
Paul Cross

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1459044/publications.pdf Version: 2024-02-01

DALL CROSS

#	Article	IF	CITATIONS
1	Examination of the interaction between ageâ€specific predation and chronic disease in the Greater Yellowstone Ecosystem. Journal of Animal Ecology, 2022, 91, 1373-1384.	2.8	5
2	Epidemiological differences between sexes affect management efficacy in simulated chronic wasting disease systems. Journal of Applied Ecology, 2022, 59, 1122-1133.	4.0	8
3	Eyes on the herd: Quantifying ungulate density from satellite, unmanned aerial systems, and <scp>GPS</scp> collar data. Ecological Applications, 2022, , e2600.	3.8	3
4	Population structure, intergroup interaction, and human contact govern infectious disease impacts in mountain gorilla populations. American Journal of Primatology, 2022, 84, e23350.	1.7	4
5	Group density, disease, and season shape territory size and overlap of social carnivores. Journal of Animal Ecology, 2021, 90, 87-101.	2.8	12
6	Human activities and weather drive contact rates of wintering elk. Journal of Applied Ecology, 2021, 58, 667-676.	4.0	6
7	Genomic association with pathogen carriage in bighorn sheep (Ovis canadensis). Ecology and Evolution, 2021, 11, 2488-2502.	1.9	4
8	Elk migration influences the risk of disease spillover in the Greater Yellowstone Ecosystem. Journal of Animal Ecology, 2021, 90, 1264-1275.	2.8	8
9	A metapopulation model of social group dynamics and disease applied to Yellowstone wolves. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	8
10	Natural history of a bighorn sheep pneumonia epizootic: Source of infection, course of disease, and pathogen clearance. Ecology and Evolution, 2021, 11, 14366-14382.	1.9	7
11	Scavengers reduce potential brucellosis transmission risk in the Greater Yellowstone Ecosystem. Ecosphere, 2021, 12, e03783.	2.2	4
12	Parsing the effects of demography, climate and management on recurrent brucellosis outbreaks in elk. Journal of Applied Ecology, 2020, 57, 379-389.	4.0	4
13	Epidemic growth rates and host movement patterns shape management performance for pathogen spillover at the wildlife–livestock interface. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20180343.	4.0	10
14	Confronting models with data: the challenges of estimating disease spillover. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20180435.	4.0	30
15	Ecological interventions to prevent and manage zoonotic pathogen spillover. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20180342.	4.0	102
16	Risk factors and productivity losses associated with Mycoplasma ovipneumoniae infection in United States domestic sheep operations. Preventive Veterinary Medicine, 2019, 168, 30-38.	1.9	27
17	Winter feeding of elk in the Greater Yellowstone Ecosystem and its effects on disease dynamics. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20170093.	4.0	23
18	Hidden cost of disease in a freeâ€ranging ungulate: brucellosis reduces midâ€winter pregnancy in elk. Ecology and Evolution, 2018, 8, 10733-10742.	1.9	7

PAUL CROSS

#	Article	IF	CITATIONS
19	Estimating distemper virus dynamics among wolves and grizzly bears using serology and Bayesian stateâ€ s pace models. Ecology and Evolution, 2018, 8, 8726-8735.	1.9	38
20	"One Health―or Three? Publication Silos Among the One Health Disciplines. PLoS Biology, 2016, 14, e1002448.	5.6	84
21	Genomics reveals historic and contemporary transmission dynamics of a bacterial disease among wildlife and livestock. Nature Communications, 2016, 7, 11448.	12.8	85
22	Energetic costs of mange in wolves estimated from infrared thermography. Ecology, 2016, 97, 1938-1948.	3.2	32
23	When environmentally persistent pathogens transform good habitat into ecological traps. Royal Society Open Science, 2016, 3, 160051.	2.4	22
24	Influences of supplemental feeding on winter elk calf:cow ratios in the southern Greater Yellowstone Ecosystem. Journal of Wildlife Management, 2015, 79, 887-897.	1.8	7
25	Contextâ€dependent survival, fecundity and predicted populationâ€level consequences of brucellosis in <scp>A</scp> frican buffalo. Journal of Animal Ecology, 2015, 84, 999-1009.	2.8	29
26	Managing more than the mean: using quantile regression to identify factors related to large elk groups. Journal of Applied Ecology, 2015, 52, 1656-1664.	4.0	26
27	Estimating the phenology of elk brucellosis transmission with hierarchical models of cause-specific and baseline hazards. Journal of Wildlife Management, 2015, 79, 739-748.	1.8	32
28	Fine-scale movements of rural free-ranging dogs in conservation areas in the temperate rainforest of the coastal range of southern Chile. Mammalian Biology, 2015, 80, 290-297.	1.5	63
29	Social living mitigates the costs of a chronic illness in a cooperative carnivore. Ecology Letters, 2015, 18, 660-667.	6.4	67
30	A multi-scale assessment of animal aggregation patterns to understand increasing pathogen seroprevalence. Ecosphere, 2014, 5, art138.	2.2	9
31	Limitations to estimating bacterial crossâ€species transmission using genetic and genomic markers: inferences from simulation modeling. Evolutionary Applications, 2014, 7, 774-787.	3.1	10
32	Costs and benefits of group living with disease: a case study of pneumonia in bighorn lambs (<i>Ovis) Tj ETQq</i>	0 0 0 rgBT	/Ovgrlock 101
33	The Population History of Endogenous Retroviruses in Mule Deer (Odocoileus hemionus). Journal of Heredity, 2014, 105, 173-187.	2.4	13
34	Assembling evidence for identifying reservoirs of infection. Trends in Ecology and Evolution, 2014, 29, 270-279.	8.7	209
35	Sex-Biased Gene Flow Among Elk in the Greater Yellowstone Ecosystem. Journal of Fish and Wildlife Management, 2014, 5, 124-132.	0.9	3
36	Underestimating the effects of spatial heterogeneity due to individual movement and spatial scale: infectious disease as an example. Landscape Ecology, 2013, 28, 247-257.	4.2	14

PAUL CROSS

#	Article	IF	CITATIONS
37	Female elk contacts are neither frequency nor density dependent. Ecology, 2013, 94, 2076-2086.	3.2	45
38	Taming wildlife disease: bridging the gap between science and management. Journal of Applied Ecology, 2013, 50, 702-712.	4.0	87
39	Spatioâ€ŧemporal dynamics of pneumonia in bighorn sheep. Journal of Animal Ecology, 2013, 82, 518-528.	2.8	62
40	Microsatellites indicate minimal barriers to mule deerOdocoileus hemionusdispersal across Montana, USA. Wildlife Biology, 2013, 19, 102-110.	1.4	12
41	Use of Exposure History to Identify Patterns of Immunity to Pneumonia in Bighorn Sheep (Ovis) Tj ETQq1 1 0.7	84314 rgB 2.5	T /Qverlock 1
42	An ecological perspective on Brucella abortus in the western United States. OIE Revue Scientifique Et Technique, 2013, 32, 79-87.	1.2	18
43	Title is missing!. , 2013, 8, e61919.		0
44	Parasite invasion following host reintroduction: a case study of Yellowstone's wolves. Philosophical Transactions of the Royal Society B: Biological Sciences, 2012, 367, 2840-2851.	4.0	77
45	Wildlife contact analysis: emerging methods, questions, and challenges. Behavioral Ecology and Sociobiology, 2012, 66, 1437-1447.	1.4	44
46	Effects of supplemental feeding and aggregation on fecal glucocorticoid metabolite concentrations in elk. Journal of Wildlife Management, 2012, 76, 694-702.	1.8	27
47	Effects of Iowâ€density feeding on elk–fetus contact rates on Wyoming feedgrounds. Journal of Wildlife Management, 2012, 76, 877-886.	1.8	27
48	The utility of normalized difference vegetation index for predicting African buffalo forage quality. Journal of Wildlife Management, 2012, 76, 1499-1508.	1.8	71
49	Modeling Routes of Chronic Wasting Disease Transmission: Environmental Prion Persistence Promotes Deer Population Decline and Extinction. PLoS ONE, 2011, 6, e19896.	2.5	131
50	Rift Valley Fever Virus Infection in African Buffalo (Syncerus caffer) Herds in Rural South Africa: Evidence of Interepidemic Transmission. American Journal of Tropical Medicine and Hygiene, 2011, 84, 641-646.	1.4	59
51	Decreasing prevalence of brucellosis in red deer through efforts to control disease in livestock. Epidemiology and Infection, 2011, 139, 1626-1630.	2.1	20
52	Isolation of Bartonella capreoli from elk. Veterinary Microbiology, 2011, 148, 329-332.	1.9	14
53	Probable causes of increasing brucellosis in freeâ€ranging elk of the Greater Yellowstone Ecosystem. Ecological Applications, 2010, 20, 278-288.	3.8	92
54	Rejoinder: sifting through model space. Ecology, 2010, 91, 3503-3514.	3.2	25

PAUL CROSS

#	Article	IF	CITATIONS
55	From moonlight to movement and synchronized randomness: Fourier and wavelet analyses of animal location time series data. Ecology, 2010, 91, 1506-1518.	3.2	65
56	Mapping Brucellosis Increases Relative to Elk Density Using Hierarchical Bayesian Models. PLoS ONE, 2010, 5, e10322.	2.5	45
57	Linking process to pattern: estimating spatiotemporal dynamics of a wildlife epidemic from crossâ€sectional data. Ecological Monographs, 2010, 80, 221-240.	5.4	68
58	Clinical Demodicosis in African Buffalo (Syncerus caffer) in the Kruger National Park. Journal of Wildlife Diseases, 2009, 45, 502-504.	0.8	12
59	EFFECTS OF MANAGEMENT, BEHAVIOR, AND SCAVENGING ON RISK OF BRUCELLOSIS TRANSMISSION IN ELK OF WESTERN WYOMING. Journal of Wildlife Diseases, 2009, 45, 398-410.	0.8	47
60	Effects of Chemical Immobilization on Survival of African Buffalo in the Kruger National Park. Journal of Wildlife Management, 2009, 73, 149-153.	1.8	9
61	Disease, predation and demography: assessing the impacts of bovine tuberculosis on African buffalo by monitoring at individual and population levels. Journal of Applied Ecology, 2009, 46, 467-475.	4.0	71
62	Methods for assessing movement path recursion with application to African buffalo in South Africa. Ecology, 2009, 90, 2467-2479.	3.2	77
63	Infectious Disease in Cervids of North America. Annals of the New York Academy of Sciences, 2008, 1134, 146-172.	3.8	63
64	Tradeâ€offs of predation and foraging explain sexual segregation in African buffalo. Journal of Animal Ecology, 2008, 77, 850-858.	2.8	44
65	HABITAT QUALITY AND HETEROGENEITY INFLUENCE DISTRIBUTION AND BEHAVIOR IN AFRICAN BUFFALO (<i>SYNCERUS CAFFER</i>). Ecology, 2008, 89, 1457-1468.	3.2	66
66	EFFECTS OF MANAGEMENT AND CLIMATE ON ELK BRUCELLOSIS IN THE GREATER YELLOWSTONE ECOSYSTEM. , 2007, 17, 957-964.		106
67	Utility of R 0 as a predictor of disease invasion in structured populations. Journal of the Royal Society Interface, 2007, 4, 315-324.	3.4	84
68	LoCoH: Nonparameteric Kernel Methods for Constructing Home Ranges and Utilization Distributions. PLoS ONE, 2007, 2, e207.	2.5	410
69	Wildlife tuberculosis in South African conservation areas: Implications and challenges. Veterinary Microbiology, 2006, 112, 91-100.	1.9	259
70	Assessing vaccination as a control strategy in an ongoing epidemic: Bovine tuberculosis in African buffalo. Ecological Modelling, 2006, 196, 494-504.	2.5	36
71	Disentangling association patterns in fission–fusion societies using African buffalo as an example. Animal Behaviour, 2005, 69, 499-506.	1.9	98
72	Should we expect population thresholds for wildlife disease?. Trends in Ecology and Evolution, 2005, 20, 511-519.	8.7	403

#	Article	IF	CITATIONS
73	Disease and secondary sexual traits: effects of pneumonia on horn size of bighorn sheep. Journal of Wildlife Management, 0, , .	1.8	2