Wenxia Fang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1463631/publications.pdf Version: 2024-02-01

WENYIA FANC

#	Article	IF	CITATIONS
1	A molecular vision of fungal cell wall organization by functional genomics and solid-state NMR. Nature Communications, 2021, 12, 6346.	12.8	54
2	<i>N</i> -Myristoyltransferase Is a Cell Wall Target in <i>Aspergillus fumigatus</i> . ACS Chemical Biology, 2015, 10, 1425-1434.	3.4	38
3	Innate immune responses against the fungal pathogen Candida auris. Nature Communications, 2022, 13,	12.8	30
4	Genetic and structural validation of <i><scp>A</scp>spergillus fumigatus</i> â€ <scp>UDP</scp> â€ <i><scp>N</scp></i> â€acetylglucosamine pyrophosphorylase as an antifungal target. Molecular Microbiology, 2013, 89, 479-493.	2.5	29
5	Microbe Profile: Aspergillus fumigatus: a saprotrophic and opportunistic fungal pathogen. Microbiology (United Kingdom), 2018, 164, 1009-1011.	1.8	29
6	Bioactive Phytochemicals with Anti-Aging and Lifespan Extending Potentials in Caenorhabditis elegans. Molecules, 2021, 26, 7323.	3.8	27
7	Genetic and structural validation of <i>Aspergillus fumigatus N</i> -acetylphosphoglucosamine mutase as an antifungal target. Bioscience Reports, 2013, 33, .	2.4	22
8	Effects of various inhibitory substances and immobilization on ethanol production efficiency of a thermotolerant Pichia kudriavzevii. Biotechnology for Biofuels, 2020, 13, 91.	6.2	22
9	Mechanisms of redundancy and specificity of the Aspergillus fumigatus Crh transglycosylases. Nature Communications, 2019, 10, 1669.	12.8	18
10	Caenorhabditis elegans-Based Aspergillus fumigatus Infection Model for Evaluating Pathogenicity and Drug Efficacy. Frontiers in Cellular and Infection Microbiology, 2020, 10, 320.	3.9	17
11	Targeting a critical step in fungal hexosamine biosynthesis. Journal of Biological Chemistry, 2020, 295, 8678-8691.	3.4	16
12	Aspergillus fumigatus Mitochondrial Acetyl Coenzyme A Acetyltransferase as an Antifungal Target. Applied and Environmental Microbiology, 2020, 86, .	3.1	15
13	A Thermotolerant Marine Bacillus amyloliquefaciens S185 Producing Iturin A5 for Antifungal Activity against Fusarium oxysporum f. sp. cubense. Marine Drugs, 2021, 19, 516.	4.6	14
14	The citron homology domain as a scaffold for Rho1 signaling. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	9
15	Inhibitors against Fungal Cell Wall Remodeling Enzymes. ChemMedChem, 2018, 13, 128-132.	3.2	7
16	Genetic and structural validation of phosphomannomutase as a cell wall target in <i>Aspergillus fumigatus</i> . Molecular Microbiology, 2021, 116, 245-259.	2.5	7
17	Cell wall polysaccharides from pathogenic fungi for diagnosis of fungal infectious disease. Mycoses, 2020, 63, 644-652.	4.0	6
18	Caenorhabditis elegans as an Infection Model for Pathogenic Mold and Dimorphic Fungi: Applications and Challenges. Frontiers in Cellular and Infection Microbiology, 2021, 11, 751947.	3.9	6

Wenxia Fang

#	Article	IF	CITATIONS
19	Marine Bioactive Compounds against Aspergillus fumigatus: Challenges and Future Prospects. Antibiotics, 2020, 9, 813.	3.7	5
20	Genetic validation of Aspergillus fumigatus phosphoglucomutase as a viable therapeutic target in invasive aspergillosis. Journal of Biological Chemistry, 2022, 298, 102003.	3.4	3
21	Loss of NSE-4 Perturbs Genome Stability and DNA Repair in Caenorhabditis elegans. International Journal of Molecular Sciences, 2022, 23, 7202.	4.1	3