Lynn E Heasley

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1464026/publications.pdf Version: 2024-02-01

IVNN F HEASLEV

#	Article	IF	CITATIONS
1	Using CDKN2A loss in the context of wildtype TP53 to predict sensitivity for the MDM2 inhibitor milademetan Journal of Clinical Oncology, 2022, 40, 3136-3136.	1.6	0
2	TP53 Null Mutations Identify Lung Cancer Cell Lines with Highest Sensitivity to the Nontaxane Microtubule Inhibitor Eribulin. Molecular Pharmacology, 2021, 100, 144-154.	2.3	6
3	A tyrosine kinase inhibitor-induced interferon response positively associates with clinical response in EGFR-mutant lung cancer. Npj Precision Oncology, 2021, 5, 41.	5.4	22
4	Cancer Cell-Specific Major Histocompatibility Complex II Expression as a Determinant of the Immune Infiltrate Organization and Function in the NSCLC Tumor Microenvironment. Journal of Thoracic Oncology, 2021, 16, 1694-1704.	1.1	12
5	Role of epidermal growth factor receptor inhibitor-induced interferon pathway signaling in the head and neck squamous cell carcinoma therapeutic response. Journal of Translational Medicine, 2021, 19, 43.	4.4	17
6	Translating mesothelioma molecular genomics and dependencies into precision oncology-based therapies. Seminars in Cancer Biology, 2020, 61, 11-22.	9.6	11
7	Cancer Cell–Intrinsic Expression of MHC Class II Regulates the Immune Microenvironment and Response to Anti–PD-1 Therapy in Lung Adenocarcinoma. Journal of Immunology, 2020, 204, 2295-2307.	0.8	83
8	Therapeutic opportunity in innate immune response induction by oncogene-targeted drugs. Future Medicinal Chemistry, 2019, 11, 1083-1086.	2.3	10
9	Functional RNAi Screens Define Distinct Protein Kinase Vulnerabilities in EGFR-Dependent HNSCC Cell Lines. Molecular Pharmacology, 2019, 96, 862-870.	2.3	10
10	Preselection of Lung Cancer Cases Using FGFR1 mRNA and Gene Copy Number for Treatment With Ponatinib. Clinical Lung Cancer, 2019, 20, e39-e51.	2.6	11
11	Subcellular Localization and Activity of the Mitogen-Activated Protein Kinase Kinase 7 (MKK7) <i>γ</i> Isoform are Regulated through Binding to the Phosphatase Calcineurin. Molecular Pharmacology, 2019, 95, 20-32.	2.3	6
12	Mechanisms of rapid cancer cell reprogramming initiated by targeted receptor tyrosine kinase inhibitors and inherent therapeutic vulnerabilities. Molecular Cancer, 2018, 17, 60.	19.2	27
13	Role of EphB3 Receptor in Mediating Head and Neck Tumor Growth, Cell Migration, and Response to PI3K Inhibitor. Molecular Cancer Therapeutics, 2018, 17, 2049-2059.	4.1	9
14	A miRNA Panel Predicts Sensitivity of FGFR Inhibitor in Lung Cancer Cell Lines. Clinical Lung Cancer, 2018, 19, 450-456.	2.6	4
15	Resistance to Radiotherapy and PD-L1 Blockade Is Mediated by TIM-3 Upregulation and Regulatory T-Cell Infiltration. Clinical Cancer Research, 2018, 24, 5368-5380.	7.0	189
16	Altered Cell-Cycle Control, Inflammation, and Adhesion in High-Risk Persistent Bronchial Dysplasia. Cancer Research, 2018, 78, 4971-4983.	0.9	23
17	Inhibition of EphB4–Ephrin-B2 Signaling Enhances Response to Cetuximab–Radiation Therapy in Head and Neck Cancers. Clinical Cancer Research, 2018, 24, 4539-4550	7.0	24
18	Linking tyrosine kinase inhibitor-mediated inflammation with normal epithelial cell homeostasis and tumor therapeutic responses. , 2018, 1, 118-125.		13

LYNN E HEASLEY

#	Article	IF	CITATIONS
19	EGFR Mediates Responses to Small-Molecule Drugs Targeting Oncogenic Fusion Kinases. Cancer Research, 2017, 77, 3551-3563.	0.9	65
20	Therapy-induced E-cadherin downregulation alters expression of programmed death ligand-1 in lung cancer, 2017, 109, 1-8.	2.0	27
21	Ionizing radiation sensitizes tumors to PD-L1 immune checkpoint blockade in orthotopic murine head and neck squamous cell carcinoma. OncoImmunology, 2017, 6, e1356153.	4.6	89
22	The Tumor Microenvironment Regulates Sensitivity of Murine Lung Tumors to PD-1/PD-L1 Antibody Blockade. Cancer Immunology Research, 2017, 5, 767-777.	3.4	120
23	Analysis of Drug Resistance Using Kinome-Wide Functional Screens. Methods in Molecular Biology, 2017, 1636, 163-177.	0.9	2
24	Evaluation of FGFR3 as a Therapeutic Target in Head and Neck Squamous Cell Carcinoma. Targeted Oncology, 2016, 11, 631-642.	3.6	10
25	Persistence of Bronchial Dysplasia Is Associated with Development of Invasive Squamous Cell Carcinoma. Cancer Prevention Research, 2016, 9, 96-104.	1.5	34
26	MERTK as a novel therapeutic target in head and neck cancer. Oncotarget, 2016, 7, 32678-32694.	1.8	17
27	An Inducible TGF-β2-TGFβR Pathway Modulates the Sensitivity of HNSCC Cells to Tyrosine Kinase Inhibitors Targeting Dominant Receptor Tyrosine Kinases. PLoS ONE, 2015, 10, e0123600.	2.5	5
28	FGFR1 Expression Levels Predict BGJ398 Sensitivity of FGFR1-Dependent Head and Neck Squamous Cell Cancers. Clinical Cancer Research, 2015, 21, 4356-4364.	7.0	75
29	Identifying kinase dependency in cancer cells by integrating high-throughput drug screening and kinase inhibition data. Bioinformatics, 2015, 31, 3799-3806.	4.1	17
30	Kinome RNAi Screens Reveal Synergistic Targeting of MTOR and FGFR1 Pathways for Treatment of Lung Cancer and HNSCC. Cancer Research, 2015, 75, 4398-4406.	0.9	53
31	Nonamplified FGFR1 Is a Growth Driver in Malignant Pleural Mesothelioma. Molecular Cancer Research, 2014, 12, 1460-1469.	3.4	38
32	FGFR1 mRNA and Protein Expression, not Gene Copy Number, Predict FGFR TKI Sensitivity across All Lung Cancer Histologies. Clinical Cancer Research, 2014, 20, 3299-3309.	7.0	141
33	Bioinformatics-driven discovery of rational combination for overcoming EGFR-mutant lung cancer resistance to EGFR therapy. Bioinformatics, 2014, 30, 2393-2398.	4.1	22
34	Hypoxia Regulates Alternative Splicing of HIF and non-HIF Target Genes. Molecular Cancer Research, 2014, 12, 1233-1243.	3.4	46
35	Expression and role of the embryonic protein SOX2 in head and neck squamous cell carcinoma. Carcinogenesis, 2014, 35, 1636-1642.	2.8	66
36	Fibroblast growth factor receptor 1 amplification is a common event in squamous cell carcinoma of the head and neck. Modern Pathology, 2013, 26, 1298-1306.	5.5	54

LYNN E HEASLEY

#	Article	IF	CITATIONS
37	A Receptor Tyrosine Kinase Network Composed of Fibroblast Growth Factor Receptors, Epidermal Growth Factor Receptor, v-erb-b2 Erythroblastic Leukemia Viral Oncogene Homolog 2, and Hepatocyte Growth Factor Receptor Drives Growth and Survival of Head and Neck Squamous Carcinoma Cell Lines. Molecular Pharmacology, 2013, 83, 882-893.	2.3	41
38	FGFR1 as a novel prognostic and predictive biomarker in squamous cell cancers of the lung and the head and neck area. Annals of Translational Medicine, 2013, 1, 23.	1.7	12
39	Mechanisms of Resistance to Crizotinib in Patients with <i>ALK</i> Gene Rearranged Non–Small Cell Lung Cancer. Clinical Cancer Research, 2012, 18, 1472-1482.	7.0	1,018
40	Fibroblast Growth Factor Receptors Are Components of Autocrine Signaling Networks in Head and Neck Squamous Cell Carcinoma Cells. Clinical Cancer Research, 2011, 17, 5016-5025.	7.0	91
41	Rapidly Acquired Resistance to EGFR Tyrosine Kinase Inhibitors in NSCLC Cell Lines through De-Repression of FGFR2 and FGFR3 Expression. PLoS ONE, 2010, 5, e14117.	2.5	130
42	Fibroblast Growth Factor (FGF) and FGF Receptor-Mediated Autocrine Signaling in Non-Small-Cell Lung Cancer Cells. Molecular Pharmacology, 2009, 75, 196-207.	2.3	211
43	The fibroblast growth factor receptor signaling pathway as a mediator of intrinsic resistance to EGFR-specific tyrosine kinase inhibitors in non-small cell lung cancer. Drug Resistance Updates, 2009, 12, 95-102.	14.4	56
44	JNK regulation of oncogenesis. Molecules and Cells, 2006, 21, 167-73.	2.6	55
45	Autocrine and paracrine signaling through neuropeptide receptors in human cancer. Oncogene, 2001, 20, 1563-1569.	5.9	192
46	Akt negatively regulates the cJun N-terminal kinase pathway in PC12 cells. Journal of Neuroscience Research, 2000, 62, 799-808.	2.9	65
47	Stress- and cell type-dependent regulation of transfected c-Jun N-terminal kinase and mitogen-activated protein kinase kinase isoforms. Biochemical Journal, 1999, 338, 681-686.	3.7	29
48	Tyrosine kinase growth factor receptors but not seven-membrane–spanning receptors or phorbol esters activate mitogen-activated protein kinase in rat hepatocytes. Hepatology, 1995, 22, 1296-1303.	7.3	19