
Hai-Ning Du

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1467243/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The methyltransferase SETD3-mediated histidine methylation: Biological functions and potential implications in cancers. Biochimica Et Biophysica Acta: Reviews on Cancer, 2021, 1875, 188465.	7.4	11
2	Oâ€GlcNAcylation of TDPâ€43 suppresses proteinopathies and promotes TDPâ€43's mRNA splicing activity. EMBO Reports, 2021, 22, e51649.	4.5	15
3	Set2â€mediated H3K36 methylation states redundantly repress the production of antisense transcripts: role in transcription regulation. FEBS Open Bio, 2021, 11, 2225-2235.	2.3	2
4	Derivation of feeder-free human extended pluripotent stem cells. Stem Cell Reports, 2021, 16, 1686-1696.	4.8	15
5	Guidelines for the use and interpretation of assays for monitoring autophagy (4th) Tj ETQq1 1 0.784314 rgBT /Ov	verlock 10	Tf 50 582 1,430
6	Transcriptional memory of different types of genes is generally maintained under various environmental conditions in Saccharomyces cerevisiae. Journal of Genetics and Genomics, 2021, , .	3.9	1
7	The Paf1 complex transcriptionally regulates the mitochondrial-anchored protein Atg32 leading to activation of mitophagy. Autophagy, 2020, 16, 1366-1379.	9.1	26
8	Rph1 coordinates transcription of ribosomal protein genes and ribosomal RNAs to control cell growth under nutrient stress conditions. Nucleic Acids Research, 2020, 48, 8360-8373.	14.5	3
9	Old factors, new players: transcriptional regulation of autophagy. Autophagy, 2020, 16, 956-958.	9.1	11
10	A methylation-phosphorylation switch determines Plk1 kinase activity and function in DNA damage repair. Science Advances, 2019, 5, eaau7566.	10.3	52
11	MiR-15b and miR-322 inhibit SETD3 expression to repress muscle cell differentiation. Cell Death and Disease, 2019, 10, 183.	6.3	20
12	USP2a Supports Metastasis by Tuning TGF-β Signaling. Cell Reports, 2018, 22, 2442-2454.	6.4	49
13	Pathological hydrogen peroxide triggers the fibrillization of wild-type SOD1 via sulfenic acid modification of Cys-111. Cell Death and Disease, 2018, 9, 67.	6.3	49
14	Cell cycle-dependent degradation of the methyltransferase SETD3 attenuates cell proliferation and liver tumorigenesis. Journal of Biological Chemistry, 2017, 292, 9022-9033.	3.4	43
15	Pathological concentration of zinc dramatically accelerates abnormal aggregation of full-length human Tau and thereby significantly increases Tau toxicity in neuronal cells. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2017, 1863, 414-427.	3.8	60
16	Gcn5-mediated Rph1 acetylation regulates its autophagic degradation under DNA damage stress. Nucleic Acids Research, 2017, 45, 5183-5197.	14.5	27
17	Induction of INKIT by Viral Infection Negatively Regulates Antiviral Responses through Inhibiting Phosphorylation of p65 and IRF3. Cell Host and Microbe, 2017, 22, 86-98.e4.	11.0	30
18	Polo-like Kinase-1 Regulates Myc Stabilization and Activates a Feedforward Circuit Promoting Tumor Cell Survival. Molecular Cell, 2016, 64, 493-506.	9.7	123

Hai-Ning Du

#	Article	IF	CITATIONS
19	Construction of a series of pCS2+ backbone-based Gateway vectors for overexpressing various tagged proteins in vertebrates. Acta Biochimica Et Biophysica Sinica, 2016, 48, 1128-1134.	2.0	5
20	Transcription, DNA Damage and Beyond: The Roles of Histone Ubiquitination and Deubiquitination. Current Protein and Peptide Science, 2012, 13, 447-466.	1.4	19
21	Charge-based Interaction Conserved within Histone H3 Lysine 4 (H3K4) Methyltransferase Complexes Is Needed for Protein Stability, Histone Methylation, and Gene Expression. Journal of Biological Chemistry, 2012, 287, 2652-2665.	3.4	40
22	A Nucleosome Surface Formed by Histone H4, H2A, and H3 Residues Is Needed for Proper Histone H3 Lys36 Methylation, Histone Acetylation, and Repression of Cryptic Transcription. Journal of Biological Chemistry, 2010, 285, 11704-11713.	3.4	35
23	A Conserved Interaction between the SDI Domain of Bre2 and the Dpy-30 Domain of Sdc1 Is Required for Histone Methylation and Gene Expression*. Journal of Biological Chemistry, 2010, 285, 595-607.	3.4	49
24	Polyubiquitination of the demethylase Jhd2 controls histone methylation and gene expression. Genes and Development, 2009, 23, 951-962.	5.9	92
25	HISTONE MONOUBIQUITINATION1 Interacts with a Subunit of the Mediator Complex and Regulates Defense against Necrotrophic Fungal Pathogens in <i>Arabidopsis</i> Â. Plant Cell, 2009, 21, 1000-1019.	6.6	232
26	Assembly of α-synuclein fibrils in nanoscale studied by peptide truncation and AFM. Biochemical and Biophysical Research Communications, 2008, 368, 388-394.	2.1	10
27	In Vitro Histone Methyltransferase Assay. Cold Spring Harbor Protocols, 2008, 2008, pdb.prot4939.	0.3	13
28	Controlling histone methylation via trans-histone pathways. Epigenetics, 2008, 3, 237-242.	2.7	29
29	Plk1- and β-TrCP–dependent degradation of Bora controls mitotic progression. Journal of Cell Biology, 2008, 181, 65-78.	5.2	116
30	Histone H3 K36 methylation is mediated by a trans-histone methylation pathway involving an interaction between Set2 and histone H4. Genes and Development, 2008, 22, 2786-2798.	5.9	64
31	Acceleration of \hat{I}_{\pm} -synuclein aggregation by homologous peptides. FEBS Letters, 2006, 580, 3657-3664.	2.8	27
32	Study of the disassembly–assembly process of α-synuclein fibrils by in situ atomic force microscopy. Micron, 2006, 37, 675-679.	2.2	7
33	Epitaxial Growth of Peptide Nanofilaments on Inorganic Surfaces: Effects of Interfacial Hydrophobicity/Hydrophilicity. Angewandte Chemie - International Edition, 2006, 45, 3611-3613.	13.8	77
34	Inhibition of αâ€synuclein fibrillization by dopamine analogs via reaction with the amino groups of αâ€synuclein. FEBS Journal, 2005, 272, 3661-3672.	4.7	101
35	Effects of segment substitution on the structure and stability of immunoglobulin G binding domain of streptococcal protein G. Biopolymers, 2005, 79, 9-17.	2.4	0
36	An Unstructured Region is Required by GAV Homologue for the Fibrillization of Host Proteins. Protein Journal, 2005, 24, 209-218.	1.6	3

Hai-Ning Du

#	Article	IF	CITATIONS
37	Study of protein-protein interactions by fluorescence of tryptophan analogs: Application to immunoglobulin G binding domain of streptococcal protein G. Biopolymers, 2003, 72, 116-122.	2.4	16
38	A Peptide Motif Consisting of Glycine, Alanine, and Valine Is Required for the Fibrillization and Cytotoxicity of Human α-Synucleinâ€. Biochemistry, 2003, 42, 8870-8878.	2.5	153
39	Structural transformation and aggregation of human ?-synuclein in trifluoroethanol: Non-amyloid component sequence is essential and ?-sheet formation is prerequisite to aggregation. Biopolymers, 2002, 64, 221-226.	2.4	66
40	Novel Secondary Structure of Calcitonin in Solid State as Revealed by Circular Dichroism Spectroscopy. Chinese Journal of Chemistry, 2002, 20, 697-698.	4.9	0
41	?-Sheet structure formation of proteins in solid state as revealed by circular dichroism spectroscopy. Biopolymers, 2001, 62, 15-21.	2.4	69
42	Alpha-to-beta structural transformation of ovalbumin: heat and pH effects. , 2000, 19, 177-183.		83
43	SETD3 Methyltransferase Regulates PLK1 Expression to Promote In Situ Hepatic Carcinogenesis. Frontiers in Oncology, 0, 12, .	2.8	1