Daniel J Macqueen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1461513/publications.pdf

Version: 2024-02-01

49 papers

2,680 citations

236925 25 h-index 206112 48 g-index

59 all docs

59 docs citations

59 times ranked

2903 citing authors

#	Article	IF	CITATIONS
1	Genome-Wide Reconstruction of Rediploidization Following Autopolyploidization across One Hundred Million Years of Salmonid Evolution. Molecular Biology and Evolution, 2022, 39, .	8.9	24
2	Evolution of ray-finned fish genomes: Status and directions with a primer on microRNA characterization., 2022,, 309-346.		2
3	Exploration of the Nurse Shark (Ginglymostoma cirratum) Plasma Immunoproteome Using High-Resolution LC-MS/MS. Frontiers in Immunology, 2022, 13, .	4.8	4
4	Comparative regulomics supports pervasive selection on gene dosage following whole genome duplication. Genome Biology, 2021, 22, 103.	8.8	54
5	Genomic Epidemiology of Salmonid Alphavirus in Norwegian Aquaculture Reveals Recent Subtype-2 Transmission Dynamics and Novel Subtype-3 Lineages. Viruses, 2021, 13, 2549.	3.3	2
6	The structural variation landscape in 492 Atlantic salmon genomes. Nature Communications, 2020, 11 , 5176 .	12.8	60
7	Plasma Proteome Responses in Salmonid Fish Following Immunization. Frontiers in Immunology, 2020, 11, 581070.	4.8	9
8	Genome Sequencing of SAV3 Reveals Repeated Seeding Events of Viral Strains in Norwegian Aquaculture. Frontiers in Microbiology, 2020, 11, 740.	3.5	5
9	Genome-wide target enriched viral sequencing reveals extensive †hidden' salmonid alphavirus diversity in farmed and wild fish populations. Aquaculture, 2020, 522, 735117.	3 . 5	6
10	Harnessing genomics to fast-track genetic improvement in aquaculture. Nature Reviews Genetics, 2020, 21, 389-409.	16.3	286
11	Nanopore whole genome sequencing and partitioned phylogenetic analysis supports a new salmonid alphavirus genotype (SAV7). Diseases of Aquatic Organisms, 2020, 142, 203-211.	1.0	10
12	The AMPK system of salmonid fishes was expanded through genome duplication and is regulated by growth and immune status in muscle. Scientific Reports, 2019, 9, 9819.	3.3	12
13	Phylogenetic Reclassification of Vertebrate Melatonin Receptors To Include Mel1d. G3: Genes, Genomes, Genetics, 2019, 9, 3225-3238.	1.8	20
14	Effect of growth rate on transcriptomic responses to immune stimulation in wild-type, domesticated, and GH-transgenic coho salmon. BMC Genomics, 2019, 20, 1024.	2.8	11
15	Proteomic comparison of selective breeding and growth hormone transgenesis in fish: Unique pathways to enhanced growth. Journal of Proteomics, 2019, 192, 114-124.	2.4	31
16	Atlantic salmon (<i>Salmo salar</i> L.) genetics in the 21st century: taking leaps forward in aquaculture and biological understanding. Animal Genetics, 2019, 50, 3-14.	1.7	66
17	Growth hormone transgenesis in coho salmon disrupts muscle immune function impacting cross-talk with growth systems. Journal of Experimental Biology, 2018, 221, .	1.7	24
18	Nanopore sequencing for rapid diagnostics of salmonid RNA viruses. Scientific Reports, 2018, 8, 16307.	3.3	25

#	Article	IF	Citations
19	Phylotranscriptomics suggests the jawed vertebrate ancestor could generate diverse helper and regulatory T cell subsets. BMC Evolutionary Biology, 2018, 18, 169.	3.2	27
20	High-throughput proteomic profiling of the fish liver following bacterial infection. BMC Genomics, 2018, 19, 719.	2.8	68
21	Insulin-Like Growth Factor-Binding Proteins of Teleost Fishes. Frontiers in Endocrinology, 2018, 9, 80.	3.5	84
22	Divergent regulation of insulin-like growth factor binding protein genes in cultured Atlantic salmon myotubes under different models of catabolism and anabolism. General and Comparative Endocrinology, 2017, 247, 53-65.	1.8	23
23	Evolutionary history of the T cell receptor complex as revealed by small-spotted catshark () Tj ETQq1 1 0.784314	rgBŢ/Ove	erlock 10 Tf 5
24	Lineage-specific rediploidization is a mechanism to explain time-lags between genome duplication and evolutionary diversification. Genome Biology, 2017, 18, 111.	8.8	136
25	Functional Annotation of All Salmonid Genomes (FAASG): an international initiative supporting future salmonid research, conservation and aquaculture. BMC Genomics, 2017, 18, 484.	2.8	99
26	The complete salmonid IGF-IR gene repertoire and its transcriptional response to disease. Scientific Reports, 2016, 6, 34806.	3.3	16
27	Cross Talk Between Growth and Immunity: Coupling of the IGF Axis to Conserved Cytokine Pathways in Rainbow Trout. Endocrinology, 2016, 157, 1942-1955.	2.8	40
28	Evolution and expression of tissue globins in ray-finned fishes. Genome Biology and Evolution, 2016, 9, evw266.	2.5	9
29	Targeted sequencing for high-resolution evolutionary analyses following genome duplication in salmonid fish: Proof of concept for key components of the insulin-like growth factor axis. Marine Genomics, 2016, 30, 15-26.	1.1	16
30	Disparate developmental patterns of immune responses to bacterial and viral infections in fish. Scientific Reports, 2015, 5, 15458.	3.3	53
31	A well-constrained estimate for the timing of the salmonid whole genome duplication reveals major decoupling from species diversification. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20132881.	2.6	369
32	The vertebrate muscleâ€specific RING finger protein family includes MuRF4 – A novel, conserved E3â€ubiquitin ligase. FEBS Letters, 2014, 588, 4390-4397.	2.8	10
33	Cardiac myoglobin deficit has evolved repeatedly in teleost fishes. Biology Letters, 2014, 10, 20140225.	2.3	16
34	Characterization of the definitive classical calpain family of vertebrates using phylogenetic, evolutionary and expression analyses. Open Biology, 2014, 4, 130219.	3.6	30
35	Evolution of Ancient Functions in the Vertebrate Insulin-Like Growth Factor System Uncovered by Study of Duplicated Salmonid Fish Genomes. Molecular Biology and Evolution, 2013, 30, 1060-1076.	8.9	102
36	Universal scaling rules predict evolutionary patterns of myogenesis in species with indeterminate growth. Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 2255-2261.	2.6	16

#	Article	IF	CITATIONS
37	Growth and the regulation of myotomal muscle mass in teleost fish. Journal of Experimental Biology, 2011, 214, 1617-1628.	1.7	382
38	The parallel evolution of dwarfism in Arctic charr is accompanied by adaptive divergence in mTOR-pathway gene expression. Molecular Ecology, 2011, 20, 3167-3184.	3.9	45
39	A Newly Classified Vertebrate Calpain Protease, Directly Ancestral to CAPN1 and 2, Episodically Evolved a Restricted Physiological Function in Placental Mammals. Molecular Biology and Evolution, 2010, 27, 1886-1902.	8.9	40
40	Characterisation of capn1, capn2-like, capn3 and capn11 genes in Atlantic halibut (Hippoglossus) Tj ETQq0 0 0 nutritional states. Gene, 2010, 453, 45-58.	gBT /Over 2.2	lock 10 Tf 50 23
41	Positioning the expanded akirin gene family of Atlantic salmon within the transcriptional networks of myogenesis. Biochemical and Biophysical Research Communications, 2010, 400, 599-605.	2.1	31
42	Salmonid genomes have a remarkably expanded (i) akirin (i) family, coexpressed with genes from conserved pathways governing skeletal muscle growth and catabolism. Physiological Genomics, 2010, 42, 134-148.	2.3	48
43	Evolution of the multifaceted eukaryotic akirin gene family. BMC Evolutionary Biology, 2009, 9, 34.	3.2	84
44	Evolution of follistatin in teleosts revealed through phylogenetic, genomic and expression analyses. Development Genes and Evolution, 2008, 218, 1-14.	0.9	27
45	Temperature until the â€~eyed stage' of embryogenesis programmes the growth trajectory and muscle phenotype of adult Atlantic salmon. Biology Letters, 2008, 4, 294-298.	2.3	75
46	An Update on MyoD Evolution in Teleosts and a Proposed Consensus Nomenclature to Accommodate the Tetraploidization of Different Vertebrate Genomes. PLoS ONE, 2008, 3, e1567.	2.5	37
47	Temperature influences the coordinated expression of myogenic regulatory factors during embryonic myogenesis in Atlantic salmon (<i>Salmo salar</i> L.). Journal of Experimental Biology, 2007, 210, 2781-2794.	1.7	37
48	A novel salmonid myoD gene is distinctly regulated during development and probably arose by duplication after the genome tetraploidization. FEBS Letters, 2006, 580, 4996-5002.	2.8	35
49	Corrigendum to "A novel salmonid myoD gene is distinctly regulated during development and probably arose by duplication after the genome tetraploidization―[FEBS Lett. 580 (2006) 4996-5002]. FEBS Letters, 2006, 580, 6286-6287.	2.8	1