Joseph C Sun

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1467436/publications.pdf

Version: 2024-02-01

66343 54911 11,553 85 42 84 citations h-index g-index papers 86 86 86 15691 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	The Immunological Genome Project: networks of gene expression in immune cells. Nature Immunology, 2008, 9, 1091-1094.	14.5	1,576
2	Adaptive immune features of natural killer cells. Nature, 2009, 457, 557-561.	27.8	1,358
3	Defining trained immunity and its role in health and disease. Nature Reviews Immunology, 2020, 20, 375-388.	22.7	1,345
4	The Transcription Factors T-bet and Eomes Control Key Checkpoints of Natural Killer Cell Maturation. Immunity, 2012, 36, 55-67.	14.3	623
5	NK cell development, homeostasis and function: parallels with CD8+ T cells. Nature Reviews Immunology, 2011, 11, 645-657.	22.7	557
6	ILC1 Confer Early Host Protection at Initial Sites of Viral Infection. Cell, 2017, 171, 795-808.e12.	28.9	352
7	Natural Killer Cell Memory. Immunity, 2015, 43, 634-645.	14.3	280
8	Trained immunity, tolerance, priming and differentiation: distinct immunological processes. Nature Immunology, 2021, 22, 2-6.	14.5	274
9	Molecular definition of the identity and activation of natural killer cells. Nature Immunology, 2012, 13, 1000-1009.	14.5	265
10	Proinflammatory cytokine signaling required for the generation of natural killer cell memory. Journal of Experimental Medicine, 2012, 209, 947-954.	8. 5	253
11	BNIP3- and BNIP3L-Mediated Mitophagy Promotes the Generation of Natural Killer Cell Memory. Immunity, 2015, 43, 331-342.	14.3	240
12	Adipose-Resident Group 1 Innate Lymphoid Cells Promote Obesity-Associated Insulin Resistance. Immunity, 2016, 45, 428-441.	14.3	232
13	Nfil3 is crucial for development of innate lymphoid cells and host protection against intestinal pathogens. Journal of Experimental Medicine, 2014, 211, 1723-1731.	8.5	219
14	Epigenetic control of innate and adaptive immune memory. Nature Immunology, 2018, 19, 963-972.	14.5	217
15	NK Cells and Immune "Memory― Journal of Immunology, 2011, 186, 1891-1897.	0.8	176
16	Type I IFN promotes NK cell expansion during viral infection by protecting NK cells against fratricide. Journal of Experimental Medicine, 2016, 213, 225-233.	8. 5	175
17	A Single miRNA-mRNA Interaction Affects the Immune Response in a Context- and Cell-Type-Specific Manner. Immunity, 2015, 43, 52-64.	14.3	159
18	The RAG Recombinase Dictates Functional Heterogeneity and Cellular Fitness in Natural Killer Cells. Cell, 2014, 159, 94-107.	28.9	147

#	Article	IF	Citations
19	The transcription factor Zbtb32 controls the proliferative burst of virus-specific natural killer cells responding to infection. Nature Immunology, 2014, 15, 546-553.	14.5	132
20	Natural killer cells remember: An evolutionary bridge between innate and adaptive immunity?. European Journal of Immunology, 2009, 39, 2059-2064.	2.9	130
21	Development and maturation of natural killer cells. Current Opinion in Immunology, 2016, 39, 82-89.	5.5	127
22	Nfil3-independent lineage maintenance and antiviral response of natural killer cells. Journal of Experimental Medicine, 2013, 210, 2981-2990.	8.5	123
23	Homeostatic proliferation generates long-lived natural killer cells that respond against viral infection. Journal of Experimental Medicine, 2011, 208, 357-368.	8.5	122
24	The IRE1 endoplasmic reticulum stress sensor activates natural killer cell immunity in part by regulating c-Myc. Nature Immunology, 2019, 20, 865-878.	14.5	120
25	Cutting Edge: Stage-Specific Requirement of IL-18 for Antiviral NK Cell Expansion. Journal of Immunology, 2015, 194, 1408-1412.	0.8	104
26	Tolerance of NK cells encountering their viral ligand during development. Journal of Experimental Medicine, 2008, 205, 1819-1828.	8.5	103
27	Stage-specific regulation of natural killer cell homeostasis and response against viral infection by microRNA-155. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 6967-6972.	7.1	101
28	Immune memory redefined: characterizing the longevity of natural killer cells. Immunological Reviews, 2010, 236, 83-94.	6.0	100
29	Transcription Factor IRF8 Orchestrates the Adaptive Natural Killer Cell Response. Immunity, 2018, 48, 1172-1182.e6.	14.3	100
30	Immunological memory within the innate immune system. EMBO Journal, 2014, 33, 1295-303.	7.8	98
31	Natural Killer Cells: From Innate to Adaptive Features. Annual Review of Immunology, 2021, 39, 417-447.	21.8	85
32	The RNA m6A reader YTHDF2 controls NK cell antitumor and antiviral immunity. Journal of Experimental Medicine, 2021, 218, .	8.5	82
33	Cutting Edge: IL-15-Independent NK Cell Response to Mouse Cytomegalovirus Infection. Journal of Immunology, 2009, 183, 2911-2914.	0.8	80
34	Mouse cytomegalovirus-experienced ILC1s acquire a memory response dependent on the viral glycoprotein m12. Nature Immunology, 2019, 20, 1004-1011.	14.5	75
35	Proapoptotic Bim regulates antigen-specific NK cell contraction and the generation of the memory NK cell pool after cytomegalovirus infection. Journal of Experimental Medicine, 2014, 211, 1289-1296.	8.5	71
36	Core-binding factor \hat{l}^2 and Runx transcription factors promote adaptive natural killer cell responses. Science Immunology, 2017, 2, .	11.9	70

#	Article	lF	Citations
37	Ly49H signaling through DAP10 is essential for optimal natural killer cell responses to mouse cytomegalovirus infection. Journal of Experimental Medicine, 2009, 206, 807-817.	8.5	69
38	Memory responses of natural killer cells. Seminars in Immunology, 2017, 31, 11-19.	5.6	66
39	Clonal expansion of innate and adaptive lymphocytes. Nature Reviews Immunology, 2020, 20, 694-707.	22.7	66
40	Cutting Edge: Viral Infection Breaks NK Cell Tolerance to "Missing Self― Journal of Immunology, 2008, 181, 7453-7457.	0.8	63
41	Atg5 Is Essential for the Development and Survival of Innate Lymphocytes. Cell Reports, 2016, 15, 1910-1919.	6.4	60
42	Lactate dehydrogenase A-dependent aerobic glycolysis promotes natural killer cell anti-viral and anti-tumor function. Cell Reports, 2021, 35, 109210.	6.4	50
43	The Natural Selection of Herpesviruses and Virus-Specific NK Cell Receptors. Viruses, 2009, 1, 362-382.	3.3	48
44	Transcription factor ID2 prevents E proteins from enforcing a na \tilde{A} -ve T lymphocyte gene program during NK cell development. Science Immunology, 2018, 3, .	11.9	47
45	Cytomegalovirus Infection Drives Avidity Selection of Natural Killer Cells. Immunity, 2019, 50, 1381-1390.e5.	14.3	42
46	The transcription factor $Bcl11b$ promotes both canonical and adaptive NK cell differentiation. Science lmmunology, $2021, 6, .$	11.9	42
47	Is There Natural Killer Cell Memory and Can It Be Harnessed by Vaccination?. Cold Spring Harbor Perspectives in Biology, 2018, 10, a029538.	5.5	41
48	Fate mapping of single NK cells identifies a type 1 innate lymphoid-like lineage that bridges innate and adaptive recognition of viral infection. Immunity, 2021, 54, 2288-2304.e7.	14.3	39
49	Cell-intrinsic adrenergic signaling controls the adaptive NK cell response to viral infection. Journal of Experimental Medicine, 2020, 217, .	8.5	36
50	Comparing the Kinetics of NK Cells, CD4, and CD8 T Cells in Murine Cytomegalovirus Infection. Journal of Immunology, 2011, 187, 1385-1392.	0.8	35
51	Innate immunological memory: from plants to animals. Current Opinion in Immunology, 2020, 62, 69-78.	5.5	35
52	Divergent Role for STAT5 in the Adaptive Responses of Natural Killer Cells. Cell Reports, 2020, 33, 108498.	6.4	32
53	Deconvoluting global cytokine signaling networks in natural killer cells. Nature Immunology, 2021, 22, 627-638.	14.5	31
54	Re-educating natural killer cells. Journal of Experimental Medicine, 2010, 207, 2049-2052.	8.5	30

#	Article	IF	CITATIONS
55	Interleukin-17D and Nrf2 mediate initial innate immune cell recruitment and restrict MCMV infection. Scientific Reports, 2018, 8, 13670.	3.3	29
56	The widening spectrum of immunological memory. Current Opinion in Immunology, 2018, 54, 42-49.	5 . 5	28
57	Cutting Edge: Divergent Requirement of T-Box Transcription Factors in Effector and Memory NK Cells. Journal of Immunology, 2018, 200, 1977-1981.	0.8	25
58	Human cytomegalovirus expands a CD8 ⁺ T cell population with loss of <i>BCL11B</i> expression and gain of NK cell identity. Science Immunology, 2021, 6, eabe6968.	11.9	25
59	Alloreactive T cells deficient of the short-chain fatty acid receptor GPR109A induce less graft-versus-host disease. Blood, 2022, 139, 2392-2405.	1.4	24
60	Transcriptional Control of NK Cells. Current Topics in Microbiology and Immunology, 2015, 395, 1-36.	1.1	23
61	NK Cell Responses Redefine Immunological Memory. Journal of Immunology, 2016, 197, 2963-2970.	0.8	23
62	Non-redundant ISGF3 Components Promote NK Cell Survival in an Auto-regulatory Manner during Viral Infection. Cell Reports, 2018, 24, 1949-1957.e6.	6.4	23
63	Epitope-Specific Vaccination Limits Clonal Expansion of Heterologous Naive T Cells during Viral Challenge. Cell Reports, 2016, 17, 636-644.	6.4	22
64	A Hyper-IgM Syndrome Mutation in Activation-Induced Cytidine Deaminase Disrupts G-Quadruplex Binding and Genome-wide Chromatin Localization. Immunity, 2020, 53, 952-970.e11.	14.3	21
65	Spatial and temporal coordination of antiviral responses by group 1 <scp>ILC</scp> s. Immunological Reviews, 2018, 286, 23-36.	6.0	18
66	Memory responses of innate lymphocytes and parallels with T cells. Seminars in Immunopathology, 2018, 40, 343-355.	6.1	18
67	Progranulin promotes melanoma progression by inhibiting natural killer cell recruitment to the tumor microenvironment. Cancer Letters, 2019, 465, 24-35.	7.2	18
68	Epigenetic regulation of natural killer cell memory*. Immunological Reviews, 2022, 305, 90-110.	6.0	17
69	Innate Lymphoid Cell Immunometabolism. Journal of Molecular Biology, 2017, 429, 3577-3586.	4.2	16
70	Dynamic variability in SHP-1 abundance determines natural killer cell responsiveness. Science Signaling, 2021, 14, eabe5380.	3.6	16
71	Novel molecular mechanism for generating NKâ€cell fitness and memory. European Journal of Immunology, 2015, 45, 1906-1915.	2.9	15
72	Virus-specific NK cell memory. Journal of Experimental Medicine, 2021, 218, .	8.5	15

#	Article	IF	CITATIONS
73	Cutting Edge: STAT1-Mediated Epigenetic Control of Rsad2 Promotes Clonal Expansion of Antiviral NK Cells. Journal of Immunology, 2020, 205, 21-25.	0.8	12
74	Distinct Requirements of CHD4 during B Cell Development and Antibody Response. Cell Reports, 2019, 27, 1472-1486.e5.	6.4	11
75	Natural killer cell responses to emerging viruses of zoonotic origin. Current Opinion in Virology, 2020, 44, 97-111.	5. 4	11
76	Cutting Edge: Heterogeneity in Cell Age Contributes to Functional Diversity of NK Cells. Journal of Immunology, 2021, 206, 465-470.	0.8	7
77	Tracking Effector and Memory NK Cells During MCMV Infection. Methods in Molecular Biology, 2016, 1441, 1-12.	0.9	6
78	Nilabh Shastri 1952–2021. Nature Immunology, 2021, 22, 533-534.	14.5	4
79	Human Cytomegalovirus Infection Promotes Expansion of a Functionally Superior Cytoplasmic CD3+ NK Cell Subset with a Bcl11b-Regulated T Cell Signature. Journal of Immunology, 2021, 207, 2534-2544.	0.8	4
80	Coordinated Viral Control by Cytotoxic Lymphocytes Ensures Optimal Adaptive NK Cell Responses. Cell Reports, 2020, 32, 108186.	6.4	3
81	Styk1 expression is a hallmark of murine NK cells and other NK1.1 ⁺ subsets but is dispensable for NKâ€cell development and effector functions. European Journal of Immunology, 2019, 49, 677-685.	2.9	2
82	Retrogenic Color-Barcoding for Fate Mapping of Single Innate Lymphocytes. Methods in Molecular Biology, 2022, 2463, 117-127.	0.9	2
83	Determination of the Fate and Function of Innate Lymphoid Cells Following Adoptive Transfer of Innate Lymphoid Cell Precursors. Methods in Molecular Biology, 2018, 1799, 109-119.	0.9	1
84	Natural Killer Cell Response against Viruses. , 0, , 197-207.		1
85	Editorial overview: Innate immunity from a phylogenic perspective. Current Opinion in Immunology, 2020, 62, iii-v.	5 . 5	0