Yoshikazu Ito

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1465897/publications.pdf

Version: 2024-02-01

94 papers

7,217 citations

43 h-index 83 g-index

104 all docs

104 docs citations

times ranked

104

10436 citing authors

#	Article	IF	CITATIONS
1	Enhanced bifunctional catalytic activities of N-doped graphene by Ni in a 3D trimodal nanoporous nanotubular network and its ultralong cycling performance in Zn-air batteries. Journal of Energy Chemistry, 2022, 66, 466-473.	7.1	18
2	Recyclable Clay-Supported Heteropolyacid Catalysts for Complete Glycolysis and Aminolysis of Post-consumer PET Beverage Bottles. Journal of Polymers and the Environment, 2022, 30, 2614-2630.	2.4	12
3	Twelve-Component Free-Standing Nanoporous High-Entropy Alloys for Multifunctional Electrocatalysis. , 2022, 4, 181-189.		50
4	Gap Opening in Double-Sided Highly Hydrogenated Free-Standing Graphene. Nano Letters, 2022, 22, 2971-2977.	4.5	9
5	Terahertz and infrared response assisted by heat localization in nanoporous graphene. Carbon, 2021, 173, 403-409.	5.4	5
6	Nanoporous ultra-high-entropy alloys containing fourteen elements for water splitting electrocatalysis. Chemical Science, 2021, 12, 11306-11315.	3.7	88
7	Graphene-coated nanoporous nickel towards a metal-catalyzed oxygen evolution reaction. Nanoscale, 2021, 13, 10916-10924.	2.8	13
8	Acceleration of Electrochemical CO ₂ Reduction to Formate at the Sn/Reduced Graphene Oxide Interface. ACS Catalysis, 2021, 11, 3310-3318.	5 . 5	92
9	Inhibiting Surface Diffusion to Synthesize 3D Bicontinuous Nanoporous Nâ€Doped Carbon for Boosting Oxygen Reduction Reaction in Flexible Allâ€Solidâ€State Alâ€Air Batteries. Advanced Functional Materials, 2021, 31, 2103632.	7.8	19
10	Phase-Dependent Electrochemical CO ₂ Reduction Ability of NiSn Alloys for Formate Generation. ACS Applied Energy Materials, 2021, 4, 7122-7128.	2.5	13
11	Polyethylene Glycol Covered Sn Catalysts Accelerate the Formation Rate of Formate by Carbon Dioxide Reduction. ACS Catalysis, 2021, 11, 9962-9969.	5 . 5	22
12	Inhibiting Surface Diffusion to Synthesize 3D Bicontinuous Nanoporous Nâ€Doped Carbon for Boosting Oxygen Reduction Reaction in Flexible Allâ€Solidâ€State Alâ€Air Batteries (Adv. Funct. Mater. 38/2021). Advanced Functional Materials, 2021, 31, 2170284.	7.8	1
13	Geometric model of 3D curved graphene with chemical dopants. Carbon, 2021, 182, 223-232.	5.4	7
14	Catalytic activity of graphene-covered non-noble metals governed by proton penetration in electrochemical hydrogen evolution reaction. Nature Communications, 2021, 12, 203.	5 . 8	77
15	Deuterium Adsorption on Free-Standing Graphene. Nanomaterials, 2021, 11, 130.	1.9	14
16	Towards free-standing graphane: atomic hydrogen and deuterium bonding to nano-porous graphene. Nanotechnology, 2021, 32, 035707.	1.3	12
17	Corrosion-resistant non-noble metal electrodes for PEM-type water electrolyzer. International Journal of Hydrogen Energy, 2021, 46, 38603-38611.	3.8	17
18	Disordered photonics behavior from terahertz to ultraviolet of a three-dimensional graphene network. NPG Asia Materials, 2021, 13, .	3.8	10

#	Article	IF	Citations
19	Fabrication of graphene/MoS2 alternately stacked structure for enhanced lithium storage. Materials Chemistry and Physics, 2020, 239, 121987.	2.0	11
20	Effect of Graphene Encapsulation of NiMo Alloys on Oxygen Evolution Reaction. ACS Catalysis, 2020, 10, 792-799.	5.5	60
21	Highâ€Resolution Electrochemical Mapping of the Hydrogen Evolution Reaction on Transitionâ€Metal Dichalcogenide Nanosheets. Angewandte Chemie, 2020, 132, 3629-3636.	1.6	11
22	Highâ€Resolution Electrochemical Mapping of the Hydrogen Evolution Reaction on Transitionâ€Metal Dichalcogenide Nanosheets. Angewandte Chemie - International Edition, 2020, 59, 3601-3608.	7.2	136
23	Bismuth/Porous Graphene Heterostructures for Ultrasensitive Detection of Cd (II). Materials, 2020, 13, 5102.	1.3	5
24	Phase-Dependent Reactivity of Nickel Molybdates for Electrocatalytic Urea Oxidation. ACS Applied Energy Materials, 2020, 3, 7535-7542.	2.5	41
25	Dirac Fermion Kinetics in 3D Curved Graphene. Advanced Materials, 2020, 32, e2005838.	11.1	24
26	Understanding the Detection Mechanisms and Ability of Molecular Hydrogen on Three-Dimensional Bicontinuous Nanoporous Reduced Graphene Oxide. Materials, 2020, 13, 2259.	1.3	0
27	Building a Reactive Armor Using S-Doped Graphene for Protecting Potassium Metal Anodes from Oxygen Crossover in K–O ₂ Batteries. ACS Energy Letters, 2020, 5, 1788-1793.	8.8	32
28	Anchoring Mo single atoms/clusters and N on edge-rich nanoporous holey graphene as bifunctional air electrode in Znâ [^] air batteries. Applied Catalysis B: Environmental, 2020, 276, 119172.	10.8	79
29	Dealloying Kinetics of AgAu Nanoparticles by <i>In Situ</i> Liquid-Cell Scanning Transmission Electron Microscopy. Nano Letters, 2020, 20, 1944-1951.	4.5	47
30	Development and application of scanning electrochemical cell microscope for electrochemical imaging of catalytic active sites. Denki Kagaku, 2020, 88, 229-234.	0.0	0
31	Fabrication of high-strength carbon nanotube bundles using iron oxides co-assisted chemical vapor deposition. Applied Physics Letters, 2019, 115 , .	1.5	4
32	Boosting electrochemical water splitting <i>via</i> ternary NiMoCo hybrid nanowire arrays. Journal of Materials Chemistry A, 2019, 7, 2156-2164.	5.2	163
33	Damageâ€Free Solar Dewatering of Microâ€Algal Concentrates via Multifunctional Hierarchical Porous Graphene. Advanced Sustainable Systems, 2019, 3, 1900045.	2.7	3
34	Metal and Nonmetal Codoped 3D Nanoporous Graphene for Efficient Bifunctional Electrocatalysis and Rechargeable Zn–Air Batteries. Advanced Materials, 2019, 31, e1900843.	11.1	236
35	Chemical Dopants on Edge of Holey Graphene Accelerate Electrochemical Hydrogen Evolution Reaction. Advanced Science, 2019, 6, 1900119.	5.6	90
36	Extraordinary tensile strength and ductility of scalable nanoporous graphene. Science Advances, 2019, 5, eaat6951.	4.7	78

#	Article	IF	CITATIONS
37	Lithium intercalation into bilayer graphene. Nature Communications, 2019, 10, 275.	5.8	136
38	Operando characterization of cathodic reactions in a liquid-state lithium-oxygen micro-battery by scanning transmission electron microscopy. Scientific Reports, 2018, 8, 3134.	1.6	25
39	Topology and doping effects in three-dimensional nanoporous graphene. Carbon, 2018, 131, 258-265.	5.4	41
40	Synthesizing 1T–1H Two-Phase Mo _{1–<i>x</i>} W _{<i>x</i>} S ₂ Monolayers by Chemical Vapor Deposition. ACS Nano, 2018, 12, 1571-1579.	7. 3	62
41	Three-dimensional porous graphene networks expand graphene-based electronic device applications. Physical Chemistry Chemical Physics, 2018, 20, 6024-6033.	1.3	43
42	Bilayered nanoporous graphene/molybdenum oxide for high rate lithium ion batteries. Nano Energy, 2018, 45, 273-279.	8.2	54
43	Intercalation pseudocapacitance of amorphous titanium dioxide@nanoporous graphene for high-rate and large-capacity energy storage. Nano Energy, 2018, 49, 354-362.	8.2	74
44	Cooperation between holey graphene and NiMo alloy for hydrogen evolution in an acidic electrolyte. ACS Catalysis, 2018, 8, 3579-3586.	5.5	98
45	One-Dimensional Atomic Segregation at Semiconductor–Metal Interfaces of Polymorphic Transition Metal Dichalcogenide Monolayers. Nano Letters, 2018, 18, 6157-6163.	4.5	4
46	High-sensitivity visualization of localized electric fields using low-energy electron beam deflection. Japanese Journal of Applied Physics, 2018, 57, 065201.	0.8	0
47	Bottom-up Synthesis of Porous NiMo Alloy for Hydrogen Evolution Reaction. Metals, 2018, 8, 83.	1.0	29
48	Heavily Doped and Highly Conductive Hierarchical Nanoporous Graphene for Electrochemical Hydrogen Production. Angewandte Chemie, 2018, 130, 13486-13491.	1.6	10
49	Heavily Doped and Highly Conductive Hierarchical Nanoporous Graphene for Electrochemical Hydrogen Production. Angewandte Chemie - International Edition, 2018, 57, 13302-13307.	7.2	64
50	Graphene Layer Encapsulation of Non-Noble Metal Nanoparticles as Acid-Stable Hydrogen Evolution Catalysts. ACS Energy Letters, 2018, 3, 1539-1544.	8.8	57
51	Improved graphene applications made possible by 3D graphene structures. Tanso, 2018, 2018, 8-15.	0.1	0
52	Full Performance Nanoporous Graphene Based Liâ€O ₂ Batteries through Solution Phase Oxygen Reduction and Redoxâ€Additive Mediated Li ₂ O ₂ Oxidation. Advanced Energy Materials, 2017, 7, 1601933.	10.2	65
53	Terahertz and mid-infrared plasmons in three-dimensional nanoporous graphene. Nature Communications, 2017, 8, 14885.	5.8	58
54	One-step Nanoporous Structure Formation Using NiO Nanoparticles: Pore Size Control and Pore Size Dependence of Hydrogen Evolution Reaction. Chemistry Letters, 2017, 46, 267-270.	0.7	8

#	Article	IF	CITATIONS
55	Near room temperature chemical vapor deposition of graphene with diluted methane and molten gallium catalyst. Scientific Reports, 2017, 7, 12371.	1.6	75
56	Chemical Selectivity at Grain Boundary Dislocations in Monolayer Mo _{1–<i>x</i>} W _{<i>x</i>} S ₂ Transition Metal Dichalcogenides. ACS Applied Materials & Dichalcogenides. ACS	4.0	10
57	Two-Dimensional Hallmark of Highly Interconnected Three-Dimensional Nanoporous Graphene. ACS Omega, 2017, 2, 3691-3697.	1.6	32
58	Analyzing nanoscale optical and thermal properties in nanoporous graphene by near-field infrared microscopy. , $2017, , .$		0
59	Effect of Chemical Doping on Cathodic Performance of Bicontinuous Nanoporous Graphene for Liâ€O ₂ Batteries. Advanced Energy Materials, 2016, 6, 1501870.	10.2	132
60	3D Bicontinuous Nanoporous Reduced Graphene Oxide for Highly Sensitive Photodetectors. Advanced Functional Materials, 2016, 26, 1271-1277.	7.8	48
61	Graphene@Nanoporous Nickel Cathode for Liâ^'O ₂ Batteries. ChemNanoMat, 2016, 2, 176-181.	1.5	12
62	Earthâ€Abundant and Durable Nanoporous Catalyst for Exhaustâ€Gas Conversion. Advanced Functional Materials, 2016, 26, 1609-1616.	7.8	18
63	Electric Properties of Dirac Fermions Captured into 3D Nanoporous Graphene Networks. Advanced Materials, 2016, 28, 10304-10310.	11.1	47
64	Correlation between Chemical Dopants and Topological Defects in Catalytically Active Nanoporous Graphene. Advanced Materials, 2016, 28, 10644-10651.	11.1	110
65	An ultrahigh volumetric capacitance of squeezable three-dimensional bicontinuous nanoporous graphene. Nanoscale, 2016, 8, 18551-18557.	2.8	13
66	Chemical Vapor Deposition of Monolayer Mo1â^'xWxS2 Crystals with Tunable Band Gaps. Scientific Reports, 2016, 6, 21536.	1.6	101
67	Hierarchical nanoporosity enhanced reversible capacity of bicontinuous nanoporous metal based Li-O2 battery. Scientific Reports, 2016, 6, 33466.	1.6	52
68	Bicontinuous nanotubular graphene–polypyrrole hybrid for high performance flexible supercapacitors. Nano Energy, 2016, 19, 391-400.	8.2	137
69	Onâ€Chip Microâ€Pseudocapacitors for Ultrahigh Energy and Power Delivery. Advanced Science, 2015, 2, 1500067.	5.6	66
70	Nanoporous Metal Papers for Scalable Hierarchical Electrode. Advanced Science, 2015, 2, 1500086.	5 . 6	26
71	3D Nanoporous Nitrogenâ€Doped Graphene with Encapsulated RuO ₂ Nanoparticles for Li–O ₂ Batteries. Advanced Materials, 2015, 27, 6137-6143.	11.1	195
72	Nanoporous Graphene with Singleâ€Atom Nickel Dopants: An Efficient and Stable Catalyst for Electrochemical Hydrogen Production. Angewandte Chemie - International Edition, 2015, 54, 14031-14035.	7.2	628

#	Article	IF	CITATIONS
73	Multifunctional Porous Graphene for Highâ€Efficiency Steam Generation by Heat Localization. Advanced Materials, 2015, 27, 4302-4307.	11.1	769
74	Shape Sensitivity on Toxicity of Gold Nanoplates in Breast Cancer Cells. Journal of Nanoscience and Nanotechnology, 2015, 15, 9520-9530.	0.9	4
75	Tuning the Magnetic Properties of Carbon by Nitrogen Doping of Its Graphene Domains. Journal of the American Chemical Society, 2015, 137, 7678-7685.	6.6	82
76	High Catalytic Activity of Nitrogen and Sulfur Coâ€Doped Nanoporous Graphene in the Hydrogen Evolution Reaction. Angewandte Chemie - International Edition, 2015, 54, 2131-2136.	7.2	760
77	Highâ€Quality Threeâ€Dimensional Nanoporous Graphene. Angewandte Chemie - International Edition, 2014, 53, 4822-4826.	7.2	215
78	Bimetallic Co–Pd alloy nanoparticles as magnetically recoverable catalysts for the aerobic oxidation of alcohols in water. Tetrahedron, 2014, 70, 6146-6149.	1.0	8
79	Bicontinuous Nanoporous Nâ€doped Graphene for the Oxygen Reduction Reaction. Advanced Materials, 2014, 26, 4145-4150.	11.1	261
80	Chemical Vapor Deposition of N-Doped Graphene and Carbon Films: The Role of Precursors and Gas Phase. ACS Nano, 2014, 8, 3337-3346.	7.3	133
81	Crystal Engineering of Tolane Bridged Nitronyl Nitroxide Biradicals: Candidates for Quantum Magnets. Crystal Growth and Design, 2014, 14, 5840-5846.	1.4	11
82	Breaking the Semiâ€Quinoid Structure: Spinâ€Switching from Strongly Coupled Singlet to Polarized Triplet State. Chemistry - A European Journal, 2014, 20, 12041-12045.	1.7	15
83	Monolayer MoS ₂ Films Supported by 3D Nanoporous Metals for Highâ€Efficiency Electrocatalytic Hydrogen Production. Advanced Materials, 2014, 26, 8023-8028.	11.1	299
84	Transfer hydrogenation of alkenes using Ni/Ru/Pt/Au heteroquatermetallic nanoparticle catalysts: sequential cooperation of multiple nano-metal species. Chemical Communications, 2014, 50, 12123-12126.	2.2	27
85	Chemically exfoliated ReS ₂ nanosheets. Nanoscale, 2014, 6, 12458-12462.	2.8	160
86	Anomalous metallic-like transport of Co–Pd ferromagnetic nanoparticles cross-linked with π-conjugated molecules having a rotational degree of freedom. Physical Chemistry Chemical Physics, 2014, 16, 288-296.	1.3	6
87	Hierarchical nanoporous nickel alloy as three-dimensional electrodes for high-efficiency energy storage. Scripta Materialia, 2014, 89, 69-72.	2.6	62
88	Tetramethoxypyrene-Based Biradical Donors with Tunable Physical and Magnetic Properties. Organic Letters, 2013, 15, 4280-4283.	2.4	23
89	Ferromagnetic Enhancement in the Clusters of Co–Pd Magnetic Nanoparticles Induced by the Formation of Cross-Linkage. Journal of Physical Chemistry C, 2011, 115, 8971-8975.	1.5	4
90	Magnetic Sponge Prepared with an Alkanedithiol-Bridged Network of Nanomagnets. Journal of the American Chemical Society, 2011, 133, 11470-11473.	6.6	13

Yoshikazu Ito

#	Article	IF	CITATIONS
91	Classes of Nanomagnets Created from Alkanethiolâ€Coated Pt or Pd Nanoparticles and Their Alloys with Co. European Journal of Inorganic Chemistry, 2010, 2010, 4279-4287.	1.0	6
92	Magnetic Properties of Feâ^'Pd Alloy Nanoparticles. Journal of Physical Chemistry C, 2010, 114, 11699-11702.	1.5	18
93	Pd Nanoparticle Embedded with Only One Co Atom Behaves as a Single-Particle Magnet. Journal of the Physical Society of Japan, 2008, 77, 103701.	0.7	10
94	2D MoS 2 Heterostructures on Epitaxial and Selfâ€Standing Graphene for Energy Storage: From Growth Mechanism to Application. Advanced Materials Technologies, 0, , 2100963.	3.0	1