Jens R Coorssen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1460564/publications.pdf

Version: 2024-02-01

89 papers 2,993 citations

32 h-index 51 g-index

92 all docs 92 docs citations 92 times ranked 2620 citing authors

#	Article	IF	CITATIONS
1	Vesicle cholesterol controls exocytotic fusion pore. Cell Calcium, 2022, 101, 102503.	2.4	13
2	Calcium-Mediated Calpain Activation and Microtubule Dissociation in Cell Model of Hereditary Sensory Neuropathy Type-1 Expressing V144D <i>SPTLC1</i> Mutation. DNA and Cell Biology, 2022, 41, 225-234.	1.9	3
3	Profit versus Quality: The Enigma of Scientific Wellness. Journal of Personalized Medicine, 2022, 12, 34.	2.5	O
4	The roles of microglia and astrocytes in phagocytosis and myelination: Insights from the cuprizone model of multiple sclerosis. Glia, 2022, 70, 1215-1250.	4.9	49
5	Histological and Top-Down Proteomic Analyses of the Visual Pathway in the Cuprizone Demyelination Model. Journal of Molecular Neuroscience, 2022, 72, 1374-1401.	2.3	5
6	Proteomics of Multiple Sclerosis: Inherent Issues in Defining the Pathoetiology and Identifying (Early) Biomarkers. International Journal of Molecular Sciences, 2021, 22, 7377.	4.1	13
7	Proteomes Are of Proteoforms: Embracing the Complexity. Proteomes, 2021, 9, 38.	3.5	46
8	Revisiting the Pathoetiology of Multiple Sclerosis: Has the Tail Been Wagging the Mouse?. Frontiers in Immunology, 2020, 11, 572186.	4.8	33
9	Behavioural and histological changes in cuprizone-fed mice. Brain, Behavior, and Immunity, 2020, 87, 508-523.	4.1	29
10	A â€~green' approach to fixing polyacrylamide gels. Analytical Biochemistry, 2020, 605, 113853.	2.4	5
11	Application of the RBBP9 Serine Hydrolase Inhibitor, ML114, Decouples Human Pluripotent Stem Cell Proliferation and Differentiation. International Journal of Molecular Sciences, 2020, 21, 8983.	4.1	1
12	First Trimester Protein Biomarkers for Risk of Spontaneous Preterm Birth: Identifying a Critical Need for More Rigorous Approaches to Biomarker Identification and Validation. Fetal Diagnosis and Therapy, 2020, 47, 497-506.	1.4	7
13	CD8 T-cell Recruitment Into the Central Nervous System of Cuprizone-Fed Mice: Relevance to Modeling the Etiology of Multiple Sclerosis. Frontiers in Cellular Neuroscience, 2020, 14, 43.	3.7	22
14	Special Issue "Top-down Proteomics: In Memory of Dr Alfred Yergey― Alfred Linwood Yergey, III, 17 September 1941–27 May 2018. Proteomes, 2020, 8, 1.	3.5	1
15	Behavioural phenotypes in the cuprizone model of central nervous system demyelination. Neuroscience and Biobehavioral Reviews, 2019, 107, 23-46.	6.1	55
16	Innovating the Concept and Practice of Two-Dimensional Gel Electrophoresis in the Analysis of Proteomes at the Proteoform Level. Proteomes, 2019, 7, 36.	3.5	53
17	Suppression of the Peripheral Immune System Limits the Central Immune Response Following Cuprizone-Feeding: Relevance to Modelling Multiple Sclerosis. Cells, 2019, 8, 1314.	4.1	24
18	Exposure to microwave irradiation at constant culture temperature slows the growth of <i>Escherichia coli </i> DE3 cells, leading to modified proteomic profiles. RSC Advances, 2019, 9, 11810-11817.	3.6	4

#	Article	IF	Citations
19	Arachidonic acid and lysophosphatidylcholine inhibit multiple late steps of regulated exocytosis. Biochemical and Biophysical Research Communications, 2019, 515, 261-267.	2.1	5
20	Combined targeted Omic and Functional Assays Identify Phospholipases A2 that Regulate Docking/Priming in Calcium-Triggered Exocytosis. Cells, 2019, 8, 303.	4.1	4
21	Changes to the Human Serum Proteome in Response to High Intensity Interval Exercise: A Sequential Top-Down Proteomic Analysis. Frontiers in Physiology, 2019, 10, 362.	2.8	21
22	Unbiased Thiol-Labeling and Top-Down Proteomic Analyses Implicate Multiple Proteins in the Late Steps of Regulated Secretion. Proteomes, 2019, 7, 34.	3.5	4
23	Proteomic analysis of first trimester maternal serum to identify candidate biomarkers potentially predictive of spontaneous preterm birth. Journal of Proteomics, 2018, 178, 31-42.	2.4	34
24	Quantitative Gel Electrophoresis. , 2018, , 17-35.		0
25	Sphingolipids modulate docking, Ca2+ sensitivity and membrane fusion of native cortical vesicles. International Journal of Biochemistry and Cell Biology, 2018, 104, 43-54.	2.8	8
26	Coomassie does it (better): A Robin Hood approach to total protein quantification. Analytical Biochemistry, 2018, 556, 53-56.	2.4	18
27	High Sensitivity Topâ€down Proteomics: Coomassie for Inâ€gel Proteoform Detection Rivals MSâ€based Peptide Detection. FASEB Journal, 2018, 32, 802.13.	0.5	0
28	Comparative proteomic analysis of two pathogenic Tritrichomonas foetus genotypes: there is more to the proteome than meets the eye. International Journal for Parasitology, 2017, 47, 203-213.	3.1	16
29	<i>Drosophila</i> development, physiology, behavior, and lifespan are influenced by altered dietary composition. Fly, 2017, 11, 153-170.	1.7	54
30	Phospholipase A2: Potential roles in native membrane fusion. International Journal of Biochemistry and Cell Biology, 2017, 85, 1-5.	2.8	6
31	Coomassie staining provides routine (sub)femtomole inâ€gel detection of intact proteoforms: Expanding opportunities for genuine Topâ€down Proteomics. Electrophoresis, 2017, 38, 3086-3099.	2.4	28
32	Editorial for Special Issue: Approaches to Top-Down Proteomics: In Honour of Prof. Patrick H. Oâ∈™Farrell. Proteomes, 2017, 5, 18.	3.5	2
33	Application of High-Throughput Assays to Examine Phospho-Modulation of the Late Steps of Regulated Exocytosis. High-Throughput, 2017, 6, 17.	4.4	1
34	A Routine â€Top-Down' Approach to Analysis of the Human Serum Proteome. Proteomes, 2017, 5, 13.	3.5	14
35	ProteinProcessor: A probabilistic analysis using mass accuracy and the MS spectrum. Proteomics, 2016, 16, 2480-2490.	2.2	7
36	An initial top-down proteomic analysis of the standard cuprizone mouse model of multiple sclerosis. Journal of Chemical Biology, 2016, 9, 9-18.	2.2	20

#	Article	IF	CITATIONS
37	Proteomics Is Analytical Chemistry: Fitness-for-Purpose in the Application of Top-Down and Bottom-Up Analyses. Proteomes, 2015, 3, 440-453.	3.5	48
38	The Role of Phospholipase D in Regulated Exocytosis. Journal of Biological Chemistry, 2015, 290, 28683-28696.	3.4	15
39	Secretory vesicle cholesterol: Correlating lipid domain organization and Ca2+ triggered fusion. Biochimica Et Biophysica Acta - Biomembranes, 2015, 1848, 1165-1174.	2.6	10
40	Proteomics of a conundrum: Thoughts on addressing the aetiology versus progression of multiple sclerosis. Proteomics - Clinical Applications, 2015, 9, 838-843.	1.6	9
41	Optimal isolation of mitochondria for proteomic analyses. Analytical Biochemistry, 2015, 475, 1-3.	2.4	7
42	Mitochondrial protein alterations in a familial peripheral neuropathy caused by the V144D amino acid mutation in the sphingolipid protein, SPTLC1. Journal of Chemical Biology, 2015, 8, 25-35.	2.2	9
43	Deep Imaging: How Much of the Proteome Does Current Top-Down Technology Already Resolve?. PLoS ONE, 2014, 9, e86058.	2.5	31
44	A Systems Biology Approach to Understanding the Mechanisms of Action of an Alternative Anticancer Compound in Comparison to Cisplatin. Proteomes, 2014, 2, 501-526.	3.5	3
45	2DE: The Phoenix of Proteomics. Journal of Proteomics, 2014, 104, 140-150.	2.4	123
46	Topâ€down proteomics: Enhancing 2D gel electrophoresis from tissue processing to highâ€sensitivity protein detection. Proteomics, 2014, 14, 872-889.	2.2	45
47	Increased lipid droplet accumulation associated with a peripheral sensory neuropathy. Journal of Chemical Biology, 2014, 7, 67-76.	2.2	19
48	The Sea Urchin Egg and Cortical Vesicles as Model Systems to Dissect the Fast, Ca2+-Triggered Steps of Regulated Exocytosis. Neuromethods, 2014, , 221-241.	0.3	1
49	Cholesterol-mediated membrane surface area dynamics in neuroendocrine cells. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2013, 1831, 1228-1238.	2.4	12
50	Coomassie blue staining for high sensitivity gel-based proteomics. Journal of Proteomics, 2013, 90, 96-106.	2.4	45
51	Coomassie Blue as a Near-infrared Fluorescent Stain: A Systematic Comparison With Sypro Ruby for In-gel Protein Detection. Molecular and Cellular Proteomics, 2013, 12, 3834-3850.	3.8	40
52	Critical Role of Cortical Vesicles in Dissecting Regulated Exocytosis: Overview of Insights Into Fundamental Molecular Mechanisms. Biological Bulletin, 2013, 224, 200-217.	1.8	9
53	Regulated exocytosis per partes. Cell Calcium, 2012, 52, 191-195.	2.4	13
54	Anionic lipids in Ca2+-triggered fusion. Cell Calcium, 2012, 52, 259-269.	2.4	19

#	Article	IF	Citations
55	Observations of calcium dynamics in cortical secretory vesicles. Cell Calcium, 2012, 52, 217-225.	2.4	9
56	Measuring hydrogen peroxide reduction using a robust, inexpensive, and sensitive method. Journal of Chemical Biology, 2012, 5, 143-150.	2.2	1
57	Cholesterol-Independent Effects of Methyl- \hat{l}^2 -Cyclodextrin on Chemical Synapses. PLoS ONE, 2012, 7, e36395.	2.5	24
58	Quantitative proteomics: assessing the spectrum of in-gel protein detection methods. Journal of Chemical Biology, 2011, 4, 3-29.	2.2	85
59	A new approach to the molecular analysis of docking, priming, and regulated membrane fusion. Journal of Chemical Biology, 2011, 4, 117-136.	2.2	22
60	Dissecting the mechanism of Ca ²⁺ â€triggered membrane fusion: Probing protein function using thiol reactivity. Clinical and Experimental Pharmacology and Physiology, 2010, 37, 208-217.	1.9	7
61	Enhancement of the Ca2+-triggering steps of native membrane fusion via thiol-reactivity. Journal of Chemical Biology, 2009, 2, 27-37.	2.2	13
62	Identifying Critical Components of Native Ca ²⁺ â€triggered Membrane Fusion. Annals of the New York Academy of Sciences, 2009, 1152, 121-134.	3.8	26
63	Cholesterol, regulated exocytosis and the physiological fusion machine. Biochemical Journal, 2009, 423, 1-14.	3.7	65
64	Copper (II) sulfate charring for high sensitivity on-plate fluorescent detection of lipids and sterols: quantitative analyses of the composition of functional secretory vesicles. Journal of Chemical Biology, 2008, 1, 79-87.	2.2	48
65	Specific Lipids Supply Critical Negative Spontaneous Curvature—An Essential Component of Native Ca2+-Triggered Membrane Fusion. Biophysical Journal, 2008, 94, 3976-3986.	0.5	153
66	Enabling Coupled Quantitative Genomics and Proteomics Analyses from Rat Spinal Cord Samples. Molecular and Cellular Proteomics, 2007, 6, 1574-1588.	3.8	40
67	Assessing Detection Methods for Gel-Based Proteomic Analyses. Journal of Proteome Research, 2007, 6, 1418-1425.	3.7	83
68	An Initial Proteomic Analysis of Human Preterm Labor:Â Placental Membranes. Journal of Proteome Research, 2006, 5, 3161-3172.	3.7	52
69	Proteome Resolution by Two-Dimensional Gel Electrophoresis Varies with the Commercial Source of IPG Strips. Journal of Proteome Research, 2006, 5, 2919-2927.	3.7	21
70	Actin is not an essential component in the mechanism of calcium-triggered vesicle fusion. International Journal of Biochemistry and Cell Biology, 2006, 38, 461-471.	2.8	13
71	An evaluation ofin vitro protein–protein interaction techniques: Assessing contaminating background proteins. Proteomics, 2006, 6, 2050-2069.	2.2	52
72	Pre-extraction Sample Handling by Automated Frozen Disruption Significantly Improves Subsequent Proteomic Analyses. Journal of Proteome Research, 2006, 5, 437-448.	3.7	56

#	Article	IF	Citations
73	Sphingomyelin-enriched microdomains define the efficiency of native Ca2+-triggered membrane fusion. Journal of Cell Science, 2006, 119, 2688-2694.	2.0	64
74	Cholesterol facilitates the native mechanism of Ca2+-triggered membrane fusion. Journal of Cell Science, 2005, 118, 4833-4848.	2.0	171
75	Postfractionation for Enhanced Proteomic Analyses:Â Routine Electrophoretic Methods Increase the Resolution of Standard 2D-PAGE. Journal of Proteome Research, 2005, 4, 982-991.	3.7	65
76	Enhanced detergent extraction for analysis of membrane proteomes by two-dimensional gel electrophoresis. Proteome Science, 2005, 3, 5.	1.7	68
77	Membrane fusion of secretory vesicles of the sea urchin egg in the absence of NSF. Journal of Cell Science, 2004, 117, 2345-2356.	2.0	17
78	Comment on "Transmembrane Segments of Syntaxin Line the Fusion Pore of Ca2+-Triggered Exocytosis". Science, 2004, 306, 813b-813b.	12.6	19
79	Revisiting the role of SNAREs in exocytosis and membrane fusion. Biochimica Et Biophysica Acta - Molecular Cell Research, 2003, 1641, 121-135.	4.1	45
80	Calcium-triggered Membrane Fusion Proceeds Independently of Specific Presynaptic Proteins. Journal of Biological Chemistry, 2003, 278, 24251-24254.	3.4	47
81	Regulated secretion: SNARE density, vesicle fusion and calcium dependence. Journal of Cell Science, 2003, 116, 2087-2097.	2.0	55
82	De novo sequencing of peptides using MALDI/TOF-TOF. Journal of the American Society for Mass Spectrometry, 2002, 13, 784-791.	2.8	189
83	Quantitative femto- to attomole immunodetection of regulated secretory vesicle proteins critical to exocytosis. Analytical Biochemistry, 2002, 307, 54-62.	2.4	57
84	Sea urchin egg preparations as systems for the study of calcium-triggered exocytosis. Journal of Physiology, 1999, 520, 15-21.	2.9	26
85	Biochemical and Functional Studies of Cortical Vesicle Fusion: The SNARE Complex and Ca2+ Sensitivity. Journal of Cell Biology, 1998, 143, 1845-1857.	5.2	146
86	Calcium Can Disrupt the SNARE Protein Complex on Sea Urchin Egg Secretory Vesicles without Irreversibly Blocking Fusion. Journal of Biological Chemistry, 1998, 273, 33667-33673.	3.4	85
87	GTPÎ ³ S and phorbol ester act synergistically to stimulate both Ca2+-independent secretion and phospholipase D activity in permeabilized human platelets. FEBS Letters, 1993, 316, 170-174.	2.8	56
88	Effects of cholesterol on the structural transitions induced by diacylglycerol in phosphatidylcholine and phosphatidylethanolamine bilayer systems. Biochemistry and Cell Biology, 1990, 68, 65-69.	2.0	49
89	Zika Virus Replication in a Mast Cell Model is Augmented by Dengue Virus Antibody-Dependent Enhancement and Features a Selective Immune Mediator Secretory Profile. Microbiology Spectrum, 0, , ·	3.0	1