langle \sup P \rangle $ reaction at low temperature. Physical Chemistry Chemical Physics, 2020, 22, 14026-14035.	2.8	8
27	Photoionization of C ₄ H ₅ Isomers. Journal of Physical Chemistry A, 2020, 124, 6050-6060.	2.5	4
28	Vacuum ultraviolet photodynamics of the methyl peroxy radical studied by double imaging photoelectron photoion coincidences. Journal of Chemical Physics, 2020, 152, 104301.	3.0	17
29	To see C2: Single-photon ionization of the dicarbon molecule. Journal of Chemical Physics, 2020, 152, 041105.	3.0	7
30	Reinvestigation of the rotation-tunneling spectrum of the CH ₂ OH radical. Astronomy and Astrophysics, 2020, 644, A123.	5.1	6
31	Sulphur and carbon isotopes towards Galactic centre clouds. Astronomy and Astrophysics, 2020, 642, A222.	5.1	15
32	Threshold Photoelectron Spectrum of the Anilino Radical. Journal of Physical Chemistry A, 2019, 123, 9193-9198.	2.5	11
33	Abundances of sulphur molecules in the Horsehead nebula. Astronomy and Astrophysics, 2019, 628, A16.	5.1	31
34	Valence-Shell Photoionization of C ₄ H ₅ : The 2-Butyn-1-yl Radical. Journal of Physical Chemistry A, 2019, 123, 1521-1528.	2.5	11
35	Origin band of the first photoionizing transition of hydrogen isocyanide. Physical Chemistry Chemical Physics, 2019, 21, 2337-2344.	2.8	6
36	Isocyanogen formation in the cold interstellar medium. Astronomy and Astrophysics, 2019, 625, A91.	5.1	29

#	Article	IF	Citations
37	Experimental and Theoretical Study of the Chemical Network of the Hydrogenation of NO on Interstellar Dust Grains. ACS Earth and Space Chemistry, 2019, 3, 1196-1207.	2.7	5
38	Threshold photoelectron spectrum of the CH ₂ 00 Criegee intermediate. Physical Chemistry Chemical Physics, 2019, 21, 12763-12766.	2.8	14
39	Gas phase Elemental abundances in Molecular cloudS (GEMS). Astronomy and Astrophysics, 2019, 624, A105.	5.1	66
40	Oxygen fractionation in dense molecular clouds. Monthly Notices of the Royal Astronomical Society, 2019, 485, 5777-5789.	4.4	27
41	Quantifying the photoionization cross section of the hydroxyl radical. Journal of Chemical Physics, 2019, 150, 141103.	3.0	6
42	Single-center approach for photodetachment and radiative electron attachment: Comparison with other theoretical approaches and with experimental photodetachment data. Physical Review A, 2019, 99, .	2.5	5
43	A low temperature investigation of the N(² D) + CH ₄ , C ₂ H ₆ and C ₃ H ₈ reactions. Physical Chemistry Chemical Physics, 2019, 21, 6574-6581.	2.8	19
44	The ALMA-PILS survey: First detection of nitrous acid (HONO) in the interstellar medium. Astronomy and Astrophysics, 2019, 623, L13.	5.1	37
45	The photochemical production of aromatics in the atmosphere of Titan. Icarus, 2019, 329, 55-71.	2.5	43
46	The absolute photoionization cross section of the mercapto radical (SH) from threshold up to 15.0 eV. Physical Chemistry Chemical Physics, 2019, 21, 25907-25915.	2.8	8
47	Rate constants for the N(² D) + C ₂ H ₂ reaction over the 50–296 K temperature range. Physical Chemistry Chemical Physics, 2019, 21, 22230-22237.	2.8	15
48	Chemical nitrogen fractionation in dense molecular clouds. Monthly Notices of the Royal Astronomical Society, 2019, 484, 2747-2756.	4.4	29
49	Valence shell threshold photoelectron spectroscopy of C ₃ H _x (<i>x</i> =) Tj ETQq1 1 C	.784314 r 2.8	gBT/Overloc
50	Renner-Teller effects in the photoelectron spectra of CNC, CCN, and HCCN. Journal of Chemical Physics, 2018, 148, 054302.	3.0	9
51	Methyl isocyanate (CH3NCO): an important missing organic in current astrochemical networks. Monthly Notices of the Royal Astronomical Society: Letters, 2018, 473, L59-L63.	3.3	23
52	The photochemical fractionation of nitrogen isotopologues in Titan's atmosphere. Icarus, 2018, 307, 371-379.	2.5	11
53	xmins:mmi="nttp://www.w3.org/1998/Nath/Nath/Nath/Nath/Nath/Nath/Nath/Nath	2.3 †∢ /mml:mo	8 o> <mml:mi>)</mml:mi>
54	Experimental and theoretical threshold photoelectron spectra of methylene. Journal of Chemical Physics, 2018, 149, 224304.	3.0	9

#	Article	IF	Citations
55	Diborene: Generation and Photoelectron Spectroscopy of an Inorganic Biradical. Journal of Physical Chemistry Letters, 2018, 9, 5921-5925.	4.6	19
56	Methyl cyanide (CH3CN) and propyne (CH3CCH) in the low-mass protostar IRAS 16293–2422. Monthly Notices of the Royal Astronomical Society, 2018, 481, 5651-5659.	4.4	20
57	An Approach to Estimate the Binding Energy of Interstellar Species. Astrophysical Journal, Supplement Series, 2018, 237, 9.	7.7	37
58	Binding energies: New values and impact on the efficiency of chemical desorption. Molecular Astrophysics, 2017, 6, 22-35.	1.6	145
59	Communication: On the first ionization threshold of the C2H radical. Journal of Chemical Physics, 2017, 146, 011101.	3.0	8
60	The photochemical fractionation of oxygen isotopologues in Titan's atmosphere. Icarus, 2017, 291, 17-30.	2.5	26
61	Valence shell threshold photoelectron spectroscopy of the CH $<$ i $>$ x $<$ /i $>$ CN ($<$ i $>$ x $<$ /i $>$ = 0-2) and CNC radicals. Journal of Chemical Physics, 2017, 147, 013908.	3.0	14
62	The interstellar chemistry of C3H and C3H2 isomers. Monthly Notices of the Royal Astronomical Society, 2017, 470, 4075-4088.	4.4	58
63	Unveiling the Ionization Energy of the CN Radical. Journal of Physical Chemistry Letters, 2017, 8, 4038-4042.	4.6	12
64	On the reservoir of sulphur in dark clouds: chemistry and elemental abundance reconciled. Monthly Notices of the Royal Astronomical Society, 2017, 469, 435-447.	4.4	129
65	First Detection of Interstellar S ₂ H. Astrophysical Journal Letters, 2017, 851, L49.	8.3	55
66	Synchrotron-based valence shell photoionization of CH radical. Journal of Chemical Physics, 2016, 144, 204307.	3.0	19
67	Methylacetylene (CH3CCH) and propene (C3H6) formation in cold dense clouds: A case of dust grain chemistry. Molecular Astrophysics, 2016, 3-4, 1-9.	1.6	37
68	An Experimental and Theoretical Investigation of the $C(\langle \sup 1 < \sup > D) + N \langle \sup > 2 < \sup > \hat{a}^{\prime}$ $C(\langle \sup > 3 < \sup > P) + N \langle \sup > 2 < \sup > Quenching Reaction at Low Temperature. Journal of Physical Chemistry A, 2016, 120, 2504-2513.$	2.5	32
69	Temperature dependent product yields for the spin forbidden singlet channel of the C(3P) + C2H2 reaction. Chemical Physics Letters, 2016, 659, 70-75.	2.6	19
70	Theoretical and experimental investigations of rate coefficients of $O(1D) + CH4$ at low temperature. Physical Chemistry Chemical Physics, 2016, 18, 29286-29292.	2.8	33
71	Quantum Tunneling Enhancement of the C + H ₂ O and C + D ₂ O Reactions at Low Temperature. Journal of Physical Chemistry Letters, 2016, 7, 3641-3646.	4.6	39
72	A NEW REFERENCE CHEMICAL COMPOSITION FOR TMC-1. Astrophysical Journal, Supplement Series, 2016, 225, 25.	7.7	86

#	Article	IF	CITATIONS
73	The interstellar chemistry of H ₂ C ₃ O isomers. Monthly Notices of the Royal Astronomical Society, 2016, 456, 4101-4110.	4.4	63
74	1D-coupled photochemical model of neutrals, cations and anions in the atmosphere of Titan. Icarus, 2016, 268, 313-339.	2.5	109
75	Low Temperature Rate Constants for the Reactions of O(¹ D) with N ₂ , O ₂ , and Ar. Journal of Physical Chemistry A, 2016, 120, 4838-4844.	2.5	34
76	Detection of CH _{3} SH in protostar IRAS 16293-2422. Monthly Notices of the Royal Astronomical Society, 2016, 458, 1859-1865.	4.4	47
77	THE C(³ P) + NH ₃ REACTION IN INTERSTELLAR CHEMISTRY. II. LOW TEMPERATURE RATE CONSTANTS AND MODELING OF NH, NH ₂ , AND NH ₃ ABUNDANCES IN DENSE INTERSTELLAR CLOUDS. Astrophysical Journal, 2015, 812, 107.	4.5	37
78	THE C(³ P) + NH ₃ REACTION IN INTERSTELLAR CHEMISTRY. I. INVESTIGATION OF THE PRODUCT FORMATION CHANNELS. Astrophysical Journal, 2015, 812, 106.	4.5	37
79	Solid-state formation of CO ₂ via the H ₂ CO + O reaction. Astronomy and Astrophysics, 2015, 577, A2.	5.1	27
80	Photochemical response to the variation of temperature in the 2011â^2012 stratospheric vortex of Saturn. Astronomy and Astrophysics, 2015, 580, A55.	5.1	9
81	Modelling complex organic molecules in dense regions: Eley–Rideal and complex induced reaction. Monthly Notices of the Royal Astronomical Society, 2015, 447, 4004-4017.	4.4	118
82	Threshold photoelectron spectroscopy of the imidogen radical. Journal of Electron Spectroscopy and Related Phenomena, 2015, 203, 25-30.	1.7	22
83	Isotopic fractionation of carbon, deuterium, and nitrogen: a full chemical study. Astronomy and Astrophysics, 2015, 576, A99.	5.1	129
84	Gas-Phase Kinetics of the N + C $<$ sub $>$ 2 $<$ /sub $>$ N Reaction at Low Temperature. Journal of Physical Chemistry A, 2015, 119, 3194-3199.	2.5	10
85	Ab initio study of the C+HNC, N+C2H, H+C2N and H+CNC reactions. Chemical Physics Letters, 2015, 635, 174-179.	2.6	9
86	Synchrotron-based double imaging photoelectron/photoion coincidence spectroscopy of radicals produced in a flow tube: OH and OD. Journal of Chemical Physics, 2015, 142, 164201.	3.0	60
87	Ring-Polymer Molecular Dynamics for the Prediction of Low-Temperature Rates: An Investigation of the C(¹ D) + H ₂ Reaction. Journal of Physical Chemistry Letters, 2015, 6, 4194-4199.	4.6	69
88	A proposed chemical scheme for HCCO formation in cold dense clouds. Monthly Notices of the Royal Astronomical Society: Letters, 2015, 453, L48-L52.	3.3	17
89	Assignment of high-lying bending mode levels in the threshold photoelectron spectrum of NH ₂ : a comparison between pyrolysis and fluorine-atom abstraction radical sources. Physical Chemistry Chemical Physics, 2015, 17, 19507-19514.	2.8	12
90	THE 2014 KIDA NETWORK FOR INTERSTELLAR CHEMISTRY. Astrophysical Journal, Supplement Series, 2015, 217, 20.	7.7	291

#	Article	IF	Citations
91	The neutral photochemistry of nitriles, amines and imines in the atmosphere of Titan. Icarus, 2015, 247, 218-247.	2.5	118
92	The interstellar gas-phase chemistry of HCN and HNC. Monthly Notices of the Royal Astronomical Society, 2014, 443, 398-410.	4.4	90
93	An experimental and theoretical investigation of the N($\langle \sup 4 \rangle + C \rangle +$	2.8	17
94	The fast C(³ P) + CH ₃ OH reaction as an efficient loss process for gas-phase interstellar methanol. RSC Advances, 2014, 4, 26342-26353.	3.6	47
95	Coupling of oxygen, nitrogen, and hydrocarbon species in the photochemistry of Titan's atmosphere. lcarus, 2014, 228, 324-346.	2.5	74
96	The evolution of infalling sulfur species in Titan's atmosphere. Astronomy and Astrophysics, 2014, 572, A58.	5.1	18
97	Low temperature rate constants for the $N(4S) + CH(X2\hat{I}r)$ reaction. Implications for $N2$ formation cycles in dense interstellar clouds. Physical Chemistry Chemical Physics, 2013, 15, 13888.	2.8	34
98	Unusual Low-Temperature Reactivity of Water: The CH + H ₂ O Reaction as a Source of Interstellar Formaldehyde?. Journal of Physical Chemistry Letters, 2013, 4, 2843-2846.	4.6	24
99	CRITICAL REVIEW OF N, N ⁺ , N ⁺ ₂ , N ⁺⁺ , And N ⁺⁺ ₂ MAIN PRODUCTION PROCESSES AND REACTIONS OF RELEVANCE TO TITAN'S ATMOSPHERE. Astrophysical Journal, Supplement Series, 2013, 204, 20.	7.7	118
100	The gas-phase chemistry of carbon chains in dark cloud chemical models. Monthly Notices of the Royal Astronomical Society, 2013, 437, 930-945.	4.4	57
101	Photochemistry of C ₃ H _{<i>p</i>} hydrocarbons in Titan's stratosphere revisited. Astronomy and Astrophysics, 2013, 552, A132.	5.1	65
102	A KINETIC DATABASE FOR ASTROCHEMISTRY (KIDA). Astrophysical Journal, Supplement Series, 2012, 199, 21.	7.7	436
103	Gas-Phase Kinetics of the Hydroxyl Radical Reaction with Allene: Absolute Rate Measurements at Low Temperature, Product Determinations, and Calculations. Journal of Physical Chemistry A, 2012, 116, 10871-10881.	2.5	18
104	Gas-Phase Reaction of Hydroxyl Radical with Hexamethylbenzene. Journal of Physical Chemistry A, 2012, 116, 12189-12197.	2.5	18
105	Elemental nitrogen partitioning in dense interstellar clouds. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 10233-10238.	7.1	73
106	Neutral production of hydrogen isocyanide (HNC) and hydrogen cyanide (HCN) in Titan's upper atmosphere. Astronomy and Astrophysics, 2012, 541, A21.	5.1	56
107	Review of OCS gas-phase reactions in dark cloud chemical models. Monthly Notices of the Royal Astronomical Society, 2012, 421, 1476-1484.	4.4	34
108	Photolysis of methane revisited at 121.6 nm and at 118.2 nm: quantum yields of the primary products, measured by mass spectrometry. Physical Chemistry Chemical Physics, 2011, 13, 8140.	2.8	50

#	Article	IF	Citations
109	Absolute Photoionization Cross Section of the Ethyl Radical in the Range 8–11.5 eV: Synchrotron and Vacuum Ultraviolet Laser Measurements. Journal of Physical Chemistry A, 2011, 115, 5387-5396.	2.5	37
110	Oxygen depletion in dense molecular clouds: a clue to a low O ₂ abundance?. Astronomy and Astrophysics, 2011, 530, A61.	5.1	121
111	Reaction Networks for Interstellar Chemical Modelling: Improvements and Challenges. Space Science Reviews, 2010, 156, 13-72.	8.1	225
112	Gasâ€Phase Kinetics of Hydroxyl Radical Reactions with Alkenes: Experiment and Theory. ChemPhysChem, 2010, 11, 4002-4010.	2.1	45
113	Experimental Revaluation of the Importance of the Abstraction Channel in the Reactions of Monoterpenes with OH Radicals. ChemPhysChem, 2010, 11, 3962-3970.	2.1	15
114	Absolute Photoionization Cross Section of the Methyl Radical. Journal of Physical Chemistry A, 2010, 114, 6515-6520.	2.5	28
115	Gas-Phase Kinetics of Hydroxyl Radical Reactions with C ₃ H ₆ and C ₄ H ₈ : Product Branching Ratios and OH Addition Site-Specificity. Journal of Physical Chemistry A, 2010, 114, 13326-13336.	2.5	29
116	A sensitivity study of the neutral-neutral reactions CÂ+ÂC\$_{sf 3}\$ and CÂ+ÂC\$_{sf 5}\$ in cold dense interstellar clouds. Astronomy and Astrophysics, 2009, 495, 513-521.	5.1	33
117	Kinetics and mechanisms of the reaction of CH with H2O. Chemical Physics Letters, 2009, 480, 21-25.	2.6	30
118	Rate constants and the H atom branching ratio of the reactions of the methylidyne CH(X ² Î) radical with C ₂ H ₂ , C ₂ H ₄ , C ₃ H ₆ (propene) and C ₄ H ₆ (propene). Physical Chemistry Chemical Physics, 2009, 11, 655-664.	2.8	57
119	Rate Constants and H Atom Branching Ratios of the Gas-Phase Reactions of Methylidyne CH(X2Î) Radical with a Series of Alkanes. Journal of Physical Chemistry A, 2006, 110, 13500-13506.	2.5	19
120	Discharge flow tube coupled to time-of-flight mass spectrometry detection for kinetic measurements of interstellar and atmospheric interests. Review of Scientific Instruments, 2005, 76, 053105.	1.3	5
121	Reaction of carbon atoms, C (2p2, 3P) with C3H4(allene and methylacetylene), C3H6(propylene) and C4H8(trans-butene): Overall rate constants and atomic hydrogen branching ratios Physical Chemistry Chemical Physics, 2004, 6, 5396.	2.8	24
122	Experimental and Theoretical Studies of the Methylidyne CH(X2Î) Radical Reaction with Ethane (C2H6): Overall Rate Constant and Product Channels. Journal of Physical Chemistry A, 2003, 107, 5419-5426.	2.5	40
123	Reaction of methylidyne radical with CH4 and H2S: overall rate constant and absolute atomic hydrogen production. Chemical Physics, 2002, 279, 87-99.	1.9	43
124	Determination of the CH + O2 product channels. Faraday Discussions, 2001, 119, 67-77.	3.2	31
125	Reaction of carbon atoms, C (2p2, 3P) with C2H2, C2H4 and C6H6: Overall rate constant and relative atomic hydrogen production. Physical Chemistry Chemical Physics, 2001, 3, 2038-2042.	2.8	60
126	Reaction of Carbon Atoms, C (2p2,3P), with Hydrogen Sulfide, H2S (X1A1):Â Overall Rate Constant and Product Channels. Journal of Physical Chemistry A, 2001, 105, 9893-9900.	2.5	24

#	Article	IF	Citations
127	CN(A2Îiâ†'X2Σ+) chemiluminescence from the N+C2N, N+CCl, and N+C2 reactions under low-pressure fast-flow conditions. Chemical Physics Letters, 2000, 324, 1-6.	2.6	8
128	Fast-flow study of the C+NO and C+O2 reactions. Chemical Physics Letters, 1999, 308, 7-12.	2.6	38
129	Fast-Flow Study of the CH + CH Reaction Products. Journal of Physical Chemistry A, 1999, 103, 6360-6365.	2.5	25
130	Kinetic study of OH radical reactions with chlorobutane isomers at 298K. Chemical Physics Letters, 1998, 296, 350-356.	2.6	9
131	Product Branching Ratios of the CH + NO Reaction. Journal of Physical Chemistry A, 1998, 102, 8124-8130.	2.5	38
132	Spectroscopy of pendular states: Determination of the electric dipole moment of ICl in the X 1Σ+(v″=0) and A 3Ĩ1(v′=6–29) levels. Journal of Chemical Physics, 1997, 106, 477-484.	3.0	22
133	Molecules Oriented by Brute Force. Europhysics News, 1996, 27, 12-15.	0.3	25
134	Photodissociation of ICl molecules oriented in an electric field. Direct determination of the sign of the dipole moment. Chemical Physics Letters, 1995, 244, 195-198.	2.6	15
135	Molecular Axis Orientation by the "Brute Force" Method. The Journal of Physical Chemistry, 1995, 99, 13591-13596.	2.9	21
136	Hyperfine structure of pendular states and the sign of the dipole moment of ICl A state. Journal of Chemical Physics, 1994, 101, 3514-3519.	3.0	14
137	On the B state of ICl molecule: hyperfine structure and hyperfine predissociation. Chemical Physics, 1994, 181, 209-216.	1.9	11
138	Photoinduced chemical reaction in NO2–C2H4Van der Waals complex: detection of vinyloxyl and formyl radicals and hydrogen atoms. Faraday Discussions, 1994, 97, 379-390.	3.2	6
139	Photodissociation dynamics of 3-cyclopentenone: using the impact parameter distribution as a criterion for concertedness. The Journal of Physical Chemistry, 1992, 96, 4188-4195.	2.9	11
140	Comparison between the Photo Induced Chemical Reaction in the NO ₂ – C ₂ H ₄ Gas Phase Reaction. Zeitschrift Fur Elektrotechnik Und Elektrochemie, 1992, 96, 1142-1148.	0.9	8
141	CO product distributions from the visible photodissociation of HCO. Journal of Chemical Physics, 1992, 97, 9036-9045.	3.0	34
142	Photoinduced chemical reaction in the nitrogen dioxide-ethene van der Waals complex. The Journal of Physical Chemistry, 1991, 95, 9192-9196.	2.9	16
143	Photofragment excitation spectroscopy of the formyl (HCO/DCO) radical: Linewidths and predissociation rates of the Alf (Aâ \in) state. Journal of Chemical Physics, 1991, 94, 1796-1802.	3.0	58
144	Observation of a parallel recoil distribution from a perpendicular absorption transition in formyl radicals HCO and DCO. The Journal of Physical Chemistry, 1991, 95, 8013-8018.	2.9	41

#	Article	lF	CITATIONS
145	The photochemistry of the formyl radical: Energy content of the photoproducts. Journal of Chemical Physics, 1990, 92, 6332-6333.	3.0	29