Martha A Sutula

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1461897/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Dataset of terrestrial fluxes of freshwater, nutrients, carbon, and iron to the Southern California Bight, U.S.A Data in Brief, 2021, 35, 106802.	1.0	5
2	Coastal eutrophication drives acidification, oxygen loss, and ecosystem change in a major oceanic upwelling system. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	41
3	A baseline of terrestrial freshwater and nitrogen fluxes to the Southern California Bight, USA. Marine Pollution Bulletin, 2021, 170, 112669.	5.0	9
4	Synthesis of ecotoxicological studies on cyanotoxins in freshwater habitats – Evaluating the basis for developing thresholds protective of aquatic life in the United States. Science of the Total Environment, 2021, 795, 148864.	8.0	27
5	Configuration and Validation of an Oceanic Physical and Biogeochemical Model to Investigate Coastal Eutrophication in the Southern California Bight. Journal of Advances in Modeling Earth Systems, 2021, 13, e2020MS002296.	3.8	5
6	Predictive biological indices for algae populations in diverse stream environments. Ecological Indicators, 2020, 119, 106421.	6.3	15
7	Climate-driven aerobic habitat loss in the California Current System. Science Advances, 2020, 6, eaay3188.	10.3	75
8	Characterizing benthic macroinvertebrate and algal biological condition gradient models for California wadeable Streams, USA. Ecological Indicators, 2020, 117, 106618.	6.3	14
9	Systematic Review and Meta-Analysis Toward Synthesis of Thresholds of Ocean Acidification Impacts on Calcifying Pteropods and Interactions With Warming. Frontiers in Marine Science, 2019, 6, .	2.5	69
10	Prioritizing management goals for stream biological integrity within the developed landscape context. Freshwater Science, 2019, 38, 883-898.	1.8	8
11	A tale of two algal blooms: Negative and predictable effects of two common bloom-forming macroalgae on seagrass and epiphytes. Marine Environmental Research, 2018, 140, 1-9.	2.5	17
12	Novel analyses of long-term data provide a scientific basis for chlorophyll-a thresholds in San Francisco Bay. Estuarine, Coastal and Shelf Science, 2017, 197, 107-118.	2.1	20
13	Microcystin Prevalence throughout Lentic Waterbodies in Coastal Southern California. Toxins, 2017, 9, 231.	3.4	36
14	Water quality criteria for an acidifying ocean: Challenges and opportunities for improvement. Ocean and Coastal Management, 2016, 126, 31-41.	4.4	36
15	Wadeable streams as widespread sources of benthic cyanotoxins in California, USA. Harmful Algae, 2015, 49, 105-116.	4.8	76
16	How much is too much? Identifying benchmarks of adverse effects of macroalgae on the macrofauna in intertidal flats. Ecological Applications, 2014, 24, 300-314.	3.8	31
17	A Regional Survey of the Extent and Magnitude of Eutrophication in Mediterranean Estuaries of Southern California, USA. Estuaries and Coasts, 2014, 37, 259-278.	2.2	25
18	Thresholds of Adverse Effects of Macroalgal Abundance and Sediment Organic Matter on Benthic Habitat Quality in Estuarine Intertidal Flats. Estuaries and Coasts, 2014, 37, 1532-1548.	2.2	29

Martha A Sutula

#	Article	IF	CITATIONS
19	Patterns and potential drivers of declining oxygen content along the southern California coast. Limnology and Oceanography, 2014, 59, 1127-1138.	3.1	40
20	Anthropogenic nutrient sources rival natural sources on small scales in the coastal waters of the Southern California Bight. Limnology and Oceanography, 2014, 59, 285-297.	3.1	64
21	Phytoplankton blooms detected by SeaWiFS along the central and southern California coast. Journal of Geophysical Research, 2012, 117, .	3.3	21
22	Demonstration of an integrated watershed assessment using a three-tiered assessment framework. Wetlands Ecology and Management, 2011, 19, 459-474.	1.5	6
23	Sediment Contaminant Chemistry and Toxicity of Freshwater Urban Wetlands in Southern California ¹ . Journal of the American Water Resources Association, 2010, 46, 367-385.	2.4	20
24	A Study of the Compatibility of Habitat and Water Quality Enhancement Objectives in Urban Wetlands of Southern California, USA. Proceedings of the Water Environment Federation, 2007, 2007, 7169-7200.	0.0	0
25	A PRACTICAL GUIDE FOR THE DEVELOPMENT OF A WETLAND ASSESSMENT METHOD: THE CALIFORNIA EXPERIENCE. Journal of the American Water Resources Association, 2006, 42, 157-175.	2.4	53
26	Modeling the dry-weather tidal cycling of fecal indicator bacteria in surface waters of an intertidal wetland. Water Research, 2005, 39, 3394-3408.	11.3	72
27	Effect of seasonal sediment storage in the lower Mississippi River on the flux of reactive particulate phosphorus to the Gulf of Mexico. Limnology and Oceanography, 2004, 49, 2223-2235.	3.1	92
28	Factors affecting spatial and temporal variability in material exchange between the Southern Everglades wetlands and Florida Bay (USA). Estuarine, Coastal and Shelf Science, 2003, 57, 757-781.	2.1	67
29	Black Carbon from the Mississippi River:Â Quantities, Sources, and Potential Implications for the Global Carbon Cycle. Environmental Science & Technology, 2002, 36, 2296-2302.	10.0	112
30	Title is missing!. Biogeochemistry, 2001, 56, 287-310.	3.5	60