Giulia Chinetti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1460597/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Diabetes-Induced Changes in Macrophage Biology Might Lead to Reduced Risk for Abdominal Aortic Aneurysm Development. Metabolites, 2022, 12, 128.	2.9	1
2	TREM-1 orchestrates angiotensin II–induced monocyte trafficking and promotes experimental abdominal aortic aneurysm. Journal of Clinical Investigation, 2021, 131, .	8.2	36
3	Roles of Nuclear Receptors in Vascular Calcification. International Journal of Molecular Sciences, 2021, 22, 6491.	4.1	3
4	Nuclear receptors in abdominal aortic aneurysms. Atherosclerosis, 2020, 297, 87-95.	0.8	5
5	Differential micro-RNA expression in diabetic patients with abdominal aortic aneurysm. Biochimie, 2019, 162, 1-7.	2.6	14
6	Transforming growth factor β neutralization finely tunes macrophage phenotype in elastase-induced abdominal aortic aneurysm and is associated with an increase of arginase 1 expression in the aorta. Journal of Vascular Surgery, 2019, 70, 588-598.e2.	1.1	16
7	Regarding "Outcomes associated with hyperglycemia after abdominal aortic aneurysm repair― Journal of Vascular Surgery, 2019, 69, 310.	1.1	0
8	Regarding "Diabetes-Related Factors and Abdominal Aortic Aneurysm Events: The Atherosclerotic Risk in Communities Study― Annals of Epidemiology, 2019, 31, 75-76.	1.9	0
9	Decreased serum glicentin concentration in patients with severe and morbid obesity. Annals of Clinical Biochemistry, 2018, 55, 198-204.	1.6	9
10	Investigation of Plasma Inflammatory Profile in Diabetic Patients With Abdominal Aortic Aneurysm: A Pilot Study. Vascular and Endovascular Surgery, 2018, 52, 597-601.	0.7	6
11	Glucagon-Like peptide-1: A new therapeutic target to treat abdominal aortic aneurysm?. Biochimie, 2018, 152, 149-154.	2.6	9
12	Diabetes and aortic aneurysm: current state of the art. Cardiovascular Research, 2018, 114, 1702-1713.	3.8	111
13	Association of abdominal aortic aneurysm diameter with insulin resistance index. Biochemia Medica, 2018, 28, 030702.	2.7	13
14	Monocytes and macrophages in abdominal aortic aneurysm. Nature Reviews Cardiology, 2017, 14, 457-471.	13.7	267
15	Human Alternative Macrophages Populate Calcified Areas of Atherosclerotic Lesions and Display Impaired RANKL-Induced Osteoclastic Bone Resorption Activity. Circulation Research, 2017, 121, 19-30.	4.5	76
16	PPARÎ ² in macrophages and atherosclerosis. Biochimie, 2017, 136, 59-64.	2.6	26
17	Fasting Circulating Glicentin Increases After Bariatric Surgery. Obesity Surgery, 2017, 27, 1581-1588.	2.1	16
18	DHA-derived oxylipins, neuroprostanes and protectins, differentially and dose-dependently modulate the inflammatory response in human macrophages: Putative mechanisms through PPAR activation. Free Radical Biology and Medicine, 2017, 103, 146-154.	2.9	42

#	Article	IF	CITATIONS
19	Insights on glicentin, a promising peptide of the proglucagon family. Biochemia Medica, 2017, 27, 308-324.	2.7	36
20	Natalizumab Treatment Modulates Peroxisome Proliferator-Activated Receptors Expression in Women with Multiple Sclerosis. PPAR Research, 2016, 2016, 1-5.	2.4	8
21	Peroxisome Proliferator-Activated Receptor <i>γ</i> Induces the Expression of Tissue Factor Pathway Inhibitor-1 (TFPI-1) in Human Macrophages. PPAR Research, 2016, 2016, 1-9.	2.4	4
22	Transducinâ€like enhancer of splitâ€1 is expressed and functional in human macrophages. FEBS Letters, 2016, 590, 43-52.	2.8	6
23	Impaired histone deacetylases 5 and 6 expression mimics the effects of obesity and hypoxia on adipocyte function. Molecular Metabolism, 2016, 5, 1200-1207.	6.5	25
24	The kynurenine pathway is activated in human obesity and shifted toward kynurenine monooxygenase activation. Obesity, 2015, 23, 2066-2074.	3.0	196
25	Structural and functional changes in HDL with low grade and chronic inflammation. International Journal of Cardiology, 2015, 188, 111-116.	1.7	60
26	M1 and M2 macrophage proteolytic and angiogenic profile analysis in atherosclerotic patients reveals a distinctive profile in type 2 diabetes. Diabetes and Vascular Disease Research, 2015, 12, 279-289.	2.0	38
27	The coronary artery diseaseâ€associated gene C6ORF105 is expressed in human macrophages under the transcriptional control of PPARγ. FEBS Letters, 2015, 589, 461-466.	2.8	17
28	The neuron-derived orphan receptor 1 (NOR1) is induced upon human alternative macrophage polarization and stimulates the expression of markers of the M2 phenotype. Atherosclerosis, 2015, 241, 18-26.	0.8	30
29	von Willebrand Factor as a Biological Sensor of Blood Flow to Monitor Percutaneous Aortic Valve Interventions. Circulation Research, 2015, 116, 1193-1201.	4.5	72
30	Macrophage subsets in atherosclerosis. Nature Reviews Cardiology, 2015, 12, 10-17.	13.7	501
31	Neuroprostanes, produced by free-radical mediated peroxidation of DHA, inhibit the inflammatory response of human macrophages. Free Radical Biology and Medicine, 2014, 75, S15.	2.9	14
32	HDL does not influence the polarization of human monocytes toward an alternative phenotype. International Journal of Cardiology, 2014, 172, 179-184.	1.7	23
33	Adipose Tissue Macrophages (ATM) of obese patients are releasing increased levels of prolactin during an inflammatory challenge: A role for prolactin in diabesity?. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2014, 1842, 584-593.	3.8	26
34	HDL in Children with CKD Promotes Endothelial Dysfunction and an Abnormal Vascular Phenotype. Journal of the American Society of Nephrology: JASN, 2014, 25, 2658-2668.	6.1	97
35	Macrophage phenotypes in atherosclerosis. Immunological Reviews, 2014, 262, 153-166.	6.0	454
36	miR-206 controls LXRα expression and promotes LXR-mediated cholesterol efflux in macrophages. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2014, 1841, 827-835.	2.4	35

#	Article	IF	CITATIONS
37	Macrophage Phenotypes and Their Modulation in Atherosclerosis. Circulation Journal, 2014, 78, 1775-1781.	1.6	163
38	Von Willebrand Factor As a Biological Sensor of Blood Flow in Percutaneous Cardiac Procedures. Blood, 2014, 124, 474-474.	1.4	0
39	Liver X Receptor Activation Stimulates Iron Export in Human Alternative Macrophages. Circulation Research, 2013, 113, 1196-1205.	4.5	76
40	Free leptin, carotid plaque phenotype and relevance to related symptomatology: Insights from the OPAL-Lille carotid endarterectomy study. International Journal of Cardiology, 2013, 168, 4879-4881.	1.7	2
41	11βâ€hydroxysteroid dehydrogenase type 1 deficiency in bone marrowâ€derived cells reduces atherosclerosis. FASEB Journal, 2013, 27, 1519-1531.	0.5	41
42	Macrophage Function and Polarization in Cardiovascular Disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, 1127-1134.	2.4	66
43	Activation of intestinal peroxisome proliferator-activated receptor-Â increases high-density lipoprotein production. European Heart Journal, 2013, 34, 2566-2574.	2.2	44
44	Role of Proinflammatory CD68 ⁺ Mannose Receptor ^{â^'} Macrophages in Peroxiredoxin-1 Expression and in Abdominal Aortic Aneurysms in Humans. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, 431-438.	2.4	65
45	Nur77turing Macrophages in Atherosclerosis. Circulation Research, 2012, 110, 375-377.	4.5	6
46	Human Adipose Tissue Macrophages Display Activation of Cancer-related Pathways. Journal of Biological Chemistry, 2012, 287, 21904-21913.	3.4	60
47	Peroxisome Proliferator–Activated Receptor-γ Activation Induces 11β-Hydroxysteroid Dehydrogenase Type 1 Activity in Human Alternative Macrophages. Arteriosclerosis, Thrombosis, and Vascular Biology, 2012, 32, 677-685.	2.4	32
48	Impaired alternative macrophage differentiation of peripheral blood mononuclear cells from obese subjects. Diabetes and Vascular Disease Research, 2012, 9, 189-195.	2.0	43
49	Response to the Letter by Finn et al. Circulation Research, 2012, 110, .	4.5	3
50	Liver X Receptor (LXR) activation negatively regulates visfatin expression in macrophages. Biochemical and Biophysical Research Communications, 2011, 404, 458-462.	2.1	10
51	PPARα activation differently affects microparticle content in atherosclerotic lesions and liver of a mouse model of atherosclerosis and NASH. Atherosclerosis, 2011, 218, 69-76.	0.8	24
52	Macrophage polarization in metabolic disorders. Current Opinion in Lipidology, 2011, 22, 365-372.	2.7	157
53	p16INK4a deficiency promotes IL-4–induced polarization and inhibits proinflammatory signaling in macrophages. Blood, 2011, 118, 2556-2566.	1.4	89
54	Downregulation of the tumour suppressor p16INK4A contributes to the polarisation of human macrophages toward an adipose tissue macrophage (ATM)-like phenotype. Diabetologia, 2011, 54, 3150-3156.	6.3	31

#	Article	IF	CITATIONS
55	Association Between a Thyroid Hormone Receptor-α Gene Polymorphism and Blood Pressure but Not With Coronary Heart Disease Risk. American Journal of Hypertension, 2011, 24, 1027-1034.	2.0	12
56	Impaired Expression of the Inducible cAMP Early Repressor Accounts for Sustained Adipose CREB Activity in Obesity. Diabetes, 2011, 60, 3169-3174.	0.6	20
57	Human Atherosclerotic Plaque Alternative Macrophages Display Low Cholesterol Handling but High Phagocytosis Because of Distinct Activities of the PPARÎ ³ and LXRα Pathways. Circulation Research, 2011, 108, 985-995.	4.5	318
58	Visfatin is induced by peroxisome proliferatorâ€activated receptor gamma in human macrophages. FEBS Journal, 2010, 277, 3308-3320.	4.7	24
59	Lipid ligand-activated transcription factors regulating lipid storage and release in human macrophages. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2009, 1791, 486-493.	2.4	25
60	Unlike PPARÎ ³ , PPARα or PPARβ/δ activation does not promote human monocyte differentiation toward alternative macrophages. Biochemical and Biophysical Research Communications, 2009, 386, 459-462.	2.1	50
61	Peroxisome proliferatorâ€activated receptors – from active regulators of macrophage biology to pharmacological targets in the treatment of cardiovascular disease. Journal of Internal Medicine, 2008, 263, 28-42.	6.0	39
62	Association between liver X receptor α gene polymorphisms and risk of metabolic syndrome in French populations. International Journal of Obesity, 2008, 32, 421-428.	3.4	30
63	Liver X Receptor Activation Induces the Uptake of Cholesteryl Esters From High Density Lipoproteins in Primary Human Macrophages. Arteriosclerosis, Thrombosis, and Vascular Biology, 2008, 28, 2288-2295.	2.4	28
64	PPARs/RXRs in Cardiovascular Physiology and Disease. PPAR Research, 2008, 2008, 1-1.	2.4	12
65	Regulation of Macrophage Functions by PPAR-α, PPAR-γ, and LXRs in Mice and Men. Arteriosclerosis, Thrombosis, and Vascular Biology, 2008, 28, 1050-1059.	2.4	262
66	Induction of CXCR2 Receptor by Peroxisome Proliferator-Activated Receptor Î ³ in Human Macrophages. Arteriosclerosis, Thrombosis, and Vascular Biology, 2008, 28, 932-939.	2.4	23
67	The Nuclear Receptor Rev-erbα Is a Liver X Receptor (LXR) Target Gene Driving a Negative Feedback Loop on Select LXR-Induced Pathways in Human Macrophages. Molecular Endocrinology, 2008, 22, 1797-1811.	3.7	54
68	Liver X Receptor Activation Potentiates the Lipopolysaccharide Response in Human Macrophages. Circulation Research, 2007, 101, 40-49.	4.5	117
69	Measuring biomarkers to assess the therapeutic effects of PPAR agonists?. Pharmacogenomics, 2007, 8, 1567-1580.	1.3	4
70	Transcriptional regulation of macrophage cholesterol trafficking by PPARα and LXR. Biochemical Society Transactions, 2007, 35, 165-165.	3.4	0
71	PPARÎ ³ Activation Primes Human Monocytes into Alternative M2 Macrophages with Anti-inflammatory Properties. Cell Metabolism, 2007, 6, 137-143.	16.2	1,125
72	Transcriptional regulation of macrophage cholesterol trafficking by PPARα and LXR. Biochemical Society Transactions, 2006, 34, 1128-1131.	3.4	21

#	Article	IF	CITATIONS
73	Sorting out the roles of PPARÂ in energy metabolism and vascular homeostasis. Journal of Clinical Investigation, 2006, 116, 571-580.	8.2	779
74	Genes of Cholesterol Metabolism in Human Atheroma. Arteriosclerosis, Thrombosis, and Vascular Biology, 2005, 25, 1711-1717.	2.4	53
75	Peroxisome proliferator-activated receptor \hat{l}_{\pm} controls cellular cholesterol trafficking in macrophages. Journal of Lipid Research, 2005, 46, 2717-2725.	4.2	60
76	Liver X Receptor Activation Controls Intracellular Cholesterol Trafficking and Esterification in Human Macrophages. Circulation Research, 2005, 97, 682-689.	4.5	108
77	Therapeutical effects of PPAR agonists assessed by biomarker modulation. Biomarkers, 2005, 10, 30-36.	1.9	9
78	Role of the PPAR family of nuclear receptors in the regulation of metabolic and cardiovascular homeostasis: new approaches to therapy. Current Opinion in Pharmacology, 2005, 5, 177-183.	3.5	84
79	Ala ¹² Ala Genotype of the Peroxisome Proliferator-Activated Receptor γ2 Protects against Atherosclerosis. Journal of Clinical Endocrinology and Metabolism, 2004, 89, 4238-4242.	3.6	58
80	Peroxisome Proliferator–Activated Receptor α Induces NADPH Oxidase Activity in Macrophages, Leading to the Generation of LDL with PPAR-α Activation Properties. Circulation Research, 2004, 95, 1174-1182.	4.5	108
81	Expression of adiponectin receptors in human macrophages and regulation by agonists of the nuclear receptors PPARα, PPARγ, and LXR. Biochemical and Biophysical Research Communications, 2004, 314, 151-158.	2.1	239
82	Peroxisome proliferator-activated receptors and inflammation: from basic science to clinical applications. International Journal of Obesity, 2003, 27, S41-S45.	3.4	90
83	Peroxisome Proliferator-Activated Receptor (PPAR) α and PPARβ/δ, but not PPARγ, Modulate the Expression of Genes Involved in Cardiac Lipid Metabolism. Circulation Research, 2003, 92, 518-524.	4.5	389
84	Peroxisome Proliferator-Activated Receptor α Reduces Cholesterol Esterification in Macrophages. Circulation Research, 2003, 92, 212-217.	4.5	107
85	The Two Variants of Oxysterol Binding Protein-related Protein-1 Display Different Tissue Expression Patterns, Have Different Intracellular Localization, and Are Functionally Distinct. Molecular Biology of the Cell, 2003, 14, 903-915.	2.1	100
86	PPARs and atherosclerosis. Advances in Molecular and Cell Biology, 2003, 33, 543-560.	0.1	0
87	Rupture of the Atherosclerotic Plaque. Arteriosclerosis, Thrombosis, and Vascular Biology, 2003, 23, 535-542.	2.4	107
88	Peroxisome proliferator-activated receptors: new targets for the pharmacological modulation of macrophage gene expression and function. Current Opinion in Lipidology, 2003, 14, 459-468.	2.7	83
89	RÃ1es des "Peroxisome Proliferator-Activated Receptors―(PPARs) dans la régulation du métabolisme des lipides et le contrÃ1e de l'inflammation. Société De Biologie Journal, 2002, 196, 47-52.	0.3	35
90	Peroxisome proliferator-activated receptor (PPAR) agonists decrease lipoprotein lipase secretion and glycated LDL uptake by human macrophages. FEBS Letters, 2002, 512, 85-90.	2.8	69

#	Article	IF	CITATIONS
91	The role of PPARs in atherosclerosis. Trends in Molecular Medicine, 2002, 8, 422-430.	6.7	228
92	Peroxisome proliferator-activated receptors: from transcriptional control to clinical practice. Current Opinion in Lipidology, 2001, 12, 245-254.	2.7	182
93	PPAR- \hat{I}_{\pm} and PPAR- \hat{I}_{3} activators induce cholesterol removal from human macrophage foam cells through stimulation of the ABCA1 pathway. Nature Medicine, 2001, 7, 53-58.	30.7	1,075
94	PPARα Agonists Inhibit Tissue Factor Expression in Human Monocytes and Macrophages. Circulation, 2001, 103, 207-212.	1.6	197
95	The OSBP-related protein family in humans. Journal of Lipid Research, 2001, 42, 1203-1213.	4.2	177
96	PPAR (peroxisome proliferator-activated receptors) et paroi vasculaire : implications dans l'athérosclérose Medecine/Sciences, 2001, 17, 637.	0.2	0
97	Peroxisome proliferator-activated receptors (PPARs): Nuclear receptors at the crossroads between lipid metabolism and inflammation. Inflammation Research, 2000, 49, 497-505.	4.0	853
98	CLA-1/SR-BI Is Expressed in Atherosclerotic Lesion Macrophages and Regulated by Activators of Peroxisome Proliferator-Activated Receptors. Circulation, 2000, 101, 2411-2417.	1.6	405
99	Peroxisome proliferatorâ€activated receptor γ activators inhibit interleukinâ€12 production in murine dendritic cells. FEBS Letters, 2000, 486, 261-266.	2.8	152
100	A Truncated Human Peroxisome Proliferator-Activated Receptor α Splice Variant with Dominant Negative Activity. Molecular Endocrinology, 1999, 13, 1535-1549.	3.7	126
101	Peroxisome Proliferator-Activated Receptor Activators Inhibit Thrombin-Induced Endothelin-1 Production in Human Vascular Endothelial Cells by Inhibiting the Activator Protein-1 Signaling Pathway. Circulation Research, 1999, 85, 394-402.	4.5	489
102	Regulation of CLA-1 (CD36 and limp II analogous I) by activators of peroxisome proliferator activated receptors (PPARS). Atherosclerosis, 1999, 144, 112.	0.8	2
103	Regulation of macrophage lipoprotein lipase expression by activators of peroxisome proliferator-activated receptors. Atherosclerosis, 1999, 144, 146.	0.8	1
104	Cell Culture Conditions Determine Apolipoprotein CIII Secretion and Regulation by Fibrates in Human Hepatoma HepG2 Cells. Cellular Physiology and Biochemistry, 1999, 9, 139-149.	1.6	38
105	A Truncated Human Peroxisome Proliferator-Activated Receptor Splice Variant with Dominant Negative Activity. Molecular Endocrinology, 1999, 13, 1535-1549.	3.7	88
106	Activation of human aortic smooth-muscle cells is inhibited by PPARα but not by PPARÎ ³ activators. Nature, 1998, 393, 790-793.	27.8	1,104
107	Activation of Proliferator-activated Receptors α and γ Induces Apoptosis of Human Monocyte-derived Macrophages. Journal of Biological Chemistry, 1998, 273, 25573-25580.	3.4	837
108	4.P.21 Apoptotic cells colocalize with oxidized LDL in early atherosclerotic lesions from cholesterol fed rabbits. Atherosclerosis, 1997, 134, 300.	0.8	0