
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1458564/publications.pdf Version: 2024-02-01

TEDDVIEDV

#	Article	lF	CITATIONS
1	Efficacy of second CAR-T (CART2) infusion limited by poor CART expansion and antigen modulation. , 2022, 10, e004483.		21
2	CD19/22 CAR T cells in children and young adults with B-ALL: phase 1 results and development of a novel bicistronic CAR. Blood, 2022, 140, 451-463.	1.4	56
3	IMMU-23. Novel gene-edited CAR-T cell therapy against Diffuse Intrinsic Pontine Glioma. Neuro-Oncology, 2022, 24, i86-i87.	1.2	0
4	EPEN-26. Chemokine receptor blockade reverses CCL2 mediated immunosuppression and restores CAR-T cell function in posterior fossa ependymoma. Neuro-Oncology, 2022, 24, i44-i44.	1.2	0
5	Abstract CT522: Feasibility and safety of a novel CD19 CAR T cell therapy in adults with R/R B-NHL. Cancer Research, 2022, 82, CT522-CT522.	0.9	0
6	The CD19neg needle in the haystack. Blood, 2022, 140, 4-6.	1.4	1
7	Fatal capillary leak syndrome in a child with acute lymphoblastic leukemia treated with moxetumomab pasudotox for preâ€transplant minimal residual disease reduction. Pediatric Blood and Cancer, 2021, 68, e28574.	1.5	2
8	Robust Antitumor Activity and Low Cytokine Production by Novel Humanized Anti-CD19 CAR T Cells. Molecular Cancer Therapeutics, 2021, 20, 846-858.	4.1	13
9	Long-Term Follow-Up of CD19-CAR T-Cell Therapy in Children and Young Adults With B-ALL. Journal of Clinical Oncology, 2021, 39, 1650-1659.	1.6	173
10	CAR T cells with dual targeting of CD19 and CD22 in adult patients with recurrent or refractory B cell malignancies: a phase 1 trial. Nature Medicine, 2021, 27, 1419-1431.	30.7	273
11	Combining Immunocytokine and Ex Vivo Activated NK Cells as a Platform for Enhancing Graft-Versus-Tumor Effects Against GD2+ Murine Neuroblastoma. Frontiers in Immunology, 2021, 12, 668307.	4.8	4
12	Does lineage plasticity enable escape from CAR-T cell therapy? Lessons from MLL-r leukemia. Experimental Hematology, 2021, 100, 1-11.	0.4	19
13	Systematic preclinical evaluation of CD33-directed chimeric antigen receptor T cell immunotherapy for acute myeloid leukemia defines optimized construct design. , 2021, 9, e003149.		28
14	Characterization of HLH-like manifestations as a CRS variant in patients receiving CD22 CAR T cells. Blood, 2021, 138, 2469-2484.	1.4	79
15	Infectious complications of CAR T-cell therapy across novel antigen targets in the first 30 days. Blood Advances, 2021, 5, 5312-5322.	5.2	24
16	Detection of Vector Copy Number in Bicistronic CD19xCD22 CAR T Cell Products with Digital PCR. Blood, 2021, 138, 4001-4001.	1.4	0
17	Overexpression of Rorl ³ t in CAR T Cells Improves Persistence and Reduces Exhaustion. Blood, 2021, 138, 2801-2801.	1.4	1
18	CAR 2.0: The Next Generation of Synthetic Receptor–Based Cellular Therapy for Cancer. , 2020, , 199-208.		0

#	Article	IF	CITATIONS
19	Diagnostic approach to the evaluation of myeloid malignancies following CAR T-cell therapy in B-cell acute lymphoblastic leukemia. , 2020, 8, e001563.		22
20	Optimizing CARs for ocular delivery. Nature Cancer, 2020, 1, 939-940.	13.2	2
21	Serial evaluation of CD19 surface expression in pediatric B-cell malignancies following CD19-targeted therapy. Leukemia, 2020, 34, 3064-3069.	7.2	33
22	Disease detection methodologies in relapsed Bâ€cell acute lymphoblastic leukemia: Opportunities for improvement. Pediatric Blood and Cancer, 2020, 67, e28149.	1.5	11
23	CD4/CD8 T-Cell Selection Affects Chimeric Antigen Receptor (CAR) T-Cell Potency and Toxicity: Updated Results From a Phase I Anti-CD22 CAR T-Cell Trial. Journal of Clinical Oncology, 2020, 38, 1938-1950.	1.6	273
24	Using erythrocyte tools to enhance CAR T cells. Blood, 2020, 135, 595-596.	1.4	0
25	Society for Immunotherapy of Cancer (SITC) clinical practice guideline on immune effector cell-related adverse events. , 2020, 8, e001511.		138
26	Perforin-deficient CAR T cells recapitulate late-onset inflammatory toxicities observed in patients. Journal of Clinical Investigation, 2020, 130, 5425-5443.	8.2	37
27	Enhancing the Antigen-Sensitivity of the CD22 CAR through Modulation of the Affinity and Linker-Length of the Single-Chain Fragment Variable. Blood, 2020, 136, 41-42.	1.4	0
28	Multi-Specific CAR Targeting to Prevent Antigen Escape. Current Hematologic Malignancy Reports, 2019, 14, 451-459.	2.3	13
29	Introduction: Immunological Reviews volume 290. Immunological Reviews, 2019, 290, 4-5.	6.0	0
30	Effect of Cryopreservation on Autologous Chimeric Antigen Receptor T Cell Characteristics. Molecular Therapy, 2019, 27, 1275-1285.	8.2	65
31	Modulation of Target Antigen Density Improves CAR T-cell Functionality and Persistence. Clinical Cancer Research, 2019, 25, 5329-5341.	7.0	130
32	Chimeric Antigen Receptors Incorporating D Domains Targeting CD123 Direct Potent Mono- and Bi-specific Antitumor Activity of T Cells. Molecular Therapy, 2019, 27, 1262-1274.	8.2	21
33	Mechanisms of resistance to CAR T cell therapy. Nature Reviews Clinical Oncology, 2019, 16, 372-385.	27.6	518
34	Case report: Impact of <scp>BITE</scp> on <scp>CAR</scp> â€₹ cell expansion. Advances in Cell and Gene Therapy, 2019, 2, e50.	0.9	7
35	Clonal expansion of CAR T cells harboring lentivector integration in the CBL gene following anti-CD22 CAR T-cell therapy. Blood Advances, 2019, 3, 2317-2322.	5.2	69
36	T cells genetically engineered to overcome death signaling enhance adoptive cancer immunotherapy. Journal of Clinical Investigation, 2019, 129, 1551-1565.	8.2	108

#	Article	lF	CITATIONS
37	Sequential loss of tumor surface antigens following chimeric antigen receptor T-cell therapies in diffuse large B-cell lymphoma. Haematologica, 2018, 103, e215-e218.	3.5	131
38	Chimeric Antigen Receptor T-Cell (CAR-T) Therapy Can Render Patients with ALL Into PCR-Negative Remission and Can be an Effective Bridge to Transplant (HCT). Biology of Blood and Marrow Transplantation, 2018, 24, S25-S26.	2.0	23
39	Absence of Replication-Competent Lentivirus in the Clinic: Analysis of Infused T Cell Products. Molecular Therapy, 2018, 26, 280-288.	8.2	76
40	Preclinical Development of Bivalent Chimeric Antigen Receptors Targeting Both CD19 and CD22. Molecular Therapy - Oncolytics, 2018, 11, 127-137.	4.4	191
41	Systematic Evaluation of Neurotoxicity in Children and Young Adults Undergoing CD22 Chimeric Antigen Receptor T-Cell Therapy. Journal of Immunotherapy, 2018, 41, 350-358.	2.4	60
42	Chimeric Antigen Receptor T-Cell Therapy. Journal of the National Comprehensive Cancer Network: JNCCN, 2018, 16, 1092-1106.	4.9	15
43	Induction of resistance to chimeric antigen receptor T cell therapy by transduction of a single leukemic B cell. Nature Medicine, 2018, 24, 1499-1503.	30.7	459
44	Murine pre–B-cell ALL induces T-cell dysfunction not fully reversed by introduction of a chimeric antigen receptor. Blood, 2018, 132, 1899-1910.	1.4	20
45	Outcomes of Measurable Residual Disease in Pediatric Acute Myeloid Leukemia before and after Hematopoietic Stem Cell Transplant: Validation of Difference from Normal Flow Cytometry with Chimerism Studies and Wilms Tumor 1 Gene Expression. Biology of Blood and Marrow Transplantation. 2018. 24. 2040-2046.	2.0	29
46	CD22-targeted CAR T cells induce remission in B-ALL that is naive or resistant to CD19-targeted CAR immunotherapy. Nature Medicine, 2018, 24, 20-28.	30.7	1,030
47	Abstract 1630: FLT3 chimeric antigen receptor T cell therapy induces B to T cell lineage switch in infant acute lymphoblastic leukemia. , 2018, , .		2
48	Phase I Experience with a Bi-Specific CAR Targeting CD19 and CD22 in Adults with B-Cell Malignancies. Blood, 2018, 132, 490-490.	1.4	43
49	Low CD19 Antigen Density Diminishes Efficacy of CD19 CAR T Cells and Can be Overcome By Rational Redesign of CAR Signaling Domains. Blood, 2018, 132, 963-963.	1.4	10
50	Phase 1 Study of CD19/CD22 Bispecific Chimeric Antigen Receptor (CAR) Therapy in Children and Young Adults with B Cell Acute Lymphoblastic Leukemia (ALL). Blood, 2018, 132, 898-898.	1.4	40
51	Sequential CD22 Targeting Impacts CD22 CAR-T Cell Response. Blood, 2018, 132, 282-282.	1.4	9
52	Autologous lymphapheresis for the production of chimeric antigen receptor TÂcells. Transfusion, 2017, 57, 1133-1141.	1.6	110
53	Elutriated lymphocytes for manufacturing chimeric antigen receptor T cells. Journal of Translational Medicine, 2017, 15, 59.	4.4	61
54	Anti-CD19 resistance can "stem―from progenitors. Blood, 2017, 130, 1961-1963.	1.4	6

#	Article	IF	CITATIONS
55	TCR engagement negatively affects CD8 but not CD4 CAR T cell expansion and leukemic clearance. Science Translational Medicine, 2017, 9, .	12.4	136
56	Tumor Antigen and Receptor Densities Regulate Efficacy of a Chimeric Antigen Receptor Targeting Anaplastic Lymphoma Kinase. Molecular Therapy, 2017, 25, 2189-2201.	8.2	264
57	Procalcitonin and cytokine profiles in engraftment syndrome in pediatric stem cell transplantation. Pediatric Blood and Cancer, 2017, 64, e26273.	1.5	11
58	Novel CD19/CD22 Bicistronic Chimeric Antigen Receptors Outperform Single or Bivalent Cars in Eradicating CD19+CD22+, CD19-, and CD22- Pre-B Leukemia. Blood, 2017, 130, 810-810.	1.4	24
59	Myeloablative hematopoietic stem cell transplantation improves survival but is not curative in a pre-clinical model of myelodysplastic syndrome. PLoS ONE, 2017, 12, e0185219.	2.5	2
60	The functional interplay between systemic cancer and the hematopoietic stem cell niche. , 2016, 168, 53-60.		16
61	Generation of clinical-grade CD19-specific CAR-modified CD8+ memory stem cells for the treatment of human B-cell malignancies. Blood, 2016, 128, 519-528.	1.4	274
62	Induction of Immune Response after Allogeneic Wilms' Tumor 1 Dendritic Cell Vaccination and Donor Lymphocyte Infusion in Patients with Hematologic Malignancies and Post-Transplantation Relapse. Biology of Blood and Marrow Transplantation, 2016, 22, 2149-2154.	2.0	42
63	Murine allogeneic CD19 CAR T cells harbor potent antileukemic activity but have the potential to mediate lethal GVHD. Blood, 2016, 127, 1361-1370.	1.4	87
64	CD19 CAR immune pressure induces B-precursor acute lymphoblastic leukaemia lineage switch exposing inherent leukaemic plasticity. Nature Communications, 2016, 7, 12320.	12.8	325
65	Research involving pediatric stem cell donors: A way forward. Clinical Trials, 2016, 13, 304-310.	1.6	1
66	Preclinical Development of FLT3-Redirected Chimeric Antigen Receptor T Cell Immunotherapy for Acute Myeloid Leukemia. Blood, 2016, 128, 1072-1072.	1.4	17
67	Long-Term Outcomes Following CD19 CAR T Cell Therapy for B-ALL Are Superior in Patients Receiving a Fludarabine/Cyclophosphamide Preparative Regimen and Post-CAR Hematopoietic Stem Cell Transplantation. Blood, 2016, 128, 218-218.	1.4	98
68	Minimal Residual Disease Negative Complete Remissions Following Anti-CD22 Chimeric Antigen Receptor (CAR) in Children and Young Adults with Relapsed/Refractory Acute Lymphoblastic Leukemia (ALL). Blood, 2016, 128, 650-650.	1.4	34
69	Determination of the effect of target site density on the efficacy of CD22 chimeric antigen receptor t-cell therapy to treat acute lymphoblastic leukemia Journal of Clinical Oncology, 2016, 34, 10536-10536.	1.6	2
70	Acute GVHD in patients receiving IL-15/4-1BBL activated NK cells following T-cell–depleted stem cell transplantation. Blood, 2015, 125, 784-792.	1.4	200
71	Challenges and opportunities of allogeneic donor-derived CAR T cells. Current Opinion in Hematology, 2015, 22, 509-515.	2.5	81
72	Beyond CD19: Opportunities for Future Development of Targeted Immunotherapy in Pediatric Relapsed-Refractory Acute Leukemia. Frontiers in Pediatrics, 2015, 3, 80.	1.9	20

#	Article	IF	CITATIONS
73	Eradication of B-ALL using chimeric antigen receptor–expressing T cells targeting the TSLPR oncoprotein. Blood, 2015, 126, 629-639.	1.4	110
74	4-1BB costimulation ameliorates T cell exhaustion induced by tonic signaling of chimeric antigen receptors. Nature Medicine, 2015, 21, 581-590.	30.7	1,304
75	Convergence of Acquired Mutations and Alternative Splicing of <i>CD19</i> Enables Resistance to CART-19 Immunotherapy. Cancer Discovery, 2015, 5, 1282-1295.	9.4	997
76	T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: a phase 1 dose-escalation trial. Lancet, The, 2015, 385, 517-528.	13.7	2,476
77	CD4 CAR T Cells Mediate CD8-like Cytotoxic Anti-Leukemic Effects Resulting in Leukemic Clearance and Are Less Susceptible to Attenuation By Endogenous TCR Activation Than CD8 CAR T Cells. Blood, 2015, 126, 100-100.	1.4	6
78	Lineage Switch As a Relapse Mechanism of Pre-B Acute Lymphoblastic Leukemia Following CD19 CAR. Blood, 2015, 126, 2524-2524.	1.4	6
79	Preclinical Development of Bispecific Chimeric Antigen Receptor Targeting Both CD19 and CD22. Blood, 2015, 126, 4427-4427.	1.4	19
80	CRLF2 /Tslpr Overexpressing Acute Lymphoblastic Leukemia Relapse Is Driven By Chemotherapy-Induced TSLP from Bone Marrow Stromal Cells. Blood, 2015, 126, 1432-1432.	1.4	1
81	Bioinformatic Description of Immunotherapy Targets for Pediatric T-Cell Leukemia and the Impact of Normal Gene Sets Used for Comparison. Frontiers in Oncology, 2014, 4, 134.	2.8	13
82	Murine Models of Acute Leukemia: Important Tools in Current Pediatric Leukemia Research. Frontiers in Oncology, 2014, 4, 95.	2.8	31
83	Absence of STAT1 in donor-derived plasmacytoid dendritic cells results in increased STAT3 and attenuates murine GVHD. Blood, 2014, 124, 1976-1986.	1.4	18
84	A pan inhibitor of DASH family enzymes induces immunogenic modulation and sensitizes murine and human carcinoma cells to antigen-specific cytotoxic T lymphocyte killing: implications for combination therapy with cancer vaccines. Vaccine, 2014, 32, 3223-3231.	3.8	10
85	Immune-based therapies for childhood cancer. Nature Reviews Clinical Oncology, 2014, 11, 693-703.	27.6	84
86	Minor Antigen Distribution Predicts Site-Specific Graft-versus-Tumor Activity of Adoptively Transferred, Minor Antigen-Specific CD8 T Cells. Biology of Blood and Marrow Transplantation, 2014, 20, 26-36.	2.0	9
87	A Pan-Inhibitor of DASH Family Enzymes Induces Immune-mediated Regression of Murine Sarcoma and Is a Potent Adjuvant to Dendritic Cell Vaccination and Adoptive T-cell Therapy. Journal of Immunotherapy, 2013, 36, 400-411.	2.4	12
88	T-cell adoptive immunotherapy for acute lymphoblastic leukemia. Hematology American Society of Hematology Education Program, 2013, 2013, 348-353.	2.5	36
89	Val-BoroPro Accelerates T Cell Priming via Modulation of Dendritic Cell Trafficking Resulting in Complete Regression of Established Murine Tumors. PLoS ONE, 2013, 8, e58860.	2.5	44
90	The T Cell Receptor As An Oncogene: Thymic Expression Of Self-Reactive T Cell Receptors Targeting Survivin Induces T-Cell Lymphoblastic Leukmia. Blood, 2013, 122, 167-167.	1.4	0

#	Article	IF	CITATIONS
91	Allogeneic Hematopoietic Stem Cell Transplant Reverses The Phenotype Of DOCK8 Deficiency. Blood, 2013, 122, 2114-2114.	1.4	0
92	Tissue Distribution of a Minor Antigen, but Not PD-1 Expression, Predicts the Antileukemia Efficacy of Adoptively Transferred, Antigen-Specific T-Cells in a Preclinical Model of Allogeneic Transplant. Blood, 2012, 120, 456-456.	1.4	0
93	Extracorporeal Photopheresis Attenuates Murine Graft-versus-Host Disease via Bone Marrow–Derived Interleukin-10 and Preserves Responses to Dendritic Cell Vaccination. Biology of Blood and Marrow Transplantation, 2011, 17, 790-799.	2.0	18
94	Alloreactivity Directed Against the Widely Distributed HY Antigen Impairs Antitumor Immunity and Results in T-Cell Dysfunction. Blood, 2011, 118, 2964-2964.	1.4	0
95	Expanding options to improve outcomes following hematopoietic stem cell transplantation. Pediatric Blood and Cancer, 2010, 55, 1043-1044.	1.5	4
96	Cancer Immunotherapy: WillÂExpanding Knowledge Lead to Success in Pediatric Oncology?. Hematology/Oncology Clinics of North America, 2010, 24, 109-127.	2.2	2
97	The Graft-Versus-Tumor Effect in Pediatric Malignancy. Pediatric Clinics of North America, 2010, 57, 67-81.	1.8	8
98	Cytokines as Adjuvants for Vaccine and Cellular Therapies for Cancer. American Journal of Immunology, 2009, 5, 65-83.	0.1	29
99	Antigen loading of DCs with irradiated apoptotic tumor cells induces improved anti-tumor immunity compared to other approaches. Cancer Immunology, Immunotherapy, 2009, 58, 1257-1264.	4.2	29
100	Bone marrow deficient in IFN-Î ³ signaling selectively reverses GVHD-associated immunosuppression and enhances a tumor-specific GVT effect. Blood, 2009, 113, 5002-5009.	1.4	42
101	Is a little GVHD a good thing?. Blood, 2009, 113, 6274-6275.	1.4	4
102	Adoptive Transfer of Primed T Cells Mediates a Graft-Versus-Leukemia Effect against Pediatric ALL Blood, 2009, 114, 1340-1340.	1.4	14
103	Cancer Immunotherapy: Will Expanding Knowledge Lead to Success in Pediatric Oncology?. Pediatric Clinics of North America, 2008, 55, 147-167.	1.8	5
104	Potential Role for IL-7 in Fas-Mediated T Cell Apoptosis During HIV Infection. Journal of Immunology, 2007, 178, 5340-5350.	0.8	40
105	A NUP98-HOXD13 Fusion Gene Induces a Transplantable Myelodysplastic Syndrome in Mice Blood, 2007, 110, 401-401.	1.4	15
106	Elevated Serum Interleukin-7 Levels Precede the Development of Acute Graft-Versus-Host Disease Blood, 2007, 110, 1064-1064.	1.4	8
107	IL-7 in allogeneic transplant: Clinical promise and potential pitfalls. Leukemia and Lymphoma, 2006, 47, 1222-1228.	1.3	25

1

#	Article	IF	CITATIONS
109	Autoimmunity during lymphopenia: A two-hit model. Clinical Immunology, 2006, 120, 121-128.	3.2	167
110	Early Recovery of Thymus-Derived Nail̀^ve T Cells in Pediatric Patients (pts) Treated with Non-Myeloablative Allogeneic Peripheral Blood Stem Cell Transplantation (NMSCT) for Cancer Blood, 2006, 108, 310-310.	1.4	0
111	The Many Faces of IL-7: From Lymphopoiesis to Peripheral T Cell Maintenance. Journal of Immunology, 2005, 174, 6571-6576.	0.8	509
112	Adjuvant IL-7 or IL-15 overcomes immunodominance and improves survival of the CD8+ memory cell pool. Journal of Clinical Investigation, 2005, 115, 1177-1187.	8.2	205
113	Adjuvant IL-7 or IL-15 overcomes immunodominance and improves survival of the CD8+ memory cell pool. Journal of Clinical Investigation, 2005, 115, 1177-1187.	8.2	132
114	Two Categories of Biologic Effects Induced by IL-7 on Human T Cells Blood, 2005, 106, 3303-3303.	1.4	0
115	Non-Myeloablative Allogeneic Hematopoietic Stem Cell Transplantation (SCT) with Pre-Transplant Targeted Immune Depletion Results in Rapid Full Donor Engraftment in Pediatric Patients with Malignancy Blood, 2005, 106, 3672-3672.	1.4	0
116	Subclinical GVHD Impairs Responses to Dendritic Cell Vaccines Following Allogeneic Transplantation Blood, 2005, 106, 571-571.	1.4	0
117	Recombinant Interleukin-7 Induces Proliferation of Naive Macaque CD4 + and CD8 + T Cells In Vivo. Journal of Virology, 2004, 78, 9740-9749.	3.4	76
118	A Role for Thymic Stromal Lymphopoietin in CD4+ T Cell Development. Journal of Experimental Medicine, 2004, 200, 159-168.	8.5	208
119	Escape from Immune Surveillance Does Not Result in Tolerance to Tumor-Associated Antigens. Journal of Immunotherapy, 2004, 27, 329-338.	2.4	29
120	Flt3 ligand enhances thymic-dependent and thymic-independent immune reconstitution. Blood, 2004, 104, 2794-2800.	1.4	87
121	IL-7 therapy dramatically alters peripheral T-cell homeostasis in normal and SIV-infected nonhuman primates. Blood, 2003, 101, 2294-2299.	1.4	224
122	Interleukin-7: from bench to clinic. Blood, 2002, 99, 3892-3904.	1.4	469
123	Interleukin 7 worsens graft-versus-host disease. Blood, 2002, 100, 2642-2649.	1.4	120
124	Interleukin-7 and Immunorestoration in HIV: Beyond the Thymus. Journal of Hematotherapy and Stem Cell Research, 2002, 11, 803-807.	1.8	21
125	Bax Deficiency Partially Corrects Interleukin-7 Receptor $\hat{I}\pm$ Deficiency. Immunity, 2002, 17, 561-573.	14.3	87
126	Current concepts of thymic aging. Seminars in Immunopathology, 2002, 24, 7-22.	4.0	56

#	Article	IF	CITATIONS
127	Interleukin-7: master regulator of peripheral T-cell homeostasis?. Trends in Immunology, 2001, 22, 564-571.	6.8	278
128	Interleukin-7 restores immunity in athymic T-cell–depleted hosts. Blood, 2001, 97, 1525-1533.	1.4	151