
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1464600/publications.pdf Version: 2024-02-01

SHILONG PIAO

#	Article	IF	CITATIONS
1	Emerging Negative Warming Impacts on Tibetan Crop Yield. Engineering, 2022, 14, 163-168.	6.7	6
2	Worldwide impacts of atmospheric vapor pressure deficit on the interannual variability of terrestrial carbon sinks. National Science Review, 2022, 9, nwab150.	9.5	49
3	Essential outcomes for COP26. Global Change Biology, 2022, 28, 1-3.	9.5	40
4	Tropical tall forests are more sensitive and vulnerable to drought than short forests. Global Change Biology, 2022, 28, 1583-1595.	9.5	20
5	Contrasting phenology responses to climate warming across the northern extra-tropics. Fundamental Research, 2022, 2, 708-715.	3.3	6
6	Short-term reduction of regional enhancement of atmospheric CO ₂ in China during the first COVID-19 pandemic period. Environmental Research Letters, 2022, 17, 024036.	5.2	6
7	The response of the suspended sediment load of the headwaters of the Brahmaputra River to climate change: Quantitative attribution to the effects of hydrological, cryospheric and vegetation controls. Global and Planetary Change, 2022, 210, 103753.	3.5	13
8	Higher temperature sensitivity of flowering than leafâ€out alters the time between phenophases across temperate tree species. Global Ecology and Biogeography, 2022, 31, 901-911.	5.8	7
9	Definitions and methods to estimate regional land carbon fluxes for the second phase of the REgional Carbon Cycle Assessment and Processes Project (RECCAP-2). Geoscientific Model Development, 2022, 15, 1289-1316.	3.6	34
10	An earlier start of the thermal growing season enhances tree growth in cold humid areas but not in dry areas. Nature Ecology and Evolution, 2022, 6, 397-404.	7.8	78
11	Estimation of China's terrestrial ecosystem carbon sink: Methods, progress and prospects. Science China Earth Sciences, 2022, 65, 641-651.	5.2	155
12	Vegetation Physiological Response to Increasing Atmospheric CO ₂ Slows the Decreases in the Seasonal Amplitude of Temperature. Geophysical Research Letters, 2022, 49, .	4.0	5
13	Occurrence of crop pests and diseases has largely increased in China since 1970. Nature Food, 2022, 3, 57-65.	14.0	39
14	Perspectives on the role of terrestrial ecosystems in the â€~carbon neutrality' strategy. Science China Earth Sciences, 2022, 65, 1178-1186.	5.2	60
15	Future reversal of warming-enhanced vegetation productivity in the Northern Hemisphere. Nature Climate Change, 2022, 12, 581-586.	18.8	47
16	Enhanced habitat loss of the Himalayan endemic flora driven by warming-forced upslope tree expansion. Nature Ecology and Evolution, 2022, 6, 890-899.	7.8	72
17	The imbalance of the Asian water tower. Nature Reviews Earth & Environment, 2022, 3, 618-632.	29.7	286
18	Data-driven quantification of nitrogen enrichment impact on Northern Hemisphere plant biomass. Environmental Research Letters, 2022, 17, 074032.	5.2	5

#	Article	IF	CITATIONS
19	Climate Warming Mitigation from Nationally Determined Contributions. Advances in Atmospheric Sciences, 2022, 39, 1217-1228.	4.3	6
20	Soil quality both increases crop production and improves resilience to climate change. Nature Climate Change, 2022, 12, 574-580.	18.8	56
21	Regional and seasonal partitioning of water and temperature controls on global land carbon uptake variability. Nature Communications, 2022, 13, .	12.8	18
22	Species richness is a strong driver of forest biomass along broad bioclimatic gradients in the Himalayas. Ecosphere, 2022, 13, .	2.2	8
23	Rising ecosystem water demand exacerbates the lengthening of tropical dry seasons. Nature Communications, 2022, 13, .	12.8	8
24	Amplified warming from physiological responses to carbon dioxide reduces the potential of vegetation for climate change mitigation. Communications Earth & Environment, 2022, 3, .	6.8	13
25	Biophysical impacts of northern vegetation changes on seasonal warming patterns. Nature Communications, 2022, 13, .	12.8	26
26	Decoupling of greenness and gross primary productivity as aridity decreases. Remote Sensing of Environment, 2022, 279, 113120.	11.0	34
27	Higher soil acidification risk in southeastern Tibetan Plateau. Science of the Total Environment, 2021, 755, 143372.	8.0	13
28	Deforestation-induced warming over tropical mountain regions regulated by elevation. Nature Geoscience, 2021, 14, 23-29.	12.9	73
29	Dataâ€driven estimates of global litter production imply slower vegetation carbon turnover. Global Change Biology, 2021, 27, 1678-1688.	9.5	8
30	Global irrigation contribution to wheat and maize yield. Nature Communications, 2021, 12, 1235.	12.8	61
31	Seasonal biological carryover dominates northern vegetation growth. Nature Communications, 2021, 12, 983.	12.8	45
32	Effects of extreme temperature on China's tea production. Environmental Research Letters, 2021, 16, 044040.	5.2	23
33	Multifaceted characteristics of dryland aridity changes in a warming world. Nature Reviews Earth & Environment, 2021, 2, 232-250.	29.7	281
34	Responses of vegetation greenness and carbon cycle to extreme droughts in China. Agricultural and Forest Meteorology, 2021, 298-299, 108307.	4.8	46
35	Irrigation, damming, and streamflow fluctuations of the Yellow River. Hydrology and Earth System Sciences, 2021, 25, 1133-1150.	4.9	19
36	Warming homogenizes apparent temperature sensitivity of ecosystem respiration. Science Advances, 2021, 7, .	10.3	28

#	Article	IF	CITATIONS
37	Reply to: Disentangling biology from mathematical necessity in twentieth-century gymnosperm resilience trends. Nature Ecology and Evolution, 2021, 5, 736-737.	7.8	1
38	Divergent responses of ecosystem water use efficiency to drought timing over Northern Eurasia. Environmental Research Letters, 2021, 16, 045016.	5.2	19
39	The contributions of individual countries and regions to the global radiative forcing. Proceedings of the United States of America, 2021, 118, .	7.1	15
40	The Tibetan Plateau as the engine for Asian environmental change: the Tibetan Plateau Earth system research into a new era. Science Bulletin, 2021, 66, 1263-1266.	9.0	51
41	Carbon turnover times shape topsoil carbon difference between Tibetan Plateau and Arctic tundra. Science Bulletin, 2021, 66, 1698-1704.	9.0	14
42	Five years of variability in the global carbon cycle: comparing an estimate from the Orbiting Carbon Observatory-2 and process-based models. Environmental Research Letters, 2021, 16, 054041.	5.2	8
43	A small climate-amplifying effect of climate-carbon cycle feedback. Nature Communications, 2021, 12, 2952.	12.8	5
44	Unusual characteristics of the carbon cycle during the 2015â^'2016 El Niño. Global Change Biology, 2021, 27, 3798-3809.	9.5	6
45	Low and contrasting impacts of vegetation CO ₂ fertilization on global terrestrial runoff over 1982–2010: accounting for aboveground and belowground vegetation–CO ₂ effects. Hydrology and Earth System Sciences, 2021, 25, 3411-3427.	4.9	11
46	Spring and autumn phenology across the Tibetan Plateau inferred from normalized difference vegetation index and solar-induced chlorophyll fluorescence. Big Earth Data, 2021, 5, 182-200.	4.4	30
47	Ambient climate determines the directional trend of community stability under warming and grazing. Global Change Biology, 2021, 27, 5198-5210.	9.5	9
48	Vegetation Response to Rising CO ₂ Amplifies Contrasts in Water Resources Between Global Wet and Dry Land Areas. Geophysical Research Letters, 2021, 48, e2021GL094293.	4.0	16
49	A global map of root biomass across the world's forests. Earth System Science Data, 2021, 13, 4263-4274.	9.9	19
50	Accelerated increase in vegetation carbon sequestration in China after 2010: A turning point resulting from climate and human interaction. Global Change Biology, 2021, 27, 5848-5864.	9.5	127
51	Moving toward a new era of ecosystem science. Geography and Sustainability, 2021, 2, 151-162.	4.3	15
52	Higher plant photosynthetic capability in autumn responding to low atmospheric vapor pressure deficit. Innovation(China), 2021, 2, 100163.	9.1	6
53	A comprehensive framework for seasonal controls of leaf abscission and productivity in evergreen broadleaved tropical and subtropical forests. Innovation(China), 2021, 2, 100154.	9.1	19
54	Atmospheric dynamic constraints on Tibetan Plateau freshwater under Paris climate targets. Nature Climate Change, 2021, 11, 219-225.	18.8	87

#	Article	IF	CITATIONS
55	Optimal temperature of vegetation productivity and its linkage with climate and elevation on the Tibetan Plateau. Global Change Biology, 2021, 27, 1942-1951.	9.5	60
56	Mining can exacerbate global degradation of dryland. Geophysical Research Letters, 2021, 48, e2021GL094490.	4.0	9
57	Strong direct and indirect influences of climate change on water yield confirmed by the Budyko framework. Geography and Sustainability, 2021, 2, 281-287.	4.3	3
58	The stimulatory effect of elevated CO2 on soil respiration is unaffected by N addition. Science of the Total Environment, 2021, 813, 151907.	8.0	3
59	Local and teleconnected temperature effects of afforestation and vegetation greening in China. National Science Review, 2020, 7, 897-912.	9.5	60
60	Data-driven estimates of global nitrous oxide emissions from croplands. National Science Review, 2020, 7, 441-452.	9.5	95
61	Interannual variation of terrestrial carbon cycle: Issues and perspectives. Global Change Biology, 2020, 26, 300-318.	9.5	214
62	Summer soil drying exacerbated by earlier spring greening of northern vegetation. Science Advances, 2020, 6, eaax0255.	10.3	258
63	Missed atmospheric organic phosphorus emitted by terrestrial plants, part 2: Experiment of volatile phosphorus. Environmental Pollution, 2020, 258, 113728.	7.5	10
64	Characteristics, drivers and feedbacks of global greening. Nature Reviews Earth & Environment, 2020, 1, 14-27.	29.7	889
65	Annual ecosystem respiration is resistant to changes in freeze–thaw periods in semiâ€arid permafrost. Global Change Biology, 2020, 26, 2630-2641.	9.5	18
66	Vegetation forcing modulates global land monsoon and water resources in a CO2-enriched climate. Nature Communications, 2020, 11, 5184.	12.8	37
67	Short-lived climate forcers have long-term climate impacts via the carbon–climate feedback. Nature Climate Change, 2020, 10, 851-855.	18.8	31
68	Biophysical impacts of Earth greening largely controlled by aerodynamic resistance. Science Advances, 2020, 6, .	10.3	67
69	Climate warming increases spring phenological differences among temperate trees. Global Change Biology, 2020, 26, 5979-5987.	9.5	37
70	Global Patterns and Climate Controls of Terrestrial Ecosystem Light Use Efficiency. Journal of Geophysical Research G: Biogeosciences, 2020, 125, e2020JG005908.	3.0	7
71	Permafrost thawing puts the frozen carbon at risk over the Tibetan Plateau. Science Advances, 2020, 6, eaaz3513.	10.3	117
72	Threeâ€dimensional change in temperature sensitivity of northern vegetation phenology. Global Change Biology, 2020, 26, 5189-5201.	9.5	48

#	Article	IF	CITATIONS
73	Causes of slowingâ€down seasonal CO ₂ amplitude at Mauna Loa. Global Change Biology, 2020, 26, 4462-4477.	9.5	14
74	Temporal trade-off between gymnosperm resistance and resilience increases forest sensitivity to extreme drought. Nature Ecology and Evolution, 2020, 4, 1075-1083.	7.8	134
75	Accelerated terrestrial ecosystem carbon turnover and its drivers. Global Change Biology, 2020, 26, 5052-5062.	9.5	42
76	Divergent responses of soil organic carbon to afforestation. Nature Sustainability, 2020, 3, 694-700.	23.7	118
77	Increased control of vegetation on global terrestrial energy fluxes. Nature Climate Change, 2020, 10, 356-362.	18.8	152
78	Deceleration of China's human water use and its key drivers. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 7702-7711.	7.1	155
79	Quantifying Water Scarcity in Northern China Within the Context of Climatic and Societal Changes and Southâ€toâ€North Water Diversion. Earth's Future, 2020, 8, e2020EF001492.	6.3	30
80	Emergent constraint on crop yield response to warmer temperature from field experiments. Nature Sustainability, 2020, 3, 908-916.	23.7	96
81	Soil thawing regulates the spring growth onset in tundra and alpine biomes. Science of the Total Environment, 2020, 742, 140637.	8.0	16
82	Improvement of the Irrigation Scheme in the ORCHIDEE Land Surface Model and Impacts of Irrigation on Regional Water Budgets Over China. Journal of Advances in Modeling Earth Systems, 2020, 12, e2019MS001770.	3.8	15
83	Modeling leaf senescence of deciduous tree species in Europe. Global Change Biology, 2020, 26, 4104-4118.	9.5	41
84	Spatiotemporal dynamics of ecosystem fires and biomass burning-induced carbon emissions in China over the past two decades. Geography and Sustainability, 2020, 1, 47-58.	4.3	14
85	Biomass energy in China's terrestrial ecosystems: Insights into the nation's sustainable energy supply. Renewable and Sustainable Energy Reviews, 2020, 127, 109857.	16.4	51
86	A meta-analysis of 1,119 manipulative experiments on terrestrial carbon-cycling responses to global change. Nature Ecology and Evolution, 2019, 3, 1309-1320.	7.8	304
87	Increased atmospheric vapor pressure deficit reduces global vegetation growth. Science Advances, 2019, 5, eaax1396.	10.3	755
88	Greenhouse Gas Concentration and Volcanic Eruptions Controlled the Variability of Terrestrial Carbon Uptake Over the Last Millennium. Journal of Advances in Modeling Earth Systems, 2019, 11, 1715-1734.	3.8	3
89	Nitrogen and phosphorus constrain the CO2 fertilization of global plant biomass. Nature Climate Change, 2019, 9, 684-689.	18.8	269
90	Divergent changes in the elevational gradient of vegetation activities over the last 30 years. Nature Communications, 2019, 10, 2970.	12.8	119

#	Article	IF	CITATIONS
91	Shortened temperatureâ€relevant period of spring leafâ€out in temperateâ€zone trees. Global Change Biology, 2019, 25, 4282-4290.	9.5	20
92	Soil organic carbon and nutrient losses resulted from spring dust emissions in Northern China. Atmospheric Environment, 2019, 213, 585-596.	4.1	28
93	Climate Change Trends and Impacts on Vegetation Greening Over the Tibetan Plateau. Journal of Geophysical Research D: Atmospheres, 2019, 124, 7540-7552.	3.3	109
94	Field-experiment constraints on the enhancement of the terrestrial carbon sink by CO2 fertilization. Nature Geoscience, 2019, 12, 809-814.	12.9	58
95	The paleoclimatic footprint in the soil carbon stock of the Tibetan permafrost region. Nature Communications, 2019, 10, 4195.	12.8	39
96	Climatic Warming Increases Spatial Synchrony in Spring Vegetation Phenology Across the Northern Hemisphere. Geophysical Research Letters, 2019, 46, 1641-1650.	4.0	40
97	China's road towards sustainable development: Geography bridges science and solution. Progress in Physical Geography, 2019, 43, 694-706.	3.2	8
98	The impacts of climate extremes on the terrestrial carbon cycle: A review. Science China Earth Sciences, 2019, 62, 1551-1563.	5.2	134
99	Changes in productivity and carbon storage of grasslands in China under future global warming scenarios of 1.5°C and 2°C. Journal of Plant Ecology, 2019, 12, 804-814.	2.3	18
100	Stabilization of atmospheric nitrogen deposition in China over the past decade. Nature Geoscience, 2019, 12, 424-429.	12.9	490
101	Nutrient availability alters the correlation between spring leaf-out and autumn leaf senescence dates. Tree Physiology, 2019, 39, 1277-1284.	3.1	37
102	The bioelements, the elementome, and the biogeochemical niche. Ecology, 2019, 100, e02652.	3.2	139
103	Deciphering impacts of climate extremes on Tibetan grasslands in the last fifteen years. Science Bulletin, 2019, 64, 446-454.	9.0	45
104	Plant Feedback Aggravates Soil Organic Carbon Loss Associated With Wind Erosion in Northwest China. Journal of Geophysical Research G: Biogeosciences, 2019, 124, 825-839.	3.0	17
105	Plant phenology and global climate change: Current progresses and challenges. Global Change Biology, 2019, 25, 1922-1940.	9.5	944
106	Air temperature optima of vegetation productivity across global biomes. Nature Ecology and Evolution, 2019, 3, 772-779.	7.8	316
107	The weakening relationship between Eurasian spring snow cover and Indian summer monsoon rainfall. Science Advances, 2019, 5, eaau8932.	10.3	39
108	Daylength helps temperate deciduous trees to leafâ€out at the optimal time. Global Change Biology, 2019, 25, 2410-2418.	9.5	88

#	Article	IF	CITATIONS
109	Changes in timing of seasonal peak photosynthetic activity in northern ecosystems. Global Change Biology, 2019, 25, 2382-2395.	9.5	83
110	Richness of plant communities plays a larger role than climate in determining responses of species richness to climate change. Journal of Ecology, 2019, 107, 1944-1955.	4.0	12
111	Increased Global Land Carbon Sink Due to Aerosolâ€Induced Cooling. Global Biogeochemical Cycles, 2019, 33, 439-457.	4.9	27
112	The impact of the 2009/2010 drought on vegetation growth and terrestrial carbon balance in Southwest China. Agricultural and Forest Meteorology, 2019, 269-270, 239-248.	4.8	199
113	China and India lead in greening of the world through land-use management. Nature Sustainability, 2019, 2, 122-129.	23.7	1,636
114	Altered trends in carbon uptake in China's terrestrial ecosystems under the enhanced summer monsoon and warming hiatus. National Science Review, 2019, 6, 505-514.	9.5	93
115	Short photoperiod reduces the temperature sensitivity of leafâ€out in saplings of <i>Fagus sylvatica</i> but not in horse chestnut. Global Change Biology, 2019, 25, 1696-1703.	9.5	63
116	A reversal in global terrestrial stilling and its implications for wind energy production. Nature Climate Change, 2019, 9, 979-985.	18.8	246
117	Wildfire Detection Probability of MODIS Fire Products under the Constraint of Environmental Factors: A Study Based on Confirmed Ground Wildfire Records. Remote Sensing, 2019, 11, 3031.	4.0	33
118	Effects of wildfire on soil respiration and its heterotrophic and autotrophic components in a montane coniferous forest. Journal of Plant Ecology, 2019, 12, 336-345.	2.3	11
119	Global trends in carbon sinks and their relationships with CO2 and temperature. Nature Climate Change, 2019, 9, 73-79.	18.8	163
120	Strong but Intermittent Spatial Covariations in Tropical Land Temperature. Geophysical Research Letters, 2019, 46, 356-364.	4.0	9
121	Elevated CO ₂ does not stimulate carbon sink in a semi-arid grassland. Ecology Letters, 2019, 22, 458-468.	6.4	34
122	Enhanced growth after extreme wetness compensates for post-drought carbon loss in dry forests. Nature Communications, 2019, 10, 195.	12.8	59
123	Interannual variability of terrestrial net ecosystem productivity over China: regional contributions and climate attribution. Environmental Research Letters, 2019, 14, 014003.	5.2	50
124	Regional differences of lake evolution across China during 1960s–2015 and its natural and ant	11.0	252
125	Ecosystem Traits Linking Functional Traits to Macroecology. Trends in Ecology and Evolution, 2019, 34, 200-210.	8.7	140
126	Recent Third Pole's Rapid Warming Accompanies Cryospheric Melt and Water Cycle Intensification and Interactions between Monsoon and Environment: Multidisciplinary Approach with Observations, Modeling, and Analysis. Bulletin of the American Meteorological Society, 2019, 100, 423-444.	3.3	590

#	Article	IF	CITATIONS
127	Responses and feedback of the Tibetan Plateau's alpine ecosystem to climate change. Chinese Science Bulletin, 2019, 64, 2842-2855.	0.7	91
128	A new estimation of China's net ecosystem productivity based on eddy covariance measurements and a model tree ensemble approach. Agricultural and Forest Meteorology, 2018, 253-254, 84-93.	4.8	58
129	Excessive Afforestation and Soil Drying on China's Loess Plateau. Journal of Geophysical Research G: Biogeosciences, 2018, 123, 923-935.	3.0	147
130	Changes in the Response of the Northern Hemisphere Carbon Uptake to Temperature Over the Last Three Decades. Geophysical Research Letters, 2018, 45, 4371-4380.	4.0	21
131	Spring phenology at different altitudes is becoming more uniform under global warming in Europe. Global Change Biology, 2018, 24, 3969-3975.	9.5	64
132	Joint structural and physiological control on the interannual variation in productivity in a temperate grassland: A dataâ€nodel comparison. Global Change Biology, 2018, 24, 2965-2979.	9.5	53
133	Dominant regions and drivers of the variability of the global land carbon sink across timescales. Global Change Biology, 2018, 24, 3954-3968.	9.5	30
134	Extension of the growing season increases vegetation exposure to frost. Nature Communications, 2018, 9, 426.	12.8	190
135	Afforestation neutralizes soil pH. Nature Communications, 2018, 9, 520.	12.8	140
136	The Accelerating Land Carbon Sink of the 2000s May Not Be Driven Predominantly by the Warming Hiatus. Geophysical Research Letters, 2018, 45, 1402-1409.	4.0	13
137	Keeping global warming within 1.5 °C constrains emergence of aridification. Nature Climate Change, 2018, 8, 70-74.	18.8	158
138	Influence of Vegetation Growth on the Enhanced Seasonality of Atmospheric CO ₂ . Global Biogeochemical Cycles, 2018, 32, 32-41.	4.9	29
139	Impact of Earth Greening on the Terrestrial Water Cycle. Journal of Climate, 2018, 31, 2633-2650.	3.2	142
140	Recent Changes in Global Photosynthesis and Terrestrial Ecosystem Respiration Constrained From Multiple Observations. Geophysical Research Letters, 2018, 45, 1058-1068.	4.0	19
141	Contrasting responses of grassland water and carbon exchanges to climate change between Tibetan Plateau and Inner Mongolia. Agricultural and Forest Meteorology, 2018, 249, 163-175.	4.8	62
142	Detection and attribution of nitrogen runoff trend in China's croplands. Environmental Pollution, 2018, 234, 270-278.	7.5	47
143	Spring Snowâ€Albedo Feedback Analysis Over the Third Pole: Results From Satellite Observation and CMIP5 Model Simulations. Journal of Geophysical Research D: Atmospheres, 2018, 123, 750-763.	3.3	17
144	Drought timing influences the legacy of tree growth recovery. Global Change Biology, 2018, 24, 3546-3559.	9.5	165

#	Article	IF	CITATIONS
145	Response of terrestrial evapotranspiration to Earth's greening. Current Opinion in Environmental Sustainability, 2018, 33, 9-25.	6.3	89
146	Global patterns of vegetation carbon use efficiency and their climate drivers deduced from MODIS satellite data and process-based models. Agricultural and Forest Meteorology, 2018, 256-257, 150-158.	4.8	69
147	Increasingly Important Role of Atmospheric Aridity on Tibetan Alpine Grasslands. Geophysical Research Letters, 2018, 45, 2852-2859.	4.0	136
148	The role of plant phenology in stomatal ozone flux modeling. Global Change Biology, 2018, 24, 235-248.	9.5	22
149	Spatiotemporal pattern of gross primary productivity and its covariation with climate in China over the last thirty years. Global Change Biology, 2018, 24, 184-196.	9.5	177
150	Simulating the onset of spring vegetation growth across the Northern Hemisphere. Global Change Biology, 2018, 24, 1342-1356.	9.5	44
151	Disentangling the mechanisms behind winter snow impact on vegetation activity in northern ecosystems. Global Change Biology, 2018, 24, 1651-1662.	9.5	76
152	On the causes of trends in the seasonal amplitude of atmospheric <scp>CO</scp> ₂ . Global Change Biology, 2018, 24, 608-616.	9.5	48
153	Larger temperature response of autumn leaf senescence than spring leafâ€out phenology. Global Change Biology, 2018, 24, 2159-2168.	9.5	124
154	Vegetation cover—another dominant factor in determining global water resources in forested regions. Global Change Biology, 2018, 24, 786-795.	9.5	84
155	Evaluation of ORCHIDEE-MICT-simulated soil moisture over China and impacts of different atmospheric forcing data. Hydrology and Earth System Sciences, 2018, 22, 5463-5484.	4.9	13
156	Contributions of Climate Change, CO2, Land-Use Change, and Human Activities to Changes in River Flow across 10 Chinese Basins. Journal of Hydrometeorology, 2018, 19, 1899-1914.	1.9	24
157	Contrasting streamflow regimes induced by melting glaciers across the Tien Shan – Pamir – North Karakoram. Scientific Reports, 2018, 8, 16470.	3.3	54
158	Emerging negative impact of warming on summer carbon uptake in northern ecosystems. Nature Communications, 2018, 9, 5391.	12.8	31
159	GOLUM-CNP v1.0: a data-driven modeling of carbon, nitrogen and phosphorus cycles in major terrestrial biomes. Geoscientific Model Development, 2018, 11, 3903-3928.	3.6	32
160	The carbon sequestration potential of China's grasslands. Ecosphere, 2018, 9, e02452.	2.2	22
161	Global terrestrial stilling: does Earth's greening play a role?. Environmental Research Letters, 2018, 13, 124013.	5.2	33
162	Using research networks to create the comprehensive datasets needed to assess nutrient availability as a key determinant of terrestrial carbon cycling. Environmental Research Letters, 2018, 13, 125006.	5.2	36

#	Article	IF	CITATIONS
163	A Large Committed Longâ€Term Sink of Carbon due to Vegetation Dynamics. Earth's Future, 2018, 6, 1413-1432.	6.3	24
164	Changing the retention properties of catchments and their influence on runoff under climate change. Environmental Research Letters, 2018, 13, 094019.	5.2	21
165	Temporal response of soil organic carbon after grasslandâ€related landâ€use change. Global Change Biology, 2018, 24, 4731-4746.	9.5	44
166	Negative effect of nitrogen addition on soil respiration dependent on stand age: Evidence from a 7-year field study of larch plantations in northern China. Agricultural and Forest Meteorology, 2018, 262, 24-33.	4.8	27
167	Partitioning global land evapotranspiration using CMIP5 models constrained by observations. Nature Climate Change, 2018, 8, 640-646.	18.8	219
168	Future biomass carbon sequestration capacity of Chinese forests. Science Bulletin, 2018, 63, 1108-1117.	9.0	92
169	Contrasting effects of N addition on the N and P status of understory vegetation in plantations of sapling and mature <i>Larix principis-rupprechtii</i> . Journal of Plant Ecology, 2018, 11, 843-852.	2.3	9
170	Shifts in the dynamics of productivity signal ecosystem state transitions at the biomeâ€scale. Ecology Letters, 2018, 21, 1457-1466.	6.4	57
171	Evaluation of CMIP5 Earth System Models for the Spatial Patterns of Biomass and Soil Carbon Turnover Times and Their Linkage with Climate. Journal of Climate, 2018, 31, 5947-5960.	3.2	36
172	Spatiotemporal pattern of terrestrial evapotranspiration in China during the past thirty years. Agricultural and Forest Meteorology, 2018, 259, 131-140.	4.8	75
173	Divergent hydrological response to large-scale afforestation and vegetation greening in China. Science Advances, 2018, 4, eaar4182.	10.3	287
174	Quantifying the unauthorized lake water withdrawals and their impacts on the water budget of eutrophic lake Dianchi, China. Journal of Hydrology, 2018, 565, 39-48.	5.4	13
175	Lower land-use emissions responsible for increased net land carbon sink during the slow warming period. Nature Geoscience, 2018, 11, 739-743.	12.9	110
176	Field evidences for the positive effects of aerosols on tree growth. Global Change Biology, 2018, 24, 4983-4992.	9.5	64
177	Comment on "Satellites reveal contrasting responses of regional climate to the widespread greening of Earth― Science, 2018, 360, .	12.6	19
178	Decelerating Autumn CO 2 Release With Warming Induced by Attenuated Temperature Dependence of Respiration in Northern Ecosystems. Geophysical Research Letters, 2018, 45, 5562-5571.	4.0	8
179	Spatiotemporal variations in the difference between satelliteâ€øbserved daily maximum land surface temperature and stationâ€based daily maximum nearâ€surface air temperature. Journal of Geophysical Research D: Atmospheres, 2017, 122, 2254-2268.	3.3	24
180	Changes in nutrient concentrations of leaves and roots in response to global change factors. Global Change Biology, 2017, 23, 3849-3856.	9.5	174

#	Article	IF	CITATIONS
181	Weakening temperature control on the interannual variations of spring carbon uptake across northern lands. Nature Climate Change, 2017, 7, 359-363.	18.8	183
182	The effects of teleconnections on carbon fluxes of global terrestrial ecosystems. Geophysical Research Letters, 2017, 44, 3209-3218.	4.0	58
183	Attribution of seasonal leaf area index trends in the northern latitudes with "optimally―integrated ecosystem models. Global Change Biology, 2017, 23, 4798-4813.	9.5	41
184	Global forest carbon uptake due to nitrogen and phosphorus deposition from 1850 to 2100. Global Change Biology, 2017, 23, 4854-4872.	9.5	158
185	Diagnosing phosphorus limitations in natural terrestrial ecosystems in carbon cycle models. Earth's Future, 2017, 5, 730-749.	6.3	59
186	Seasonal Responses of Terrestrial Carbon Cycle to Climate Variations in CMIP5 Models: Evaluation and Projection. Journal of Climate, 2017, 30, 6481-6503.	3.2	12
187	Regional patterns of future runoff changes from Earth system models constrained by observation. Geophysical Research Letters, 2017, 44, 5540-5549.	4.0	26
188	Climate mitigation from vegetation biophysical feedbacks during the past three decades. Nature Climate Change, 2017, 7, 432-436.	18.8	323
189	Varying responses of vegetation activity to climate changes on the Tibetan Plateau grassland. International Journal of Biometeorology, 2017, 61, 1433-1444.	3.0	99
190	Little change in heat requirement for vegetation green-up on the Tibetan Plateau over the warming period of 1998–2012. Agricultural and Forest Meteorology, 2017, 232, 650-658.	4.8	47
191	Extensive and drastically different alpine lake changes on Asia's high plateaus during the past four decades. Geophysical Research Letters, 2017, 44, 252-260.	4.0	223
192	Mapping spatial distribution of forest age in China. Earth and Space Science, 2017, 4, 108-116.	2.6	79
193	Plausible rice yield losses under future climate warming. Nature Plants, 2017, 3, 16202.	9.3	114
194	Velocity of change in vegetation productivity over northern high latitudes. Nature Ecology and Evolution, 2017, 1, 1649-1654.	7.8	79
195	Reducing the uncertainty of parameters controlling seasonal carbon and water fluxes in Chinese forests and its implication for simulated climate sensitivities. Global Biogeochemical Cycles, 2017, 31, 1344-1366.	4.9	11
196	Shifting from a fertilization-dominated to a warming-dominated period. Nature Ecology and Evolution, 2017, 1, 1438-1445.	7.8	167
197	Benchmarking carbon fluxes of the ISIMIP2a biome models. Environmental Research Letters, 2017, 12, 045002.	5.2	30
198	Atmospheric deposition, CO2, and change in the land carbon sink. Scientific Reports, 2017, 7, 9632.	3.3	62

#	Article	IF	CITATIONS
199	Development of a land surface model with coupled snow and frozen soil physics. Water Resources Research, 2017, 53, 5085-5103.	4.2	76
200	Global land carbon sink response to temperature and precipitation varies with ENSO phase. Environmental Research Letters, 2017, 12, 064007.	5.2	39
201	Recent increases in terrestrial carbon uptake at little cost to the water cycle. Nature Communications, 2017, 8, 110.	12.8	186
202	Temperature increase reduces global yields of major crops in four independent estimates. Proceedings of the United States of America, 2017, 114, 9326-9331.	7.1	1,708
203	Management outweighs climate change on affecting length of rice growing period for early rice and single rice in China during 1991–2012. Agricultural and Forest Meteorology, 2017, 233, 1-11.	4.8	48
204	Detection and Attribution of Changes in Land Surface Sensitive Components. Springer Geography, 2017, , 495-509.	0.4	0
205	Global Change and Terrestrial Ecosystems. Springer Geography, 2017, , 205-232.	0.4	0
206	Higher temperature variability reduces temperature sensitivity of vegetation growth in Northern Hemisphere. Geophysical Research Letters, 2017, 44, 6173-6181.	4.0	33
207	Dominance of climate warming effects on recent drying trends over wet monsoon regions. Atmospheric Chemistry and Physics, 2017, 17, 10467-10476.	4.9	14
208	Combining livestock production information in a process-based vegetation model to reconstruct the history of grassland management. Biogeosciences, 2016, 13, 3757-3776.	3.3	34
209	The Effect of Afforestation on Soil Moisture Content in Northeastern China. PLoS ONE, 2016, 11, e0160776.	2.5	41
210	Global patterns and climate drivers of waterâ€use efficiency in terrestrial ecosystems deduced from satelliteâ€based datasets and carbon cycle models. Global Ecology and Biogeography, 2016, 25, 311-323.	5.8	102
211	Seasonal responses of terrestrial ecosystem waterâ€use efficiency to climate change. Global Change Biology, 2016, 22, 2165-2177.	9.5	100
212	Strong impacts of daily minimum temperature on the greenâ€up date and summer greenness of the Tibetan Plateau. Global Change Biology, 2016, 22, 3057-3066.	9.5	223
213	Relatively stable response of fruiting stage to warming and cooling relative to other phenological events. Ecology, 2016, 97, 1961-1969.	3.2	35
214	Changes in interannual climate sensitivities of terrestrial carbon fluxes during the 21st century predicted by CMIP5 Earth System Models. Journal of Geophysical Research G: Biogeosciences, 2016, 121, 903-918.	3.0	17
215	Responses of land evapotranspiration to Earth's greening in CMIP5 Earth System Models. Environmental Research Letters, 2016, 11, 104006.	5.2	46
216	Species interactions slow warming-induced upward shifts of treelines on the Tibetan Plateau. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 4380-4385.	7.1	221

#	Article	IF	CITATIONS
217	Greening of the Earth and its drivers. Nature Climate Change, 2016, 6, 791-795.	18.8	1,675
218	Seasonal and interannual changes in vegetation activity of tropical forests in Southeast Asia. Agricultural and Forest Meteorology, 2016, 224, 1-10.	4.8	63
219	Emerging opportunities and challenges in phenology: a review. Ecosphere, 2016, 7, e01436.	2.2	225
220	Long-term linear trends mask phenological shifts. International Journal of Biometeorology, 2016, 60, 1611-1613.	3.0	9
221	Revegetation in China's Loess Plateau is approaching sustainable water resource limits. Nature Climate Change, 2016, 6, 1019-1022.	18.8	1,270
222	Increased phosphate uptake but not resorption alleviates phosphorus deficiency induced by nitrogen deposition in temperate <i>Larix principisâ€rupprechtii</i> plantations. New Phytologist, 2016, 212, 1019-1029.	7.3	106
223	Three times greater weight of daytime than of nightâ€time temperature on leaf unfolding phenology in temperate trees. New Phytologist, 2016, 212, 590-597.	7.3	82
224	Application of the metabolic scaling theory and water–energy balance equation to model largeâ€scale patterns of maximum forest canopy height. Global Ecology and Biogeography, 2016, 25, 1428-1442.	5.8	8
225	Field warming experiments shed light on the wheat yield response to temperature in China. Nature Communications, 2016, 7, 13530.	12.8	73
226	Regional carbon fluxes from land use and land cover change in Asia, 1980–2009. Environmental Research Letters, 2016, 11, 074011.	5.2	31
227	Evaluating biases in simulated land surface albedo from CMIP5 global climate models. Journal of Geophysical Research D: Atmospheres, 2016, 121, 6178-6190.	3.3	46
228	Contrasting responses of water use efficiency to drought across global terrestrial ecosystems. Scientific Reports, 2016, 6, 23284.	3.3	227
229	European land CO2 sink influenced by NAO and East-Atlantic Pattern coupling. Nature Communications, 2016, 7, 10315.	12.8	74
230	Reducing uncertainties in decadal variability of the global carbon budget with multiple datasets. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 13104-13108.	7.1	39
231	Temperature, precipitation, and insolation effects on autumn vegetation phenology in temperate China. Global Change Biology, 2016, 22, 644-655.	9.5	294
232	A crossâ€biome synthesis of soil respiration and its determinants under simulated precipitation changes. Global Change Biology, 2016, 22, 1394-1405.	9.5	211
233	Decrease in winter respiration explains 25% of the annual northern forest carbon sink enhancement over the last 30 years. Global Ecology and Biogeography, 2016, 25, 586-595.	5.8	16
234	Lateral transport of soil carbon and landâ^atmosphere CO ₂ flux induced by water erosion in China. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 6617-6622.	7.1	117

#	Article	IF	CITATIONS
235	Human-induced greening of the northern extratropical land surface. Nature Climate Change, 2016, 6, 959-963.	18.8	145
236	Delayed autumn phenology in the Northern Hemisphere is related to change in both climate and spring phenology. Global Change Biology, 2016, 22, 3702-3711.	9.5	319
237	Quantifying nitrogen leaching response to fertilizer additions in China's cropland. Environmental Pollution, 2016, 211, 241-251.	7.5	54
238	The contribution of China's emissions to global climate forcing. Nature, 2016, 531, 357-361.	27.8	214
239	Age-Related Modulation of the Nitrogen Resorption Efficiency Response to Growth Requirements and Soil Nitrogen Availability in a Temperate Pine Plantation. Ecosystems, 2016, 19, 698-709.	3.4	71
240	Estimation of gross primary production in China (1982–2010) with multiple ecosystem models. Ecological Modelling, 2016, 324, 33-44.	2.5	26
241	Spatial and temporal variations of spring dust emissions in northern China over the last 30 years. Atmospheric Environment, 2016, 126, 117-127.	4.1	91
242	Reduced sediment transport in the Yellow River due to anthropogenic changes. Nature Geoscience, 2016, 9, 38-41.	12.9	948
243	Spatiotemporal patterns of terrestrial gross primary production: A review. Reviews of Geophysics, 2015, 53, 785-818.	23.0	432
244	The recent hiatus in global warming of the land surface: Scaleâ€dependent breakpoint occurrences in space and time. Geophysical Research Letters, 2015, 42, 6471-6478.	4.0	25
245	Multicriteria evaluation of discharge simulation in Dynamic Global Vegetation Models. Journal of Geophysical Research D: Atmospheres, 2015, 120, 7488-7505.	3.3	25
246	Disentangling climatic and anthropogenic controls on global terrestrial evapotranspiration trends. Environmental Research Letters, 2015, 10, 094008.	5.2	119
247	Recent trends and drivers of regional sources and sinks of carbon dioxide. Biogeosciences, 2015, 12, 653-679.	3.3	587
248	Has the advancing onset of spring vegetation greenâ€up slowed down or changed abruptly over the last three decades?. Global Ecology and Biogeography, 2015, 24, 621-631.	5.8	111
249	New model for capturing the variations of fertilizerâ€induced emission factors of N ₂ O. Global Biogeochemical Cycles, 2015, 29, 885-897.	4.9	42
250	Multispherical interactions and their effects on the Tibetan Plateau's earth system: a review of the recent researches. National Science Review, 2015, 2, 468-488.	9.5	103
251	Joint control of terrestrial gross primary productivity by plant phenology and physiology. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 2788-2793.	7.1	265
252	Change in terrestrial ecosystem waterâ€use efficiency over the last three decades. Global Change Biology, 2015, 21, 2366-2378.	9.5	215

#	Article	IF	CITATIONS
253	Benchmarking the seasonal cycle of CO ₂ fluxes simulated by terrestrial ecosystem models. Global Biogeochemical Cycles, 2015, 29, 46-64.	4.9	48
254	Increased heat requirement for leaf flushing in temperate woody species over 1980–2012: effects of chilling, precipitation and insolation. Global Change Biology, 2015, 21, 2687-2697.	9.5	158
255	Evaporative cooling over the Tibetan Plateau induced by vegetation growth. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 9299-9304.	7.1	404
256	Spatial patterns of climatological temperature lapse rate in mainland China: A multi–time scale investigation. Journal of Geophysical Research D: Atmospheres, 2015, 120, 2661-2675.	3.3	35
257	Precipitation impacts on vegetation spring phenology on the <scp>T</scp> ibetan <scp>P</scp> lateau. Global Change Biology, 2015, 21, 3647-3656.	9.5	377
258	Leaf onset in the northern hemisphere triggered by daytime temperature. Nature Communications, 2015, 6, 6911.	12.8	384
259	Changes in forest biomass over China during the 2000s and implications for management. Forest Ecology and Management, 2015, 357, 76-83.	3.2	19
260	Declining global warming effects on the phenology of spring leaf unfolding. Nature, 2015, 526, 104-107.	27.8	637
261	Seasonally different response of photosynthetic activity to daytime and nightâ€ŧime warming in the Northern Hemisphere. Global Change Biology, 2015, 21, 377-387.	9.5	72
262	Plant phenological responses to climate change on the Tibetan Plateau: research status and challenges. National Science Review, 2015, 2, 454-467.	9.5	161
263	Biomass production efficiency controlled by management in temperate and boreal ecosystems. Nature Geoscience, 2015, 8, 843-846.	12.9	109
264	Regional air pollution brightening reverses the greenhouse gases induced warmingâ€elevation relationship. Geophysical Research Letters, 2015, 42, 4563-4572.	4.0	30
265	Mapping tree density at a global scale. Nature, 2015, 525, 201-205.	27.8	642
266	Detection and attribution of vegetation greening trend in China over the last 30Âyears. Global Change Biology, 2015, 21, 1601-1609.	9.5	597
267	Ecological change on the Tibetan Plateau. Chinese Science Bulletin, 2015, 60, 3048-3056.	0.7	66
268	MODIS Based Estimation of Forest Aboveground Biomass in China. PLoS ONE, 2015, 10, e0130143.	2.5	35
269	Improving the dynamics of Northern Hemisphere high-latitude vegetation in the ORCHIDEE ecosystem model. Geoscientific Model Development, 2015, 8, 2263-2283.	3.6	36
270	1982–2010 Trends of Light Use Efficiency and Inherent Water Use Efficiency in African vegetation: Sensitivity to Climate and Atmospheric CO2 Concentrations. Remote Sensing, 2014, 6, 8923-8944.	4.0	21

#	Article	IF	CITATIONS
271	Current systematic carbon-cycle observations and the need for implementing a policy-relevant carbon observing system. Biogeosciences, 2014, 11, 3547-3602.	3.3	189
272	A worldwide analysis of spatiotemporal changes in water balanceâ€based evapotranspiration from 1982 to 2009. Journal of Geophysical Research D: Atmospheres, 2014, 119, 1186-1202.	3.3	109
273	Asymmetric sensitivity of first flowering date to warming and cooling in alpine plants. Ecology, 2014, 95, 3387-3398.	3.2	67
274	High carbon dioxide uptake by subtropical forest ecosystems in the East Asian monsoon region. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 4910-4915.	7.1	403
275	Nutrient availability as the key regulator of global forest carbon balance. Nature Climate Change, 2014, 4, 471-476.	18.8	383
276	Multimodel projections and uncertainties of net ecosystem production in China over the twenty-first century. Science Bulletin, 2014, 59, 4681-4691.	1.7	15
277	Afforestation in China cools local land surface temperature. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 2915-2919.	7.1	501
278	Increasing altitudinal gradient of spring vegetation phenology during the last decade on the Qinghai–Tibetan Plateau. Agricultural and Forest Meteorology, 2014, 189-190, 71-80.	4.8	323
279	Stand ages regulate the response of soil respiration to temperature in a Larix principis-rupprechtii plantation. Agricultural and Forest Meteorology, 2014, 184, 179-187.	4.8	53
280	Terrestrial carbon cycle affected by non-uniform climate warming. Nature Geoscience, 2014, 7, 173-180.	12.9	226
281	Unexpected role of winter precipitation in determining heat requirement for spring vegetation greenâ€up at northern middle and high latitudes. Global Change Biology, 2014, 20, 3743-3755.	9.5	159
282	Soil respiration under climate warming: differential response of heterotrophic and autotrophic respiration. Global Change Biology, 2014, 20, 3229-3237.	9.5	239
283	A two-fold increase of carbon cycle sensitivity to tropical temperature variations. Nature, 2014, 506, 212-215.	27.8	284
284	Recent spring phenology shifts in western <scp>C</scp> entral <scp>E</scp> urope based on multiscale observations. Global Ecology and Biogeography, 2014, 23, 1255-1263.	5.8	208
285	Evidence for a weakening relationship between interannual temperature variability and northern vegetation activity. Nature Communications, 2014, 5, 5018.	12.8	414
286	The effect of nitrogen addition on soil respiration from a nitrogen-limited forest soil. Agricultural and Forest Meteorology, 2014, 197, 103-110.	4.8	85
287	Divergence of climate impacts on maize yield in Northeast China. Agriculture, Ecosystems and Environment, 2014, 196, 51-58.	5.3	49
288	Widespread decline of Congo rainforest greenness in the past decade. Nature, 2014, 509, 86-90.	27.8	351

#	Article	IF	CITATIONS
289	Environmental determinants of tropical forest and savanna distribution: A quantitative model evaluation and its implication. Journal of Geophysical Research G: Biogeosciences, 2014, 119, 1432-1445.	3.0	22
290	Variation in leaf flushing date influences autumnal senescence and next year's flushing date in two temperate tree species. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 7355-7360.	7.1	254
291	A New High-Resolution N ₂ O Emission Inventory for China in 2008. Environmental Science & Technology, 2014, 48, 8538-8547.	10.0	82
292	Effects of double cropping on summer climate of the North China Plain and neighbouring regions. Nature Climate Change, 2014, 4, 615-619.	18.8	84
293	Diurnal and Seasonal Change in Stem Respiration of Larix principis-rupprechtii Trees, Northern China. PLoS ONE, 2014, 9, e89294.	2.5	9
294	Recent trends in Inner Asian forest dynamics to temperature and precipitation indicate high sensitivity to climate change. Agricultural and Forest Meteorology, 2013, 178-179, 31-45.	4.8	108
295	Drought Influences the Accuracy of Simulated Ecosystem Fluxes: A Model-Data Meta-analysis for Mediterranean Oak Woodlands. Ecosystems, 2013, 16, 749-764.	3.4	42
296	Does the integration of the dynamic nitrogen cycle in a terrestrial biosphere model improve the long-term trend of the leaf area index?. Climate Dynamics, 2013, 40, 2535-2548.	3.8	8
297	Asymmetric effects of daytime and night-time warming on Northern Hemisphere vegetation. Nature, 2013, 501, 88-92.	27.8	482
298	Precipitation amount, seasonality and frequency regulate carbon cycling of a semi-arid grassland ecosystem in Inner Mongolia, China: A modeling analysis. Agricultural and Forest Meteorology, 2013, 178-179, 46-55.	4.8	130
299	Attributing the increase in atmospheric CO2 to emitters and absorbers. Nature Climate Change, 2013, 3, 926-930.	18.8	63
300	Largeâ€scale variations in the vegetation growing season and annual cycle of atmospheric <scp><scp>CO₂</scp></scp> at high northern latitudes from 1950 to 2011. Global Change Biology, 2013, 19, 3167-3183.	9.5	273
301	Drought and spring cooling induced recent decrease in vegetation growth in Inner Asia. Agricultural and Forest Meteorology, 2013, 178-179, 21-30.	4.8	150
302	Temperature and vegetation seasonality diminishment over northern lands. Nature Climate Change, 2013, 3, 581-586.	18.8	485
303	Changes in satelliteâ€derived spring vegetation greenâ€up date and its linkage to climate in China from 1982 to 2010: a multimethod analysis. Global Change Biology, 2013, 19, 881-891.	9.5	276
304	The impacts of climate change and human activities on biogeochemical cycles on the <scp>Q</scp> inghaiâ€ <scp>T</scp> ibetan <scp>P</scp> lateau. Global Change Biology, 2013, 19, 2940-2955.	9.5	670
305	Evaluation of terrestrial carbon cycle models for their response to climate variability and to <scp><scp>CO₂</scp> </scp> trends. Global Change Biology, 2013, 19, 2117-2132.	9.5	617
306	Global Data Sets of Vegetation Leaf Area Index (LAI)3g and Fraction of Photosynthetically Active Radiation (FPAR)3g Derived from Global Inventory Modeling and Mapping Studies (GIMMS) Normalized Difference Vegetation Index (NDVI3g) for the Period 1981 to 2011. Remote Sensing, 2013, 5, 927-948.	4.0	748

#	Article	IF	CITATIONS
307	Evaluation of Land Surface Models in Reproducing Satellite-Derived LAI over the High-Latitude Northern Hemisphere. Part I: Uncoupled DGVMs. Remote Sensing, 2013, 5, 4819-4838.	4.0	82
308	Committed changes in tropical tree cover under the projected 21st century climate change. Scientific Reports, 2013, 3, 1951.	3.3	20
309	Variations in atmospheric CO ₂ growth rates coupled with tropical temperature. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 13061-13066.	7.1	144
310	No evidence of continuously advanced green-up dates in the Tibetan Plateau over the last decade. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E2329.	7.1	103
311	High-resolution mapping of combustion processes and implications for CO ₂ emissions. Atmospheric Chemistry and Physics, 2013, 13, 5189-5203.	4.9	164
312	Evaluation of an improved intermediate complexity snow scheme in the ORCHIDEE land surface model. Journal of Geophysical Research D: Atmospheres, 2013, 118, 6064-6079.	3.3	63
313	The carbon budget of South Asia. Biogeosciences, 2013, 10, 513-527.	3.3	94
314	Evaluation of Land Surface Models in Reproducing Satellite Derived Leaf Area Index over the High-Latitude Northern Hemisphere. Part II: Earth System Models. Remote Sensing, 2013, 5, 3637-3661.	4.0	75
315	Causes of spring vegetation growth trends in the northern mid–high latitudes from 1982 to 2004. Environmental Research Letters, 2012, 7, 014010.	5.2	53
316	Spatio-temporal patterns of the area experiencing negative vegetation growth anomalies in China over the last three decades. Environmental Research Letters, 2012, 7, 035701.	5.2	65
317	Global evapotranspiration over the past three decades: estimation based on the water balance equation combined with empirical models. Environmental Research Letters, 2012, 7, 014026.	5.2	126
318	Response to Comment on "Surface Urban Heat Island Across 419 Global Big Cities― Environmental Science & Technology, 2012, 46, 6889-6890.	10.0	15
319	Surface Urban Heat Island Across 419 Clobal Big Cities. Environmental Science & Technology, 2012, 46, 696-703.	10.0	864
320	Spring vegetation green-up date in China inferred from SPOT NDVI data: A multiple model analysis. Agricultural and Forest Meteorology, 2012, 165, 104-113.	4.8	222
321	State-dependent errors in a land surface model across biomes inferred from eddy covariance observations on multiple timescales. Ecological Modelling, 2012, 246, 11-25.	2.5	18
322	Impacts of climate and CO2 changes on the vegetation growth and carbon balance of Qinghai–Tibetan grasslands over the past five decades. Global and Planetary Change, 2012, 98-99, 73-80.	3.5	248
323	Large inert carbon pool in the terrestrial biosphere during the Last Glacial Maximum. Nature Geoscience, 2012, 5, 74-79.	12.9	145
324	The carbon budget of terrestrial ecosystems in East Asia over the last two decades. Biogeosciences, 2012, 9, 3571-3586.	3.3	103

#	Article	IF	CITATIONS
325	A framework for benchmarking land models. Biogeosciences, 2012, 9, 3857-3874.	3.3	267
326	Fertile forests produce biomass more efficiently. Ecology Letters, 2012, 15, 520-526.	6.4	273
327	A Large and Persistent Carbon Sink in the World's Forests. Science, 2011, 333, 988-993.	12.6	5,393
328	Browning in desert boundaries in Asia in recent decades. Journal of Geophysical Research, 2011, 116, .	3.3	45
329	Altitude and temperature dependence of change in the spring vegetation green-up date from 1982 to 2006 in the Qinghai-Xizang Plateau. Agricultural and Forest Meteorology, 2011, 151, 1599-1608.	4.8	442
330	Contribution of climate change and rising CO2 to terrestrial carbon balance in East Asia: A multi-model analysis. Global and Planetary Change, 2011, 75, 133-142.	3.5	84
331	Controls on winter ecosystem respiration in temperate and boreal ecosystems. Biogeosciences, 2011, 8, 2009-2025.	3.3	42
332	Forest annual carbon cost: reply. Ecology, 2011, 92, 1998-2002.	3.2	3
333	Effects of land use change and management on the European cropland carbon balance. Global Change Biology, 2011, 17, 320-338.	9.5	56
334	Changes in satelliteâ€derived vegetation growth trend in temperate and boreal Eurasia from 1982 to 2006. Global Change Biology, 2011, 17, 3228-3239.	9.5	586
335	NDVI indicated characteristics of vegetation cover change in China's metropolises over the last three decades. Environmental Monitoring and Assessment, 2011, 179, 1-14.	2.7	119
336	Spring temperature change and its implication in the change of vegetation growth in North America from 1982 to 2006. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 1240-1245.	7.1	432
337	Recent change of vegetation growth trend in China. Environmental Research Letters, 2011, 6, 044027.	5.2	255
338	Biomass carbon stocks in China's forests between 2000 and 2050: A prediction based on forest biomass-age relationships. Science China Life Sciences, 2010, 53, 776-783.	4.9	105
339	Regional differences in the timing of recent air warming during the past four decades in China. Science Bulletin, 2010, 55, 1968-1973.	1.7	53
340	Are ecological gradients in seasonal Q10 of soil respiration explained by climate or by vegetation seasonality?. Soil Biology and Biochemistry, 2010, 42, 1728-1734.	8.8	106
341	Can we reconcile atmospheric estimates of the Northern terrestrial carbon sink with land-based accounting?. Current Opinion in Environmental Sustainability, 2010, 2, 225-230.	6.3	73
342	The European carbon balance. Part 3: forests. Global Change Biology, 2010, 16, 1429-1450.	9.5	247

#	Article	IF	CITATIONS
343	Change in winter snow depth and its impacts on vegetation in China. Global Change Biology, 2010, 16, 3004-3013.	9.5	115
344	The impacts of climate change on water resources and agriculture in China. Nature, 2010, 467, 43-51.	27.8	2,656
345	Reduction of forest soil respiration in response to nitrogen deposition. Nature Geoscience, 2010, 3, 315-322.	12.9	1,254
346	Autumn temperature and carbon balance of a boreal Scots pine forest in Southern Finland. Biogeosciences, 2010, 7, 163-176.	3.3	57
347	Forest annual carbon cost: a globalâ€scale analysis of autotrophic respiration. Ecology, 2010, 91, 652-661.	3.2	171
348	Influence of spring and autumn phenological transitions on forest ecosystem productivity. Philosophical Transactions of the Royal Society B: Biological Sciences, 2010, 365, 3227-3246.	4.0	751
349	Application of the ORCHIDEE global vegetation model to evaluate biomass and soil carbon stocks of Qinghaiâ€Tibetan grasslands. Global Biogeochemical Cycles, 2010, 24, .	4.9	118
350	Benchmarking coupled climateâ€carbon models against longâ€ŧerm atmospheric CO ₂ measurements. Global Biogeochemical Cycles, 2010, 24, .	4.9	97
351	Temperature sensitivity of soil respiration in different ecosystems in China. Soil Biology and Biochemistry, 2009, 41, 1008-1014.	8.8	223
352	The carbon balance of terrestrial ecosystems in China. Nature, 2009, 458, 1009-1013.	27.8	1,243
353	Quantifying the response of forest carbon balance to future climate change in Northeastern China: Model validation and prediction. Global and Planetary Change, 2009, 66, 179-194.	3.5	103
354	Spatiotemporal patterns of terrestrial carbon cycle during the 20th century. Global Biogeochemical Cycles, 2009, 23, .	4.9	180
355	Footprint of temperature changes in the temperate and boreal forest carbon balance. Geophysical Research Letters, 2009, 36, .	4.0	38
356	Net carbon dioxide losses of northern ecosystems in response to autumn warming. Nature, 2008, 451, 49-52.	27.8	930
357	Carbon accumulation in European forests. Nature Geoscience, 2008, 1, 425-429.	12.9	263
358	Evaluation of the terrestrial carbon cycle, future plant geography and climate arbon cycle feedbacks using five Dynamic Global Vegetation Models (DGVMs). Global Change Biology, 2008, 14, 2015-2039.	9.5	1,097
359	Changes in climate and land use have a larger direct impact than rising CO ₂ on global river runoff trends. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 15242-15247.	7.1	504
360	Changes in biomass carbon stocks in China's grasslands between 1982 and 1999. Global Biogeochemical Cycles, 2007, 21, n/a-n/a.	4.9	127

#	Article	IF	CITATIONS
361	Growing season extension and its impact on terrestrial carbon cycle in the Northern Hemisphere over the past 2 decades. Global Biogeochemical Cycles, 2007, 21, .	4.9	598
362	CO ₂ balance of boreal, temperate, and tropical forests derived from a global database. Global Change Biology, 2007, 13, 2509-2537.	9.5	863
363	Terrestrial vegetation carbon sinks in China, 1981–2000. Science in China Series D: Earth Sciences, 2007, 50, 1341-1350.	0.9	466
364	Effect of climate and CO2changes on the greening of the Northern Hemisphere over the past two decades. Geophysical Research Letters, 2006, 33, .	4.0	207
365	NDVI-based increase in growth of temperate grasslands and its responses to climate changes in China. Global Environmental Change, 2006, 16, 340-348.	7.8	447
366	Patterns of fish species richness in China's lakes. Global Ecology and Biogeography, 2006, 15, 386-394.	5.8	44
367	Variations in satellite-derived phenology in China's temperate vegetation. Global Change Biology, 2006, 12, 672-685.	9.5	643
368	Variations in Vegetation Net Primary Production in the Qinghai-Xizang Plateau, China, from 1982 to 1999. Climatic Change, 2006, 74, 253-267.	3.6	271
369	Changes in vegetation net primary productivity from 1982 to 1999 in China. Global Biogeochemical Cycles, 2005, 19, n/a-n/a.	4.9	244
370	NDVI-indicated decline in desertification in China in the past two decades. Geophysical Research Letters, 2005, 32, .	4.0	125
371	Precipitation patterns alter growth of temperate vegetation. Geophysical Research Letters, 2005, 32, .	4.0	179
372	Forest biomass carbon stocks in China over the past 2 decades: Estimation based on integrated inventory and satellite data. Journal of Geophysical Research, 2005, 110, .	3.3	98
373	Increasing terrestrial vegetation activity in China, 1982–1999. Science in China Series C: Life Sciences, 2004, 47, 229-240.	1.3	48
374	Variation in a satellite-based vegetation index in relation to climate in China. Journal of Vegetation Science, 2004, 15, 219.	2.2	163
375	Interannual variations of monthly and seasonal normalized difference vegetation index (NDVI) in China from 1982 to 1999. Journal of Geophysical Research, 2003, 108, .	3.3	401
376	Increasing net primary production in China from 1982 to 1999. Frontiers in Ecology and the Environment, 2003, 1, 293-297.	4.0	195
377	Spatial variations in responses of vegetation autumn phenology to climate change on the Tibetan Plateau. Journal of Plant Ecology, 0, , rtw084.	2.3	33
378	Greater responses of flower phenology of <i>Kobresia pygmaea</i> community to precipitation addition than to constant and stepwise warming. Journal of Plant Ecology, 0, , .	2.3	1