David Pellman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/146676/publications.pdf

Version: 2024-02-01

62 papers 15,363 citations

57758 44 h-index 62 g-index

84 all docs

84 docs citations

84 times ranked 19775 citing authors

#	Article	IF	CITATIONS
1	Absolute quantification of somatic DNA alterations in human cancer. Nature Biotechnology, 2012, 30, 413-421.	17.5	1,710
2	A mechanism linking extra centrosomes to chromosomal instability. Nature, 2009, 460, 278-282.	27.8	1,254
3	DNA breaks and chromosome pulverization from errors in mitosis. Nature, 2012, 482, 53-58.	27.8	1,051
4	Cytokinesis failure generating tetraploids promotes tumorigenesis in p53-null cells. Nature, 2005, 437, 1043-1047.	27.8	954
5	Chromothripsis from DNA damage inÂmicronuclei. Nature, 2015, 522, 179-184.	27.8	924
6	From polyploidy to aneuploidy, genome instability and cancer. Nature Reviews Molecular Cell Biology, 2004, 5, 45-54.	37.0	721
7	Causes and consequences of aneuploidy in cancer. Nature Reviews Genetics, 2012, 13, 189-203.	16.3	700
8	Tetraploidy, aneuploidy and cancer. Current Opinion in Genetics and Development, 2007, 17, 157-162.	3.3	588
9	Mechanisms to suppress multipolar divisions in cancer cells with extra centrosomes. Genes and Development, 2008, 22, 2189-2203.	5.9	562
10	Polyploidy can drive rapid adaptation in yeast. Nature, 2015, 519, 349-352.	27.8	376
11	Oncogene-like induction of cellular invasion from centrosome amplification. Nature, 2014, 510, 167-171.	27.8	360
12	Genome-wide genetic analysis of polyploidy in yeast. Nature, 2006, 443, 541-547.	27.8	328
13	Parallel genome-scale loss of function screens in 216 cancer cell lines for the identification of context-specific genetic dependencies. Scientific Data, 2014, 1, 140035.	5.3	328
14	Centrosomes and cilia in human disease. Trends in Genetics, 2011, 27, 307-315.	6.7	323
15	Cytokinesis Failure Triggers Hippo Tumor Suppressor Pathway Activation. Cell, 2014, 158, 833-848.	28.9	312
16	Plus end-specific depolymerase activity of Kip3, a kinesin-8 protein, explains its role in positioning the yeast mitotic spindle. Nature Cell Biology, 2006, 8, 913-923.	10.3	311
17	Chromothripsis as an on-target consequence of CRISPR–Cas9 genome editing. Nature Genetics, 2021, 53, 895-905.	21.4	305
18	Mechanisms generating cancer genome complexity from a single cell division error. Science, 2020, 368,	12.6	298

#	Article	IF	CITATIONS
19	Positioning of the Mitotic Spindle by a Cortical-Microtubule Capture Mechanism. Science, 2000, 287, 2260-2262.	12.6	265
20	APC-Mediated Proteolysis of Ase1 and the Morphogenesis of the Mitotic Spindle. Science, 1997, 275, 1311-1314.	12.6	240
21	Deubiquitinating Enzymes: A New Class of Biological Regulators. Critical Reviews in Biochemistry and Molecular Biology, 1998, 33, 337-352.	5.2	238
22	Yeast Bim1p Promotes the G1-specific Dynamics of Microtubules. Journal of Cell Biology, 1999, 145, 993-1007.	5.2	230
23	Nuclear envelope assembly defects link mitotic errors to chromothripsis. Nature, 2018, 561, 551-555.	27.8	229
24	Linking abnormal mitosis to the acquisition of DNA damage. Journal of Cell Biology, 2012, 199, 871-881.	5.2	178
25	Centrosomes and cancer: how cancer cells divide with too many centrosomes. Cancer and Metastasis Reviews, 2009, 28, 85-98.	5.9	169
26	Chromothripsis: A New Mechanism for Rapid Karyotype Evolution. Annual Review of Genetics, 2015, 49, 183-211.	7.6	155
27	Limiting the Proliferation of Polyploid Cells. Cell, 2007, 131, 437-440.	28.9	154
28	Mechanisms Underlying the Dual-Mode Regulation of Microtubule Dynamics by Kip3/Kinesin-8. Molecular Cell, 2011, 43, 751-763.	9.7	122
29	Cells Lacking the <i>RB1</i> Tumor Suppressor Gene Are Hyperdependent on Aurora B Kinase for Survival. Cancer Discovery, 2019, 9, 230-247.	9.4	119
30	Triplication of a 21q22 region contributes to B cell transformation through HMGN1 overexpression and loss of histone H3 Lys27 trimethylation. Nature Genetics, 2014, 46, 618-623.	21.4	117
31	Mitotic spindle destabilization and genomic instability in Shwachman-Diamond syndrome. Journal of Clinical Investigation, 2008, 118, 1511-1518.	8.2	115
32	A two-tiered mechanism by which Cdc42 controls the localization and activation of an Arp2/3-activating motor complex in yeast. Journal of Cell Biology, 2001, 155, 261-270.	5.2	111
33	Mitotic CDK Promotes Replisome Disassembly, Fork Breakage, and Complex DNA Rearrangements. Molecular Cell, 2019, 73, 915-929.e6.	9.7	110
34	Dephosphorylation Enables the Recruitment of 53BP1 to Double-Strand DNA Breaks. Molecular Cell, 2014, 54, 512-525.	9.7	109
35	Activity of the APCCdh1 form of the anaphase-promoting complex persists until S phase and prevents the premature expression of Cdc20p. Journal of Cell Biology, 2001, 154, 85-94.	5.2	104
36	Cytokinesis failure occurs in Fanconi anemia pathway–deficient murine and human bone marrow hematopoietic cells. Journal of Clinical Investigation, 2010, 120, 3834-3842.	8.2	99

#	Article	IF	Citations
37	Polyploids require Bik1 for kinetochore–microtubule attachment. Journal of Cell Biology, 2001, 155, 1173-1184.	5.2	98
38	HURP permits MTOC sorting for robust meiotic spindle bipolarity, similar to extra centrosome clustering in cancer cells. Journal of Cell Biology, 2010, 191, 1251-1260.	5.2	96
39	Direct Microtubule-Binding by Myosin-10 Orients Centrosomes toward Retraction Fibers and Subcortical Actin Clouds. Developmental Cell, 2015, 34, 323-337.	7.0	95
40	Aneuploidy and cancer. Nature, 2007, 446, 38-39.	27.8	88
41	Microtubule-sliding activity of a kinesin-8 promotes spindle assembly and spindle-length control. Nature Cell Biology, 2013, 15, 948-957.	10.3	82
42	Whole chromosome loss and genomic instability in mouse embryos after CRISPR-Cas9 genome editing. Nature Communications, 2021, 12, 5855.	12.8	72
43	A Tubulin Binding Switch Underlies Kip3/Kinesin-8 Depolymerase Activity. Developmental Cell, 2017, 42, 37-51.e8.	7.0	67
44	The EMT regulator ZEB2 is a novel dependency of human and murine acute myeloid leukemia. Blood, 2017, 129, 497-508.	1.4	65
45	Trisomy of a Down Syndrome Critical Region Globally Amplifies Transcription via HMGN1 Overexpression. Cell Reports, 2018, 25, 1898-1911.e5.	6.4	52
46	The coordination of nuclear envelope assembly and chromosome segregation in metazoans. Nucleus, 2020, 11, 35-52.	2.2	48
47	TRPS1 Is a Lineage-Specific Transcriptional Dependency in Breast Cancer. Cell Reports, 2018, 25, 1255-1267.e5.	6.4	46
48	Acquired resistance to combined BET and CDK4/6 inhibition in triple-negative breast cancer. Nature Communications, 2020, 11, 2350.	12.8	45
49	Breakage of cytoplasmic chromosomes by pathological DNA base excision repair. Nature, 2022, 606, 930-936.	27.8	41
50	Factors promoting nuclear envelope assembly independent of the canonical ESCRT pathway. Journal of Cell Biology, 2020, 219, .	5.2	29
51	A CINtillating New Job for the APC Tumor Suppressor. Science, 2001, 291, 2555-2556.	12.6	22
52	Aurea Mediocritas: The Importance of a Balanced Genome. Cold Spring Harbor Perspectives in Biology, 2014, 6, a015842-a015842.	5 . 5	19
53	Separase anxiety: dissolving the sister bond and more. Nature Cell Biology, 2001, 3, E207-E208.	10.3	17
54	Human nuclear RNAi-defective 2 (NRDE2) is an essential RNA splicing factor. Rna, 2019, 25, 352-363.	3. 5	15

#	Article	lF	CITATIONS
55	Aneuploidy in the Balance. Science, 2007, 317, 904-905.	12.6	13
56	Cell Biology: When Your Own Chromosomes Act like Foreign DNA. Current Biology, 2017, 27, R1228-R1231.	3.9	13
57	From Mutational Mechanisms in Single Cells to Mutational Patterns in Cancer Genomes. Cold Spring Harbor Symposia on Quantitative Biology, 2015, 80, 117-137.	1.1	11
58	Genome jail-break triggers lockdown. Nature, 2017, 550, 340-341.	27.8	10
59	Cancer Genomic Rearrangements and Copy Number Alterations from Errors in Cell Division. Annual Review of Cancer Biology, 2022, 6, 245-268.	4.5	10
60	Decoding complex patterns of oncogene amplification. Nature Genetics, 2021, 53, 1626-1627.	21.4	2
61	How the Genome Folds, Divides, Lives, and Dies. Cold Spring Harbor Symposia on Quantitative Biology, 2017, 82, 349-360.	1.1	1
62	Cytokinesis Failure in Fanconi Anemia Pathway Deficient Murine Hematopoietic Stem Cells Blood, 2009, 114, 495-495.	1.4	О