Christopher S Henry

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1465447/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Chemical-damage MINE: A database of curated and predicted spontaneous metabolic reactions. Metabolic Engineering, 2022, 69, 302-312.	7.0	5
2	The ModelSEED Biochemistry Database for the integration of metabolic annotations and the reconstruction, comparison and analysis of metabolic models for plants, fungi and microbes. Nucleic Acids Research, 2021, 49, D575-D588.	14.5	119
3	The number of catalytic cycles in an enzyme's lifetime and why it matters to metabolic engineering. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	41
4	Quantum Mechanical Methods Predict Accurate Thermodynamics of Biochemical Reactions. ACS Omega, 2021, 6, 9948-9959.	3.5	12
5	The Moderately (D)efficient Enzyme: Catalysis-Related Damage <i>In Vivo</i> and Its Repair. Biochemistry, 2021, 60, 3555-3565.	2.5	5
6	Metabolic multistability and hysteresis in a model aerobe-anaerobe microbiome community. Science Advances, 2020, 6, eaba0353.	10.3	27
7	Chemical composition of material extractives influences microbial growth and dynamics on wetted wood materials. Scientific Reports, 2020, 10, 14500.	3.3	4
8	Enzymes as Parts in Need of Replacement – and How to Extend Their Working Life. Trends in Plant Science, 2020, 25, 661-669.	8.8	20
9	MEMOTE for standardized genome-scale metabolic model testing. Nature Biotechnology, 2020, 38, 272-276.	17.5	314
10	A plastidial pantoate transporter with a potential role in pantothenate synthesis. Biochemical Journal, 2018, 475, 813-825.	3.7	13
11	A pathway for every product? Tools to discover and design plant metabolism. Plant Science, 2018, 273, 61-70.	3.6	18
12	Methods for automated genome-scale metabolic model reconstruction. Biochemical Society Transactions, 2018, 46, 931-936.	3.4	51
13	KBase: The United States Department of Energy Systems Biology Knowledgebase. Nature Biotechnology, 2018, 36, 566-569.	17.5	955
14	PlantSEED enables automated annotation and reconstruction of plant primary metabolism with improved compartmentalization and comparative consistency. Plant Journal, 2018, 95, 1102-1113.	5.7	25
15	Implementing and evaluating a Gaussian mixture framework for identifying gene function from TnSeq data. , 2018, , .		1
16	The microbiome as a source of new enterprises and job creation: Considering clinical faecal and synthetic microbiomeÂtransplants and therapeutic regulation. Microbial Biotechnology, 2017, 10, 4-5.	4.2	9
17	Improvements to PATRIC, the all-bacterial Bioinformatics Database and Analysis Resource Center. Nucleic Acids Research, 2017, 45, D535-D542.	14.5	1,445
18	Generation and Validation of the iKp1289 Metabolic Model for Klebsiella pneumoniae KPPR1. Journal of Infectious Diseases, 2017, 215, S37-S43.	4.0	23

CHRISTOPHER S HENRY

#	Article	IF	CITATIONS
19	Metabolite damage and repair in metabolic engineering design. Metabolic Engineering, 2017, 44, 150-159.	7.0	43
20	Metabolic Reconstruction and Modeling Microbial Electrosynthesis. Scientific Reports, 2017, 7, 8391.	3.3	117
21	Evolution of substrate specificity in a retained enzyme driven by gene loss. ELife, 2017, 6, .	6.0	23
22	Draft Genome Sequence of a Multidrug-Resistant Klebsiella quasipneumoniae subsp. similipneumoniae Isolate from a Clinical Source. Genome Announcements, 2016, 4, .	0.8	10
23	Reconstruction of the Regulatory Network for Bacillus subtilis and Reconciliation with Gene Expression Data. Frontiers in Microbiology, 2016, 7, 275.	3.5	14
24	Computing and Applying Atomic Regulons to Understand Gene Expression and Regulation. Frontiers in Microbiology, 2016, 7, 1819.	3.5	7
25	Co-occurrence of analogous enzymes determines evolution of a novel (βα)8-isomerase sub-family after non-conserved mutations in flexible loop. Biochemical Journal, 2016, 473, 1141-1152.	3.7	6
26	Microbial Community Metabolic Modeling: A Community Dataâ€Đriven Network Reconstruction. Journal of Cellular Physiology, 2016, 231, 2339-2345.	4.1	107
27	Systematic identification and analysis of frequent gene fusion events in metabolic pathways. BMC Genomics, 2016, 17, 473.	2.8	13
28	â€~Nothing of chemistry disappears in biology': the Top 30 damage-prone endogenous metabolites. Biochemical Society Transactions, 2016, 44, 961-971.	3.4	76
29	Modeling central metabolism and energy biosynthesis across microbial life. BMC Genomics, 2016, 17, 568.	2.8	28
30	Metabolite Damage and Metabolite Damage Control in Plants. Annual Review of Plant Biology, 2016, 67, 131-152.	18.7	43
31	Systems-Wide Prediction of Enzyme Promiscuity Reveals a New Underground Alternative Route for Pyridoxal 5'-Phosphate Production in E. coli. PLoS Computational Biology, 2016, 12, e1004705.	3.2	20
32	Improved evidence-based genome-scale metabolic models for maize leaf, embryo, and endosperm. Frontiers in Plant Science, 2015, 6, 142.	3.6	48
33	A directed-overflow and damage-control <i>N</i> -glycosidase in riboflavin biosynthesis. Biochemical Journal, 2015, 466, 137-145.	3.7	38
34	MINEs: open access databases of computationally predicted enzyme promiscuity products for untargeted metabolomics. Journal of Cheminformatics, 2015, 7, 44.	6.1	172
35	Long-term phenotypic evolution of bacteria. Nature, 2015, 517, 369-372.	27.8	75
36	Enabling comparative modeling of closely related genomes: example genus Brucella. 3 Biotech, 2015, 5, 101-105.	2.2	5

CHRISTOPHER S HENRY

#	Article	IF	CITATIONS
37	Maximal Sum of Metabolic Exchange Fluxes Outperforms Biomass Yield as a Predictor of Growth Rate of Microorganisms. PLoS ONE, 2014, 9, e98372.	2.5	9
38	Likelihood-Based Gene Annotations for Gap Filling and Quality Assessment in Genome-Scale Metabolic Models. PLoS Computational Biology, 2014, 10, e1003882.	3.2	66
39	High-throughput comparison, functional annotation, and metabolic modeling of plant genomes using the PlantSEED resource. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 9645-9650.	7.1	69
40	Genome-scale bacterial transcriptional regulatory networks: reconstruction and integrated analysis with metabolic models. Briefings in Bioinformatics, 2014, 15, 592-611.	6.5	30
41	Comparative Genomics of Cultured and Uncultured Strains Suggests Genes Essential for Free-Living Growth of Liberibacter. PLoS ONE, 2014, 9, e84469.	2.5	64
42	Tapping the Wealth of Microbial Data in High-Throughput Metabolic Model Reconstruction. Methods in Molecular Biology, 2014, 1191, 19-45.	0.9	0
43	Automated Genome Annotation and Metabolic Model Reconstruction in the SEED and Model SEED. Methods in Molecular Biology, 2013, 985, 17-45.	0.9	124
44	Building the repertoire of dispensable chromosome regions in Bacillus subtilis entails major refinement of cognate large-scale metabolic model. Nucleic Acids Research, 2013, 41, 687-699.	14.5	76
45	Frontiers in metabolic reconstruction and modeling of plant genomes. Journal of Experimental Botany, 2012, 63, 2247-2258.	4.8	79
46	Genome-wide metabolic network reconstruction of the picoalga Ostreococcus. Journal of Experimental Botany, 2012, 63, 2353-2362.	4.8	41
47	Plant B Vitamin Pathways and their Compartmentation: a Guide for the Perplexed. Journal of Experimental Botany, 2012, 63, 5379-5395.	4.8	78
48	SEED Servers: High-Performance Access to the SEED Genomes, Annotations, and Metabolic Models. PLoS ONE, 2012, 7, e48053.	2.5	169
49	Competitive and cooperative metabolic interactions in bacterial communities. Nature Communications, 2011, 2, 589.	12.8	413
50	Connecting genotype to phenotype in the era of high-throughput sequencing. Biochimica Et Biophysica Acta - General Subjects, 2011, 1810, 967-977.	2.4	28
51	Building the blueprint of life. Biotechnology Journal, 2010, 5, 695-704.	3.5	21
52	Discovery and analysis of novel metabolic pathways for the biosynthesis of industrial chemicals: 3â€hydroxypropanoate. Biotechnology and Bioengineering, 2010, 106, 462-473.	3.3	146
53	High-throughput generation, optimization and analysis of genome-scale metabolic models. Nature Biotechnology, 2010, 28, 977-982.	17.5	974
54	Analysis of the Effect of Reversibility Constraints on the Predictions of Genome-Scale Metabolic Models. Advances in Intelligent and Soft Computing, 2010, , 209-215.	0.2	1

#	Article	IF	CITATIONS
55	Comparative analysis of genomeâ€scale metabolic models for Mycoplasma genitalium , Ureaplasma parvum , and Mycoplasma hominis reveals novel routes through the Pentose Phosphate Pathway. FASEB Journal, 2010, 24, 899.1.	0.5	0
56	iBsu1103: a new genome-scale metabolic model of Bacillus subtilis based on SEED annotations. Genome Biology, 2009, 10, R69.	9.6	141
57	Group Contribution Method for Thermodynamic Analysis of Complex Metabolic Networks. Biophysical Journal, 2008, 95, 1487-1499.	0.5	345
58	A genomeâ€scale metabolic reconstruction for Escherichia coli Kâ€12 MG1655 that accounts for 1260 ORFs and thermodynamic information. Molecular Systems Biology, 2007, 3, 121.	7.2	1,234
59	Thermodynamics-Based Metabolic Flux Analysis. Biophysical Journal, 2007, 92, 1792-1805.	0.5	560
60	Genome-Scale Thermodynamic Analysis of Escherichia coli Metabolism. Biophysical Journal, 2006, 90, 1453-1461.	0.5	195
61	Exploring the diversity of complex metabolic networks. Bioinformatics, 2005, 21, 1603-1609.	4.1	322
62	Computational discovery of biochemical routes to specialty chemicals. Chemical Engineering Science, 2004, 59, 5051-5060.	3.8	73