Huynh Vinh Phuc

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1467532/publications.pdf

Version: 2024-02-01

152 papers 3,595 citations

32 h-index 50 g-index

152 all docs

 $\begin{array}{c} 152 \\ \text{docs citations} \end{array}$

152 times ranked

1683 citing authors

#	Article	IF	CITATIONS
1	Layered graphene/GaS van der Waals heterostructure: Controlling the electronic properties and Schottky barrier by vertical strain. Applied Physics Letters, 2018, 113, .	1.5	171
2	Graphene/WSeTe van der Waals heterostructure: Controllable electronic properties and Schottky barrier via interlayer coupling and electric field. Applied Surface Science, 2020, 507, 145036.	3.1	133
3	Interfacial characteristics, Schottky contact, and optical performance of a <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>graphene</mml:mi><mml:mo>/</mml:mo><mm mathvariant="normal">S<mml:mi>Se</mml:mi></mm></mml:math> van der Waals heterostructure: Strain engineering and electric field tunability. Physical Review B. 2020. 102.	nl:msub><	mml:mrow> <
4	Interlayer coupling and electric field tunable electronic properties and Schottky barrier in a graphene/bilayer-GaSe van der Waals heterostructure. Physical Chemistry Chemical Physics, 2018, 20, 17899-17908. diction of electronic, transport, optical, and thermoelectric properties of Janus	1.3	99
5	monolayers <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>In</mml:mi><mml:m< td=""><td>n>2<td>:mn></td></td></mml:m<></mml:msub></mml:mrow></mml:math 	n>2 <td>:mn></td>	:mn>

#	Article	IF	Citations
19	Two-Dimensional Boron Phosphide/MoGe ₂ N ₄ van der Waals Heterostructure: A Promising Tunable Optoelectronic Material. Journal of Physical Chemistry Letters, 2021, 12, 5076-5084.	2.1	54
20	Van der Waals graphene/g-GaSe heterostructure: Tuning the electronic properties and Schottky barrier by interlayer coupling, biaxial strain, and electric gating. Journal of Alloys and Compounds, 2018, 750, 765-773.	2.8	51
21	Tailoring the structural and electronic properties of an SnSe ₂ /MoS ₂ van der Waals heterostructure with an electric field and the insertion of a graphene sheet. Physical Chemistry Chemical Physics, 2019, 21, 22140-22148.	1.3	48
22	Linear and nonlinear magneto-optical properties of monolayer phosphorene. Journal of Applied Physics, 2017, 121, .	1,1	47
23	First principles study of single-layer SnSe2 under biaxial strain and electric field: Modulation of electronic properties. Physica E: Low-Dimensional Systems and Nanostructures, 2019, 111, 201-205.	1.3	44
24	Band alignment and optical features in Janus-MoSeTe/X(OH) < sub>2 < /sub> (X = Ca, Mg) van der Waals heterostructures. Physical Chemistry Chemical Physics, 2019, 21, 25849-25858.	1.3	40
25	xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub><mml:mi>Ga</mml:mi><mml:mn>2mathvariant="normal">S<mml:msub><mml:mi>X</mml:mi><mml:mn>2</mml:mn></mml:msub>(<mml:math) (xmlns:mml="http://www.w3.org/1998/Math</td><td>nl:math></td><td>40</td></tr><tr><td>26</td><td>First principle study on the electronic properties and Schottky contact of graphene adsorbed on MoS 2 monolayer under applied out-plane strain. Surface Science, 2018, 668, 23-28.</td><td>0.8</td><td>39</td></tr><tr><td>27</td><td>Computational prediction of electronic and optical properties of Janus Ga<sub>2</sub>SeTe monolayer. Journal Physics D: Applied Physics, 2020, 53, 455302.</td><td>1.3</td><td>39</td></tr><tr><td>28</td><td>Vertical strain and electric field tunable electronic properties of type-II band alignment C2N/InSe van der Waals heterostructure. Chemical Physics Letters, 2019, 716, 155-161.</td><td>1.2</td><td>38</td></tr><tr><td>29</td><td>xmlns:mml=" 0.784314="" 1="" 10="" 1998="" 492="" 50="" etqq1="" http:="" math="" mathml"="" overlock="" rgbt="" td="" tf="" tj="" www.w3.org=""><mml:mrow><mml:mi>Galn</mml:mi><mml:mi>Xmathvariant="normal">O</mml:mi></mml:mrow> (<mml:math) 0.784314="" 1="" etqq1="" overlo<="" rgbt="" td="" tj=""><td></td><td></td></mml:math)></mml:math)></mml:mn></mml:msub>		
30	2021, 104 Electric-field tunable electronic properties and Schottky contact of graphene/phosphorene heterostructure. Vacuum, 2018, 149, 231-237.	1.6	36
31	First principles study of optical properties of molybdenum disulfide: From bulk to monolayer. Superlattices and Microstructures, 2018, 115, 10-18.	1.4	35
32	NONLINEAR ABSORPTION LINE-WIDTHS IN RECTANGULAR QUANTUM WIRES. Modern Physics Letters B, 2011, 25, 1003-1011.	1.0	33
33	Nonlinear optical absorption in graphene via two-photon absorption process. Optics Communications, 2015, 344, 12-16.	1.0	32
34	Nonlinear optical absorption in parabolic quantum well via two-photon absorption process. Optics Communications, 2015, 335, 37-41.	1.0	32
35	Magneto-optical properties of semi-parabolic plus semi-inverse squared quantum wells. Physica B: Condensed Matter, 2018, 539, 117-122.	1.3	31
36	Linear and nonlinear magneto-optical properties of monolayer MoS2. Journal of Applied Physics, 2018, 123, .	1,1	29

#	Article	IF	Citations
37	Pyramidal core-shell quantum dot under applied electric and magnetic fields. Scientific Reports, 2020, 10, 8961.	1.6	29
38	Effects of different surface functionalization on the electronic properties and contact types of graphene/functionalized-GeC van der Waals heterostructures. Physical Chemistry Chemical Physics, 2020, 22, 7952-7961.	1.3	29
39	Linear and nonlinear phonon-assisted cyclotron resonances in parabolic quantum well under the applied electric field. Superlattices and Microstructures, 2014, 71, 124-133.	1.4	28
40	First principles study on the electronic properties and Schottky barrier of Graphene/InSe heterostructure. Superlattices and Microstructures, 2018, 122, 570-576.	1.4	28
41	Electronic structure, optoelectronic properties and enhanced photocatalytic response of GaN–GeC van der Waals heterostructures: a first principles study. RSC Advances, 2020, 10, 24127-24133.	1.7	28
42	Exciton states in conical quantum dots under applied electric and magnetic fields. Optics and Laser Technology, 2021, 139, 106953.	2.2	28
43	Out-of-plane strain and electric field tunable electronic properties and Schottky contact of graphene/antimonene heterostructure. Superlattices and Microstructures, 2017, 112, 554-560.	1.4	27
44	Linear and nonlinear magneto-optical absorption coefficients and refractive index changes in graphene. Optical Materials, 2017, 69, 328-332.	1.7	26
45	Strain effects on the electronic and optical properties of Van der Waals heterostructure MoS2/WS2: A first-principles study. Physica E: Low-Dimensional Systems and Nanostructures, 2020, 116, 113799.	1.3	26
46	Surface functionalization of GeC monolayer with F and Cl: Electronic and optical properties. Superlattices and Microstructures, 2020, 137, 106359.	1.4	26
47	Surface optical phonon-assisted cyclotron resonance in graphene on polar substrates. Materials Chemistry and Physics, 2015, 163, 116-122.	2.0	25
48	Ab-initio study of electronic and optical properties of biaxially deformed single-layer GeS. Superlattices and Microstructures, 2018, 120, 501-507.	1.4	25
49	Type-I band alignment of BX–ZnO (X = As, P) van der Waals heterostructures as high-efficiency water splitting photocatalysts: a first-principles study. RSC Advances, 2020, 10, 44545-44550.	1.7	25
50	Magneto-optical absorption in silicene and germanene induced by electric and Zeeman fields. Physical Review B, 2020, 101, .	1.1	25
51	Nonlinear optical absorption via two-photon process in <mml:math altimg="si0018.gif" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>GaAs</mml:mi><mml:mo>/</mml:mo><mml:mrow><mml:mrow><mml:msub><mml:mrow><mml 2015,="" 36-41.<="" 82,="" and="" chemistry="" guantum="" lournal="" of="" physics="" solids,="" td="" well.=""><td>:mi>Ga<td>nml:mi></td></td></mml></mml:mrow></mml:msub></mml:mrow></mml:mrow></mml:math>	:mi>Ga <td>nml:mi></td>	nml:mi>
52	Confined optical-phonon-assisted cyclotron resonance in quantum wells via two-photon absorption process. Superlattices and Microstructures, 2016, 94, 51-59.	1.4	24
53	Electronic, optical, and thermoelectric properties of Janus In-based monochalcogenides. Journal of Physics Condensed Matter, 2021, 33, 225503.	0.7	24
54	Phonon-assisted cyclotron resonance in quantum wells via the multiphoton absorption process. Superlattices and Microstructures, 2013, 59, 77-86.	1.4	23

#	Article	IF	CITATIONS
55	LO-phonon-assisted cyclotron resonance in a special asymmetric hyperbolic-type quantum well. Superlattices and Microstructures, 2018, 120, 738-746.	1.4	22
56	Effect of strains on electronic and optical properties of monolayer SnS: Ab-initio study. Physica B: Condensed Matter, 2018, 545, 255-261.	1.3	21
57	Strain and electric field tunable electronic properties of type-II band alignment in van der Waals GaSe/MoSe2 heterostructure. Chemical Physics, 2019, 521, 92-99.	0.9	21
58	Modulation of electronic properties of monolayer InSe through strain and external electric field. Chemical Physics, 2019, 516, 213-217.	0.9	21
59	Confined-acoustic-phonon-assisted cyclotron resonance via multi-photon absorption process in GaAs quantum well structure. Journal of Physics and Chemistry of Solids, 2014, 75, 300-305.	1.9	20
60	The characteristics of defective ZrS <mml:math altimg="si64.svg" display="inline" id="d1e1160" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow></mml:mrow>mml:mrow><mml:mrow></mml:mrow></mml:msub></mml:math> monolayers adsorbed various gases on S-vacancies: A first-principles study. Superlattices and Microstructures, 2020, 140, 106454.	1.4	19
61	Influence of phonon confinement on the optically-detected electrophonon resonance line-width in cylindrical quantum wires. Physica E: Low-Dimensional Systems and Nanostructures, 2014, 56, 102-106.	1.3	18
62	Nonlinear optical absorption via two-photon process in asymmetrical Gaussian potential quantum wells. Superlattices and Microstructures, 2015, 77, 267-275.	1.4	18
63	First principles study of the electronic properties and band gap modulation of two-dimensional phosphorene monolayer: Effect of strain engineering. Superlattices and Microstructures, 2018, 118, 289-297.	1.4	18
64	Phonon-assisted cyclotron resonance in PÃ \P schl-Teller quantum well. Journal of Applied Physics, 2019, 126, .	1,1	18
65	Tailoring electronic properties and Schottky barrier in sandwich heterostructure based on graphene and tungsten diselenide. Diamond and Related Materials, 2019, 94, 129-136.	1.8	18
66	First principles study of structural, optoelectronic and photocatalytic properties of SnS, SnSe monolayers and their van der Waals heterostructure. Chemical Physics, 2020, 539, 110939.	0.9	18
67	Janus Ga2STe monolayer under strain and electric field: Theoretical prediction of electronic and optical properties. Physica E: Low-Dimensional Systems and Nanostructures, 2020, 124, 114358.	1.3	18
68	Electronic and photocatalytic properties of two-dimensional boron phosphide/SiC van der Waals heterostructure with direct type-II band alignment: a first principles study. RSC Advances, 2020, 10, 32027-32033.	1.7	18
69	Structural, elastic, and electronic properties of chemically functionalized boron phosphide monolayer. RSC Advances, 2021, 11, 8552-8558.	1.7	18
70	Rashba-type spin splitting and transport properties of novel Janus XWGeN $<$ sub $>$ 2 $<$ /sub $>$ (X = O, S, Se,) Tj ETQqC	00.ggBT	/Oyerlock 10
71	Cyclotron-resonance line-width due to electron-LO-phonon interaction in cylindrical quantum wires. Superlattices and Microstructures, 2012, 52, 16-23.	1.4	16
72	Refractive index changes and optical absorption involving 1s–1p excitonic transitions in quantum dot under pressure and temperature effects. Applied Physics A: Materials Science and Processing, 2019, 125, 1.	1.1	16

#	Article	IF	CITATIONS
73	Electronic, optical and photocatalytic properties of fully hydrogenated GeC monolayer. Physica E: Low-Dimensional Systems and Nanostructures, 2020, 117, 113857.	1.3	16
74	Nonlinear magneto-optical absorption in a finite semi-parabolic quantum well. Optical and Quantum Electronics, 2021, 53, 1.	1.5	16
75	Nonlinear phonon-assisted cyclotron resonance via two-photon process in asymmetrical Gaussian potential quantum wells. Superlattices and Microstructures, 2015, 86, 111-120.	1.4	15
76	Linear and nonlinear magneto-optical absorption in parabolic quantum well. Optik, 2016, 127, 10519-10526.	1.4	15
77	Tuning the Electronic and Optical Properties of Two-Dimensional Graphene-like \$\$hbox {C}_2hbox {N}\$\$ C 2 N Nanosheet by Strain Engineering. Journal of Electronic Materials, 2018, 47, 4594-4603.	1.0	15
78	Effects of electric field and strain engineering on the electronic properties, band alignment and enhanced optical properties of ZnO/Janus ZrSSe heterostructures. RSC Advances, 2020, 10, 9824-9832.	1.7	15
79	Stacking and electric field effects on the band alignment and electronic properties of the GeC/GaSe heterostructure. Physica E: Low-Dimensional Systems and Nanostructures, 2020, 120, 114050.	1.3	15
80	Electronic properties of GaSe/MoS2 and GaS/MoSe2 heterojunctions from first principles calculations. AIP Advances, 2018, 8, 075207.	0.6	14
81	Strain-Tunable Electronic and Optical Properties of Monolayer Germanium Monosulfide: Ab-Initio Study. Journal of Electronic Materials, 2019, 48, 2902-2909.	1.0	14
82	Investigation of cyclotron-phonon resonance in monolayer molybdenum disulfide. Journal of Physics and Chemistry of Solids, 2019, 125, 74-79.	1.9	14
83	Tri-layered van der Waals heterostructures based on graphene, gallium selenide and molybdenum selenide. Journal of Applied Physics, 2019, 125, .	1.1	13
84	Electronic and optical properties of layered van der Waals heterostructure based on MS ₂ (M = Mo, W) monolayers. Materials Research Express, 2019, 6, 065060.	0.8	13
85	First-principles prediction of chemically functionalized InN monolayers: electronic and optical properties. RSC Advances, 2020, 10, 10731-10739.	1.7	13
86	Linear and nonlinear magneto-optical absorption in a quantum well modulated by intense laser field. Superlattices and Microstructures, 2016, 100, 1112-1119.	1.4	12
87	Nonlinear optical absorption via two-photon process in asymmetrical semi-parabolic quantum wells. Superlattices and Microstructures, 2016, 89, 288-295.	1.4	12
88	Electronic states and optical properties of single donor in GaN conical quantum dot with spherical edge. Superlattices and Microstructures, 2018, 114, 214-224.	1.4	12
89	Strain engineering and electric field tunable electronic properties of Ti ₂ CO ₂ MXene monolayer. Materials Research Express, 2019, 6, 065910.	0.8	12
90	Computational insights into structural, electronic and optical characteristics of GeC/C ₂ N van der Waals heterostructures: effects of strain engineering and electric field. RSC Advances, 2020, 10, 2967-2974.	1.7	12

#	Article	IF	CITATIONS
91	Understanding the electronic properties, contact types and optical performances in graphene/InN heterostructure: Role of electric gating. Diamond and Related Materials, 2020, 106, 107851.	1.8	12
92	One- and two-photon-induced cyclotron–phonon resonance in modified-Pöschl–Teller quantum well. Applied Physics A: Materials Science and Processing, 2019, 125, 1.	1.1	11
93	Electronic structures, and optical and photocatalytic properties of the BP–BSe van der Waals heterostructures. New Journal of Chemistry, 2020, 44, 14964-14969.	1.4	11
94	Outstanding elastic, electronic, transport and optical properties of a novel layered material C ₄ F ₂ : first-principles study. RSC Advances, 2021, 11, 23280-23287.	1.7	11
95	LO-phonon-assisted cyclotron resonance linewidth via multiphoton absorption process in cylindrical quantum wire. Superlattices and Microstructures, 2013, 60, 508-515.	1.4	10
96	Influence of phonon confinement on the optically-detected electrophonon resonance linewidth in rectangular quantum wires. Journal of the Korean Physical Society, 2013, 62, 305-310.	0.3	10
97	First-principles study of W, N, and O adsorption on TiB2(0001) surface with disordered vacancies. Superlattices and Microstructures, 2018, 123, 414-426.	1.4	10
98	Tuning the electronic properties of GaS monolayer by strain engineering and electric field. Chemical Physics, 2019, 524, 101-105.	0.9	10
99	Schottky anomaly and Néel temperature treatment of possible perturbed hydrogenated AA-stacked graphene, SiC, and h-BN bilayers. RSC Advances, 2019, 9, 41569-41580.	1.7	10
100	Tuning the electronic, photocatalytic and optical properties of hydrogenated InN monolayer by biaxial strain and electric field. Chemical Physics, 2020, 532, 110677.	0.9	10
101	Low-energy bands, optical properties, and spin/valley-Hall conductivity of silicene and germanene. Journal of Materials Science, 2020, 55, 14848-14857.	1.7	10
102	Electronic structure of vertically coupled quantum dot-ring heterostructures under applied electromagnetic probes. A finite-element approach. Scientific Reports, 2021, 11, 4015.	1.6	10
103	Theoretical insights into tunable electronic and optical properties of Janus Al2SSe monolayer through strain and electric field. Optik, 2021, 238, 166761.	1.4	10
104	Novel Janus GalnX $<$ sub $>3<$ /sub $>$ (X = S, Se, Te) single-layers: first-principles prediction on structural, electronic, and transport properties. RSC Advances, 2022, 12, 7973-7979.	1.7	10
105	Nonlinear phonon-assisted cyclotron resonance via two-photon process in parabolic quantum well. Superlattices and Microstructures, 2015, 83, 755-765.	1.4	9
106	SA-phonon-assisted cyclotron resonance via two-photon process in graphene on GaAs substrate. Superlattices and Microstructures, 2015, 88, 518-526.	1.4	9
107	Linear and nonlinear magneto-optical absorption in a triangular quantum well. International Journal of Modern Physics B, 2018, 32, 1850162.	1.0	9
108	Fundamental exciton transitions in SiO2/Si/SiO2 cylindrical core/shell quantum dot. Journal of Applied Physics, 2018, 124, 144303.	1.1	9

7

#	Article	IF	Citations
109	Phonon-assisted cyclotron resonance in special symmetric quantum wells. Applied Physics A: Materials Science and Processing, 2018, 124, 1.	1.1	9
110	Excitonic nonlinear optical properties in AlN/GaN spherical core/shell quantum dots under pressure. MRS Communications, 2019, 9, 663-669.	0.8	9
111	Optical Absorption in Periodic Graphene Superlattices: Perpendicular Applied Magnetic Field and Temperature Effects. Annalen Der Physik, 2018, 530, 1700414.	0.9	8
112	Strain engineering of the electro-optical and photocatalytic properties of single-layered Janus MoSSe: First principles calculations. Optik, 2020, 224, 165503.	1.4	8
113	First-principles study of structure, electronic properties and stability of tungsten adsorption on TiC(111) surface with disordered vacancies. Physica B: Condensed Matter, 2017, 526, 28-36.	1.3	7
114	First-principles study of electronic properties of AB-stacked bilayer armchair graphene nanoribbons under out-plane strain. Indian Journal of Physics, 2018, 92, 447-452.	0.9	7
115	Electronic structure and optical performance of PbI2/SnSe2 heterostructure. Chemical Physics, 2020, 533, 110736.	0.9	7
116	Oscillations of the electron energy loss rate in two-dimensional transition-metal dichalcogenides in the presence of a quantizing magnetic field. Physical Review B, 2021, 103, .	1.1	7
117	A theoretical study on elastic, electronic, transport, optical and thermoelectric properties of Janus SnSO monolayer. Journal Physics D: Applied Physics, 2021, 54, 475306.	1.3	7
118	Anisotropy of effective masses induced by strain in Janus MoSSe and WSSe monolayers. Physica E: Low-Dimensional Systems and Nanostructures, 2021, 134, 114826.	1.3	7
119	Calculation of the nonlinear absorption coefficient of a strong electromagnetic wave by confined electrons in quantum wires. Computational Materials Science, 2010, 49, S260-S262.	1.4	6
120	Tunable electronic properties of InSe by biaxial strain: from bulk to single-layer. Materials Research Express, 2019, 6, 115002.	0.8	6
121	One- and two-photon-induced magneto-optical properties of hyperbolic-type quantum wells. Optik, 2019, 185, 1261-1269.	1.4	6
122	Computational understanding of the band alignment engineering in PbI2/PtS2 heterostructure: Effects of electric field and vertical strain. Physica E: Low-Dimensional Systems and Nanostructures, 2020, 115, 113706.	1.3	6
123	Effects of La and Ce doping on electronic structure and optical properties of janus MoSSe monolayer. Superlattices and Microstructures, 2021, 151, 106841.	1.4	6
124	Quantum magnetotransport properties of silicene: Influence of the acoustic phonon correction. Physical Review B, 2021, 104, .	1.1	6
125	Strain and electric field engineering of band alignment in InSe/Ca(OH)2 heterostructure. Chemical Physics Letters, 2019, 732, 136649.	1.2	5
126	Opening a band gap in graphene by C–C bond alternation: a tight binding approach. Materials Research Express, 2019, 6, 045605.	0.8	5

#	Article	IF	CITATIONS
127	Theoretical prediction of electronic and optical properties of haft-hydrogenated InN monolayers. Superlattices and Microstructures, 2020, 142, 106519.	1.4	5
128	Structural, electronic, and transport properties of Janus GalnX $\langle sub \rangle 2 \langle sub \rangle$ (X = S, Se, Te) monolayers: first-principles study. Journal of Physics Condensed Matter, 2022, 34, 045501.	0.7	5
129	Electronic structure and band alignment of Blue Phosphorene/Janus ZrSSe heterostructure: A first principles study. Physica E: Low-Dimensional Systems and Nanostructures, 2020, 124, 114369.	1.3	4
130	Intra- and inter-band magneto-optical absorption in monolayer WS <mml:math altimg="si5.svg" display="inline" id="d1e213" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow></mml:mrow><mml:mrow></mml:mrow></mml:msub></mml:math> . Physica E: Low-Dimensional Systems and Nanostructures, 2020, 124, 114315.	1.3	4
131	Low-energy bands and optical properties of monolayer WS2. Optik, 2020, 209, 164581.	1.4	4
132	Magneto-optical absorption in Pöschl–Teller-like quantum well. Physica B: Condensed Matter, 2020, 592, 412279.	1.3	4
133	Power loss of hot Dirac fermions in silicene and its near equivalence with graphene. Semiconductor Science and Technology, 2021, 36, 025005.	1.0	4
134	First-principles insights onto structural, electronic and optical properties of Janus monolayers CrXO ($X = S$, Se, Te). RSC Advances, 2021, 11, 39672-39679.	1.7	4
135	Donor Impurity-Related Optical Absorption in GaAs Elliptic-Shaped Quantum Dots. Journal of Nanomaterials, 2017, 2017, 1-18.	1.5	3
136	Magneto-optical absorption in quantum dot via two-photon absorption process. Optik, 2018, 173, 263-270.	1.4	3
137	Strain and electric field engineering of electronic structures and Schottky contact of layered graphene/Ca(OH)2 heterostructure. Superlattices and Microstructures, 2019, 133, 106185.	1.4	3
138	Cyclotron resonance linewidth in GaAs/AlAs quantum wires. Journal of the Korean Physical Society, 2012, 60, 1381-1385.	0.3	2
139	Theoretical investigation of hot electron cooling process in GaAs/AlAs cylindrical quantum wire under the influence of an intense electromagnetic wave. Optical and Quantum Electronics, 2018, 50, 1.	1.5	2
140	Electric field tuning of dynamical dielectric function in phosphorene. Chemical Physics Letters, 2019, 731, 136606.	1.2	2
141	Cyclotron–phonon resonance line-width in monolayer silicene. Superlattices and Microstructures, 2019, 131, 117-123.	1.4	2
142	Two-photon induced magneto-optical absorption in finite semi-parabolic quantum wells. Superlattices and Microstructures, 2019, 130, 446-453.	1.4	2
143	Theoretical prediction of Janus PdXO (X = S, Se, Te) monolayers: structural, electronic, and transport properties. RSC Advances, 2022, 12, 12971-12977.	1.7	2
144	Magneto-optical absorption properties of topological insulator thin films. Journal of Physics Condensed Matter, 2022, 34, 305702.	0.7	2

#	Article	IF	CITATIONS
145	Magneto-optical properties of gapped-graphene. Physica E: Low-Dimensional Systems and Nanostructures, 2022, 144, 115415.	1.3	2
146	Nonpolar Optical Phonon-Assisted Cyclotron Resonance Via Multiphoton Absorption Process in Cylindrical Quantum Wire. Integrated Ferroelectrics, 2014, 155, 1-8.	0.3	1
147	Magneto-electronic perturbation effects on the electronic phase of phosphorene. Materials Research Express, 2019, 6, 026102.	0.8	1
148	Nonlinear optical absorption and cyclotron–impurity resonance in monolayer silicene. Physica E: Low-Dimensional Systems and Nanostructures, 2019, 105, 168-173.	1.3	0
149	Stark and Zeeman effects on the topological phase and transport properties of topological crystalline insulator thin films. Physical Chemistry Chemical Physics, 2020, 22, 12129-12139.	1.3	0
150	Effects of charged impurity scattering and substrate on the magneto-optical absorption properties in gapped monolayer graphene. Physica E: Low-Dimensional Systems and Nanostructures, 2020, 121, 114149.	1.3	0
151	Electrical and thermal properties of strain- and electric field-induced topological crystalline insulators. Chemical Physics, 2020, 536, 110845.	0.9	0
152	Phonon-drag thermopower and thermoelectric performance of MoS\$_2\$ monolayer in quantizing magnetic field. Journal of Physics Condensed Matter, 0, , .	0.7	0