Shannon L Mckinney-Freeman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1466613/publications.pdf Version: 2024-02-01

Shannon L

#	Article	IF	CITATIONS
1	GABA gets blood on its hands. Blood, 2021, 137, 723-724.	1.4	0
2	Evaluation of Ranzoni etÂal.: Integrative Single-Cell RNA-Seq and ATAC-Seq Analysis of Human Developmental Hematopoiesis. Cell Stem Cell, 2021, 28, 357-358.	11.1	2
3	3' UTR-truncated HMGA2 overexpression induces non-malignant inÂvivo expansion of hematopoietic stem cells in non-human primates. Molecular Therapy - Methods and Clinical Development, 2021, 21, 693-701.	4.1	5
4	Chemotherapy-induced transposable elements activate MDA5 to enhance haematopoietic regeneration. Nature Cell Biology, 2021, 23, 704-717.	10.3	40
5	Clones assemble! The clonal complexity of blood during ontogeny and disease. Experimental Hematology, 2020, 83, 35-47.	0.4	10
6	GPRASP proteins are critical negative regulators of hematopoietic stem cell transplantation. Blood, 2020, 135, 1111-1123.	1.4	2
7	The global clonal complexity of the murine blood system declines throughout life and after serial transplantation. Blood, 2019, 133, 1927-1942.	1.4	45
8	Murine Fetal Bone Marrow HSPCs Undergo a Dramatic Shift in Frequency at Birth. Blood, 2019, 134, 2471-2471.	1.4	1
9	<i>Nfix</i> Promotes Survival of Immature Hematopoietic Cells via Regulation of <i>c-Mpl</i> . Stem Cells, 2018, 36, 943-950.	3.2	14
10	Adult Hematopoietic Stem Cell Engagement with the Myeloablated Bone Marrow Niche. , 2018, , 221-221.		0
11	Murine hematopoietic stem cell activity is derived from pre-circulation embryos but not yolk sacs. Nature Communications, 2018, 9, 5405.	12.8	19
12	Elevated Oxidative Stress Impairs Hematopoietic Progenitor Function in C57BL/6 Substrains. Stem Cell Reports, 2018, 11, 334-347.	4.8	13
13	Leukemia Risk Gene ARID5B is a Crucial Regulator of B-Cell Development. Blood, 2018, 132, 385-385.	1.4	2
14	Nuclear Factor I-X May Regulate a Myeloid-Biased Hematopoietic Stem Cell Population during Stress Hematopoiesis. Blood, 2018, 132, 5084-5084.	1.4	0
15	Murine hemogenic endothelial precursors display heterogeneous hematopoietic potential exÂvivo. Experimental Hematology, 2017, 51, 25-35.e6.	0.4	16
16	Hematopoietic stem cells under pressure. Current Opinion in Hematology, 2017, 24, 314-321.	2.5	25
17	Lifelong haematopoiesis is established by hundreds of precursors throughout mammalian ontogeny. Nature Cell Biology, 2017, 19, 1153-1163.	10.3	61
18	A breath of fresh air for umbilical cord blood. Blood, 2016, 128, 2878-2880.	1.4	0

Shannon L

#	Article	IF	CITATIONS
19	Functional screen identifies regulators of murine hematopoietic stem cell repopulation. Journal of Experimental Medicine, 2016, 213, 433-449.	8.5	78
20	Epoxyeicosatrienoic acids enhance embryonic haematopoiesis and adult marrow engraftment. Nature, 2015, 523, 468-471.	27.8	97
21	The G Protein-Coupled Receptor Associated Sorting Proteins, Gprasp2 and Armcx1 Are Putative Negative Regulators of HSC Engraftment and Repopulation. Blood, 2015, 126, 2386-2386.	1.4	1
22	Effect of Developmental Stage of HSC and Recipient on Transplant Outcomes. Developmental Cell, 2014, 29, 621-628.	7.0	53
23	Functional Screen Identifies Novel Regulators of Murine Hematopoietic Stem Cell Engraftment. Blood, 2014, 124, 4321-4321.	1.4	0
24	The Src homology 2 protein Shb promotes cell cycle progression in murine hematopoietic stem cells by regulation of focal adhesion kinase activity. Experimental Cell Research, 2013, 319, 1852-1864.	2.6	13
25	Nfix is a novel regulator of murine hematopoietic stem and progenitor cell survival. Blood, 2013, 122, 2987-2996.	1.4	36
26	Nfi Genes Are Novel Regulators Of Murine Hematopoietic Stem- and Progenitor Cell Survival. Blood, 2013, 122, 735-735.	1.4	0
27	The Transcriptional Landscape of Hematopoietic Stem Cell Ontogeny. Cell Stem Cell, 2012, 11, 701-714.	11.1	155
28	Nfix Is Required for Hematopoietic Stem- and Progenitor Cell in Vivo Repopulating Potential Blood, 2012, 120, 2320-2320.	1.4	0
29	Epoxyeicosatrienoic Acids Regulate Hematopoietic Stem/Progenitor Cell Fate Decision During Stress Response and Embryonic Hematopoiesis. Blood, 2011, 118, 860-860.	1.4	0
30	Neonatal Recipients Offer Permissive Hematopoietic Microenvironment for Engraftment of Embryonic Murine Hematopoietic Stem Cells. Blood, 2011, 118, 2344-2344.	1.4	0
31	Cdx4 is dispensable for murine adult hematopoietic stem cells but promotes MLL-AF9-mediated leukemogenesis. Haematologica, 2010, 95, 1642-1650.	3.5	14
32	Biomechanical forces promote embryonic haematopoiesis. Nature, 2009, 459, 1131-1135.	27.8	455
33	Surface antigen phenotypes of hematopoietic stem cells from embryos and murine embryonic stem cells. Blood, 2009, 114, 268-278.	1.4	100
34	A Systems Biology Approach to Study the Acquisition of Adult Repopulating Potential During Hematopoietic Stem Cell Ontogeny Blood, 2009, 114, 1479-1479.	1.4	1
35	BMP and Wnt Specify Hematopoietic Fate by Activation of the Cdx-Hox Pathway. Cell Stem Cell, 2008, 2, 72-82.	11.1	192
36	<i>Cdx</i> gene deficiency compromises embryonic hematopoiesis in the mouse. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 7756-7761	7.1	62

Shannon L

#	Article	IF	CITATIONS
37	Modulation of murine embryonic stem cell–derived CD41+c-kit+ hematopoietic progenitors by ectopic expression of Cdx genes. Blood, 2008, 111, 4944-4953.	1.4	48
38	Isolation of Hematopoietic Stem Cells from Mouse Embryonic Stem Cells. Current Protocols in Stem Cell Biology, 2008, 4, Unit 1F.3.	3.0	16
39	Derivation of Hematopoietic Stem Cells from Murine Embryonic Stem Cells. Journal of Visualized Experiments, 2007, , 162.	0.3	5
40	Towards hematopoietic reconstitution from embryonic stem cells: a sanguine future. Current Opinion in Hematology, 2007, 14, 343-347.	2.5	18
41	The Cdx-Hox Pathway in Hematopoietic Stem Cell Formation from Embryonic Stem Cells. Annals of the New York Academy of Sciences, 2007, 1106, 197-208.	3.8	27
42	Differential mRNA Processing in Hematopoietic Stem Cells. Stem Cells, 2006, 24, 662-670.	3.2	20
43	BMP Signaling Via the Cdx-Hox Pathway Allocates Mesoderm to Hematopoietic vs Cardiac Fates Blood, 2006, 108, 4183-4183.	1.4	Ο
44	Isolation and Characterization of Side Population Cells. , 2005, 290, 343-352.		92
45	Phenotype and origin of human skeletal muscle-derived hematopoietic progenitors. Leukemia Research, 2005, 29, 363-364.	0.8	1
46	Circulating hematopoietic stem cells do not efficiently home to bone marrow during homeostasis. Experimental Hematology, 2004, 32, 868-876.	0.4	38
47	Muscle-derived Hematopoietic Stem Cells. , 2004, , 405-413.		Ο
48	Altered phenotype and reduced function of muscle-derived hematopoietic stem cells. Experimental Hematology, 2003, 31, 806-814.	0.4	51
49	Muscle-derived hematopoietic stem cells are hematopoietic in origin. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 1341-1346.	7.1	431
50	Part D: Directed Differentiation of Human Embryonic Stem Cells into Hematopoeiticin vivo Repopulating Cells. , 0, , 273-285.		0