Kathleen M Giacomini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1457098/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Pharmacogenomic mechanisms of drug toxicity. , 2022, , 303-322.		1
2	Mechanisms and genetics of drug transport. , 2022, , 213-239.		1
3	Emerging Roles of the Human Solute Carrier 22 Family. Drug Metabolism and Disposition, 2022, 50, 1193-1210.	1.7	26
4	High Throughput Screening of a Prescription Drug Library for Inhibitors of Organic Cation Transporter 3, OCT3. Pharmaceutical Research, 2022, 39, 1599-1613.	1.7	13
5	The Clinical Pharmacogenetics Implementation Consortium Guideline for <i>SLCO1B1</i> , <i>ABCG2</i> , and <i>CYP2C9</i> genotypes and Statinâ€Associated Musculoskeletal Symptoms. Clinical Pharmacology and Therapeutics, 2022, 111, 1007-1021.	2.3	120
6	Response to Comment on Dawed et al. Genome-Wide Meta-analysis Identifies Genetic Variants Associated With Glycemic Response to Sulfonylureas. Diabetes Care 2021;44:2673–2682. Diabetes Care, 2022, 45, e82-e83.	4.3	0
7	New and Emerging Research on Solute Carrier and ATP Binding Cassette Transporters in Drug Discovery and Development: Outlook From the International Transporter Consortium. Clinical Pharmacology and Therapeutics, 2022, 112, 540-561.	2.3	16
8	A Critical Overview of the Biological Effects of Excipients (Part I): Impact on Gastrointestinal Absorption. AAPS Journal, 2022, 24, 60.	2.2	5
9	A Tribute to Professor Per Artursson - Scientist, Explorer, Mentor, Innovator, and Giant in Pharmaceutical Research. Journal of Pharmaceutical Sciences, 2021, 110, 2-11.	1.6	1
10	Drug Metabolites Potently Inhibit Renal Organic Anion Transporters, OAT1 and OAT3. Journal of Pharmaceutical Sciences, 2021, 110, 347-353.	1.6	14
11	Characterization of cytochrome P450 (CYP) 2D6 drugs as substrates of human organic cation transporters and multidrug and toxin extrusion proteins. British Journal of Pharmacology, 2021, 178, 1459-1474.	2.7	7
12	A New Era in Pharmacovigilance: Toward Realâ€World Data and Digital Monitoring. Clinical Pharmacology and Therapeutics, 2021, 109, 1197-1202.	2.3	36
13	The Effects of Genetic Mutations and Drugs on the Activity of the Thiamine Transporter, SLC19A2. AAPS Journal, 2021, 23, 35.	2.2	2
14	Opportunities and challenges for the computational interpretation of rare variation in clinically important genes. American Journal of Human Genetics, 2021, 108, 535-548.	2.6	40
15	Oxypurinol pharmacokinetics and pharmacodynamics in healthy volunteers: Influence of BCRP Q141K polymorphism and patient characteristics. Clinical and Translational Science, 2021, 14, 1431-1443.	1.5	8
16	Drugs in COVIDâ€19 Clinical Trials: Predicting Transporterâ€Mediated Drugâ€Drug Interactions Using In Vitro Assays and Realâ€World Data. Clinical Pharmacology and Therapeutics, 2021, 110, 108-122.	2.3	16
17	Advancing Precision Medicine Through the New Pharmacogenomics Global Research Network. Clinical Pharmacology and Therapeutics, 2021, 110, 559-562.	2.3	6
18	Interaction of Commonly Used Oral Molecular Excipients with P-glycoprotein. AAPS Journal, 2021, 23, 106.	2.2	7

#	Article	IF	CITATIONS
19	Genome-Wide Meta-analysis Identifies Genetic Variants Associated With Glycemic Response to Sulfonylureas. Diabetes Care, 2021, 44, 2673-2682.	4.3	23
20	Global Pharmacogenomics Within Precision Medicine: Challenges and Opportunities. Clinical Pharmacology and Therapeutics, 2020, 107, 57-61.	2.3	42
21	Clinical Pharmacology & Therapeutics 2030. Clinical Pharmacology and Therapeutics, 2020, 107, 13-16.	2.3	8
22	Drug–nutrient interactions: discovering prescription drug inhibitors of the thiamine transporter ThTR-2 (SLC19A3). American Journal of Clinical Nutrition, 2020, 111, 110-121.	2.2	24
23	Expanding Precompetitive Multisector Collaborations to Advance Drug Development and Pharmacogenomics. Clinical Pharmacology and Therapeutics, 2020, 107, 96-101.	2.3	6
24	The activities of drug inactive ingredients on biological targets. Science, 2020, 369, 403-413.	6.0	61
25	Scientific considerations for global drug development. Science Translational Medicine, 2020, 12, .	5.8	8
26	Neural production of kynurenic acid in <i>Caenorhabditis elegans</i> requires the AAT-1 transporter. Genes and Development, 2020, 34, 1033-1038.	2.7	5
27	Deorphaning a solute carrier 22 family member, SLC22A15, through functional genomic studies. FASEB Journal, 2020, 34, 15734-15752.	0.2	21
28	Bacterial metabolism rescues the inhibition of intestinal drug absorption by food and drug additives. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 16009-16018.	3.3	39
29	GenEpi: gene-based epistasis discovery using machine learning. BMC Bioinformatics, 2020, 21, 68.	1.2	25
30	Interactions of Oral Molecular Excipients with Breast Cancer Resistance Protein, BCRP. Molecular Pharmaceutics, 2020, 17, 748-756.	2.3	16
31	Novel Technologies Enable Mechanistic Understanding and Modeling of Drug Exposure and Response. Clinical Pharmacology and Therapeutics, 2020, 107, 1045-1047.	2.3	1
32	A conserved role of the insulin-like signaling pathway in diet-dependent uric acid pathologies in Drosophila melanogaster. PLoS Genetics, 2019, 15, e1008318.	1.5	39
33	Unraveling the functional role of the orphan solute carrier, SLC22A24 in the transport of steroid conjugates through metabolomic and genome-wide association studies. PLoS Genetics, 2019, 15, e1008208.	1.5	23
34	Impact of Pharmaceutical Excipients on Oral Drug Absorption: A Focus on Intestinal Drug Transporters. Clinical Pharmacology and Therapeutics, 2019, 105, 323-325.	2.3	10
35	l-Type amino acid transporter 1 activity of 1,2,3-triazolyl analogs of l-histidine and l-tryptophan. Bioorganic and Medicinal Chemistry Letters, 2019, 29, 2254-2258.	1.0	13
36	A Comprehensive Analysis of Ontogeny of Renal Drug Transporters: mRNA Analyses, Quantitative Proteomics, and Localization. Clinical Pharmacology and Therapeutics, 2019, 106, 1083-1092.	2.3	69

#	Article	IF	CITATIONS
37	Organic Anion Transporter Polypeptide 1B1 Polymorphism Modulates the Extent of Drug–Drug Interaction and Associated Biomarker Levels in Healthy Volunteers. Clinical and Translational Science, 2019, 12, 388-399.	1.5	53
38	Genomeâ€Wide Association and Functional Studies Reveal Novel Pharmacological Mechanisms for Allopurinol. Clinical Pharmacology and Therapeutics, 2019, 106, 623-631.	2.3	23
39	Functional and structural analysis of rare SLC2A2 variants associated with Fanconiâ€Bickel syndrome and metabolic traits. Human Mutation, 2019, 40, 983-995.	1.1	13
40	Research Projects Supported by the <scp>University of California, San Francisco</scp> â€Stanford Center of Excellence in Regulatory Science and Innovation. Clinical Pharmacology and Therapeutics, 2019, 105, 815-818.	2.3	6
41	Organic cation transporter 3 (Oct3) is a distinct catecholamines clearance route in adipocytes mediating the beiging of white adipose tissue. PLoS Biology, 2019, 17, e2006571.	2.6	41
42	In Vitro Evaluation of Excipients as Inhibitors of Human Intestinal Pâ€glycoprotein. FASEB Journal, 2019, 33, 814.3.	0.2	2
43	Influence of Transporter Polymorphisms on Drug Disposition and Response: A Perspective From the International Transporter Consortium. Clinical Pharmacology and Therapeutics, 2018, 104, 803-817.	2.3	99
44	Genetic Variants in <i>CPA6</i> and <i>PRPF31</i> Are Associated With Variation in Response to Metformin in Individuals With Type 2 Diabetes. Diabetes, 2018, 67, 1428-1440.	0.3	32
45	Molecular Mechanisms for Species Differences in Organic Anion Transporter 1, OAT1: Implications for Renal Drug Toxicity. Molecular Pharmacology, 2018, 94, 689-699.	1.0	40
46	Reverse Translational Research of <i>ABCG2</i> (BCRP) in Human Disease and Drug Response. Clinical Pharmacology and Therapeutics, 2018, 103, 233-242.	2.3	25
47	Emerging Clinical Importance of Hepatic Organic Cation Transporter 1 (OCT1) in Drug Pharmacokinetics, Dynamics, Pharmacogenetic Variability, and Drug Interactions. Clinical Pharmacology and Therapeutics, 2018, 103, 758-760.	2.3	39
48	Clinical Probes and Endogenous Biomarkers as Substrates for Transporter Drugâ€Drug Interaction Evaluation: Perspectives From the International Transporter Consortium. Clinical Pharmacology and Therapeutics, 2018, 104, 836-864.	2.3	141
49	Pharmacogenetics of Antidiabetic Drugs. Advances in Pharmacology, 2018, 83, 361-389.	1.2	12
50	ITC Commentary on Metformin Clinical Drug–Drug Interaction Study Design That Enables an Efficacy― and Safetyâ€Based Dose Adjustment Decision. Clinical Pharmacology and Therapeutics, 2018, 104, 781-784.	2.3	28
51	Reevaluating the Substrate Specificity of the L-Type Amino Acid Transporter (LAT1). Journal of Medicinal Chemistry, 2018, 61, 7358-7373.	2.9	54
52	Organic cation transporter 1 (OCT1) modulates multiple cardiometabolic traits through effects on hepatic thiamine content. PLoS Biology, 2018, 16, e2002907.	2.6	45
53	Transporters in Drug Development: 2018 ITC Recommendations for Transporters of Emerging Clinical Importance. Clinical Pharmacology and Therapeutics, 2018, 104, 890-899.	2.3	185

54 Discovery of Competitive and Noncompetitive Ligands of the Organic Cation Transporter 1 (OCT1;) Tj ETQq0 0 0 rgBJ /Overlogk 10 Tf 5

#	Article	IF	CITATIONS
55	The Effect of Uremic Solutes on the Organic Cation Transporter 2. Journal of Pharmaceutical Sciences, 2017, 106, 2551-2557.	1.6	23
56	Transporters Involved in Metformin Pharmacokinetics and Treatment Response. Journal of Pharmaceutical Sciences, 2017, 106, 2245-2250.	1.6	108
57	Computational Discovery and Experimental Validation of Inhibitors of the Human Intestinal Transporter OATP2B1. Journal of Chemical Information and Modeling, 2017, 57, 1402-1413.	2.5	23
58	PharmGKB summary. Pharmacogenetics and Genomics, 2017, 27, 420-427.	0.7	25
59	Human Concentrative Nucleoside Transporter 3 (hCNT3, SLC28A3) Forms a Cyclic Homotrimer. Biochemistry, 2017, 56, 3475-3483.	1.2	15
60	Genome-wide association studies of drug response and toxicity: an opportunity for genome medicine. Nature Reviews Drug Discovery, 2017, 16, 70-70.	21.5	80
61	Pharmacometabolomic Assessment of Metformin in Non-diabetic, African Americans. Frontiers in Pharmacology, 2016, 7, 135.	1.6	28
62	LAT-1 activity of meta-substituted phenylalanine and tyrosine analogs. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 2616-2621.	1.0	53
63	Identification and Quantitative Assessment of Uremic Solutes as Inhibitors of Renal Organic Anion Transporters, OAT1 and OAT3. Molecular Pharmaceutics, 2016, 13, 3130-3140.	2.3	79
64	Variation in the glucose transporter gene SLC2A2 is associated with glycemic response to metformin. Nature Genetics, 2016, 48, 1055-1059.	9.4	165
65	LAT1 activity of carboxylic acid bioisosteres: Evaluation of hydroxamic acids as substrates. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 5000-5006.	1.0	54
66	A research roadmap for next-generation sequencing informatics. Science Translational Medicine, 2016, 8, 335ps10.	5.8	37
67	The Effect of Nizatidine, a MATE2K Selective Inhibitor, on the Pharmacokinetics and Pharmacodynamics of Metformin in Healthy Volunteers. Clinical Pharmacokinetics, 2016, 55, 495-506.	1.6	27
68	Rapid Method To Determine Intracellular Drug Concentrations in Cellular Uptake Assays: Application to Metformin in Organic Cation Transporter 1-Transfected Human Embryonic Kidney 293 Cells. Drug Metabolism and Disposition, 2016, 44, 356-364.	1.7	54
69	The Effect of Famotidine, a MATE1-Selective Inhibitor, on the Pharmacokinetics and Pharmacodynamics of Metformin. Clinical Pharmacokinetics, 2016, 55, 711-721.	1.6	47
70	Genomic Characterization of Metformin Hepatic Response. PLoS Genetics, 2016, 12, e1006449.	1.5	41
71	Unmet needs: Research helps regulators do their jobs. Science Translational Medicine, 2015, 7, 315ps22.	5.8	15
72	OCT1 in hepatic steatosis and thiamine disposition. Cell Cycle, 2015, 14, 283-284.	1.3	15

#	Article	IF	CITATIONS
73	Targeted Disruption of Organic Cation Transporter 3 Attenuates the Pharmacologic Response to Metformin. Molecular Pharmacology, 2015, 88, 75-83.	1.0	88
74	SLC transporters as therapeutic targets: emerging opportunities. Nature Reviews Drug Discovery, 2015, 14, 543-560.	21.5	584
75	A pharmacogenetic candidate gene study of tenofovir-associated Fanconi syndrome. Pharmacogenetics and Genomics, 2015, 25, 82-92.	0.7	27
76	Prediction and validation of enzyme and transporter off-targets for metformin. Journal of Pharmacokinetics and Pharmacodynamics, 2015, 42, 463-475.	0.8	37
77	Metformin Is a Substrate and Inhibitor of the Human Thiamine Transporter, THTR-2 (SLC19A3). Molecular Pharmaceutics, 2015, 12, 4301-4310.	2.3	79
78	Genome-Wide Discovery of Drug-Dependent Human Liver Regulatory Elements. PLoS Genetics, 2014, 10, e1004648.	1.5	36
79	A genome-wide association study of bronchodilator response in Latinos implicates rare variants. Journal of Allergy and Clinical Immunology, 2014, 133, 370-378.e15.	1.5	105
80	Towards Quantitation of the Effects of Renal Impairment and Probenecid Inhibition on Kidney Uptake and Efflux Transporters, Using Physiologically Based Pharmacokinetic Modelling and Simulations. Clinical Pharmacokinetics, 2014, 53, 283-293.	1.6	79
81	OCT1 is a high-capacity thiamine transporter that regulates hepatic steatosis and is a target of metformin. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 9983-9988.	3.3	203
82	Metformin Pharmacogenomics: Current Status and Future Directions. Diabetes, 2014, 63, 2590-2599.	0.3	112
83	Gene Expression Profiling of Transporters in the Solute Carrier and ATP-Binding Cassette Superfamilies in Human Eye Substructures. Molecular Pharmaceutics, 2013, 10, 650-663.	2.3	50
84	Discovery of Potent, Selective Multidrug and Toxin Extrusion Transporter 1 (MATE1, SLC47A1) Inhibitors Through Prescription Drug Profiling and Computational Modeling. Journal of Medicinal Chemistry, 2013, 56, 781-795.	2.9	131
85	Renal Transporters in Drug Development. Annual Review of Pharmacology and Toxicology, 2013, 53, 503-529.	4.2	267
86	Reduced Renal Clearance of Cefotaxime in Asians with a Low-Frequency Polymorphism of OAT3 (SLC22A8). Journal of Pharmaceutical Sciences, 2013, 102, 3451-3457.	1.6	47
87	Structure-based ligand discovery for the Large-neutral Amino Acid Transporter 1, LAT-1. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 5480-5485.	3.3	173
88	Molecular Modeling and Ligand Docking for Solute Carrier (SLC) Transporters. Current Topics in Medicinal Chemistry, 2013, 13, 843-856.	1.0	85
89	Pharmacogenomics and Patient Care: One Size Does Not Fit All. Science Translational Medicine, 2012, 4, 153ps18.	5.8	49
90	The role of ATM in response to metformin treatment and activation of AMPK. Nature Genetics, 2012, 44, 359-360.	9.4	46

#	Article	IF	CITATIONS
91	Metformin pathways. Pharmacogenetics and Genomics, 2012, 22, 820-827.	0.7	366
92	High Selectivity of the γ-Aminobutyric Acid Transporter 2 (GAT-2, SLC6A13) Revealed by Structure-based Approach. Journal of Biological Chemistry, 2012, 287, 37745-37756.	1.6	49
93	Germline Genetic Polymorphisms Are Associated with Disease-Free Survival in Adults with Acute Myeloid Leukemia (AML): A Genomewide Association Study From the Pgrn-Riken Global Alliance Blood, 2012, 120, 2548-2548.	0.6	0
94	Structure-based discovery of prescription drugs that interact with the norepinephrine transporter, NET. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 15810-15815.	3.3	120
95	Profiling of a Prescription Drug Library for Potential Renal Drug–Drug Interactions Mediated by the Organic Cation Transporter 2. Journal of Medicinal Chemistry, 2011, 54, 4548-4558.	2.9	141
96	Role of Organic Cation Transporter 1, OCT1 in the Pharmacokinetics and Toxicity of cis-Diammine(pyridine)chloroplatinum(II) and Oxaliplatin in Mice. Pharmaceutical Research, 2011, 28, 610-625.	1.7	42
97	Interactions of Tyrosine Kinase Inhibitors with Organic Cation Transporters and Multidrug and Toxic Compound Extrusion Proteins. Molecular Cancer Therapeutics, 2011, 10, 531-539.	1.9	172
98	SLCO1B1 Variation and Methotrexate Disposition in Children with Acute Lymphoblastic Leukemia: The Importance of Rare Variants in Pharmacogenetics. Blood, 2011, 118, 571-571.	0.6	0
99	Membrane transporters in drug development. Nature Reviews Drug Discovery, 2010, 9, 215-236.	21.5	2,886
100	Organic Cation Transporters Modulate the Uptake and Cytotoxicity of Picoplatin, a Third-Generation Platinum Analogue. Molecular Cancer Therapeutics, 2010, 9, 1058-1069.	1.9	74
101	Genetic variants of human organic anion transporter 4 demonstrate altered transport of endogenous substrates. American Journal of Physiology - Renal Physiology, 2010, 299, F767-F775.	1.3	22
102	Role of organic cation transporter 3 (SLC22A3) and its missense variants in the pharmacologic action of metformin. Pharmacogenetics and Genomics, 2010, 20, 687-699.	0.7	175
103	Effect of genetic variation in the organic cation transporter 2 on the renal elimination of metformin. Pharmacogenetics and Genomics, 2009, 19, 497-504.	0.7	202
104	Genetic variants in multidrug and toxic compound extrusion-1, hMATE1, alter transport function. Pharmacogenomics Journal, 2009, 9, 127-136.	0.9	94
105	Identification and characterization of novel polymorphisms in the basal promoter of the human transporter, MATE1. Pharmacogenetics and Genomics, 2009, 19, 770-780.	0.7	56
106	Genetic Variation in the Proximal Promoter of ABC and SLC Superfamilies: Liver and Kidney Specific Expression and Promoter Activity Predict Variation. PLoS ONE, 2009, 4, e6942.	1.1	34
107	Genetic variation in human aquaporins and effects on phenotypes of water homeostasis. Human Mutation, 2008, 29, 1108-1117.	1.1	21
108	<i>cis</i> -Diammine(pyridine)chloroplatinum(II), a monofunctional platinum(II) antitumor agent: Uptake, structure, function, and prospects. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 8902-8907.	3.3	222

#	Article	IF	CITATIONS
109	Organic Anion Transporter 2 (<i>SLC22A7</i>) Is a Facilitative Transporter of cGMP. Molecular Pharmacology, 2008, 73, 1151-1158.	1.0	103
110	Transport of Paraquat by Human Organic Cation Transporters and Multidrug and Toxic Compound Extrusion Family. Journal of Pharmacology and Experimental Therapeutics, 2007, 322, 695-700.	1.3	98
111	Functional effects of protein sequence polymorphisms in the organic cation/ergothioneine transporter OCTN1 (SLC22A4). Pharmacogenetics and Genomics, 2007, 17, 773-782.	0.7	43
112	Effect of genetic variation in the organic cation transporter 1 (OCT1) on metformin action. Journal of Clinical Investigation, 2007, 117, 1422-1431.	3.9	786
113	The human organic anion transporter 3 (OAT3; SLC22A8): genetic variation and functional genomics. American Journal of Physiology - Renal Physiology, 2006, 290, F905-F912.	1.3	87
114	Organic Cation Transporters Are Determinants of Oxaliplatin Cytotoxicity. Cancer Research, 2006, 66, 8847-8857.	0.4	384
115	Functional Genetic Diversity in the High-Affinity Carnitine Transporter OCTN2 (SLC22A5). Molecular Pharmacology, 2006, 70, 1602-1611.	1.0	55
116	Functional analysis of polymorphisms in the organic anion transporter, SLC22A6 (OAT1). Pharmacogenetics and Genomics, 2005, 15, 201-209.	0.7	93
117	The concentrative nucleoside transporter family, SLC28. Pflugers Archiv European Journal of Physiology, 2004, 447, 728-734.	1.3	348
118	Sorting of rat SPNT in renal epithelium is independent of N-glycosylation. Pharmaceutical Research, 2003, 20, 319-323.	1.7	16
119	Evolutionary conservation predicts function of variants of the human organic cation transporter, OCT1. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 5902-5907.	3.3	265
120	Natural variation in human membrane transporter genes reveals evolutionary and functional constraints. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 5896-5901.	3.3	224
121	Polymorphisms in a human kidney xenobiotic transporter, OCT2, exhibit altered function. Pharmacogenetics and Genomics, 2002, 12, 395-405.	5.7	183
122	Arginine 454 and Lysine 370 Are Essential for the Anion Specificity of the Organic Anion Transporter, rOAT3â€. Biochemistry, 2001, 40, 5511-5520.	1.2	70
123	Molecular Determinants of Substrate Selectivity in Na+-dependent Nucleoside Transporters. Journal of Biological Chemistry, 1997, 272, 28845-28848.	1.6	51
124	Cloning and Functional Expression of a Human Liver Organic Cation Transporter. Molecular Pharmacology, 1997, 51, 913-921.	1.0	374
125	Taurine transport in cultured choroid plexus. Pharmaceutical Research, 1997, 14, 406-409.	1.7	14
126	Mechanisms of 5-fluorouracil (5-FU) transport in isolated rabbit choroid plexus tissue slices. Pharmaceutical Research, 1996, 13, 1276-1278.	1.7	5

#	Article	IF	CITATIONS
127	Expression of a renal Na+-nucleoside cotransport system (N2) in Xenopus laevis oocytes. Pflugers Archiv European Journal of Physiology, 1994, 427, 381-383.	1.3	12
128	Interaction of nucleoside analogues with the sodium-nucleoside transport system in brush border membrane vesicles from human kidney. Pharmaceutical Research, 1993, 10, 423-426.	1.7	61
129	Stereoselective interactions of organic cations with the organic cation transporter in OK cells. Pharmaceutical Research, 1993, 10, 1169-1173.	1.7	20
130	Formycin B elimination from the cerebrospinal fluid of the rat. Pharmaceutical Research, 1993, 10, 611-615.	1.7	11
131	Effect of Probenecid on the Pharmacokinetics and Pharmacodynamics of Procainamide. Journal of Clinical Pharmacology, 1991, 31, 429-432.	1.0	5
132	The pharmacokinetics and pharmacodynamics of diltiazem and its metabolites in healthy adults after a single oral dose. Clinical Pharmacology and Therapeutics, 1989, 46, 408-419.	2.3	48
133	The pharmacokinetics of the enantiomers of atenolol. Clinical Pharmacology and Therapeutics, 1989, 45, 403-410.	2.3	42
134	The effect of probenecid on the renal elimination of cimetidine. Clinical Pharmacology and Therapeutics, 1989, 45, 444-452.	2.3	49
135	Renal transport of drugs: an overview of methodology with application to cimetidine. Pharmaceutical Research, 1988, 05, 465-471.	1.7	7
136	Cimetidine elimination from the cerebrospinal fluid of the rat. Pharmaceutical Research, 1988, 05, 628-633.	1.7	3
137	Stereoselective binding of disopyramide to plasma proteins. Pharmaceutical Research, 1988, 05, 316-318.	1.7	7
138	Verapamil interacts stereoselectively with the muscarinic receptor. Pharmaceutical Research, 1985, 02, 94-95.	1.7	0
139	Correction for Volume Shift during Equilibrium Dialysis by Measurement of Protein Concentration. Pharmaceutical Research, 1984, 01, 179-181.	1.7	15
140	Effect of Concentration-Dependent Binding to Plasma Proteins on the Pharmacokinetics and Pharmacodynamics of Disopyramide. Clinical Pharmacokinetics, 1984, 9, 42-48.	1.6	16
141	Propoxyphene and norpropoxyphene plasma concentrations after oral propoxyphene in cirrhotic patients with and without surgically constructed portacaval shunt. Clinical Pharmacology and Therapeutics, 1980, 28, 417-424.	2.3	31
142	Effect of hemodialysis on propoxyphene and norpropoxyphene concentrations in blood of anephric patients*. Clinical Pharmacology and Therapeutics, 1980, 27, 508-514.	2.3	31
143	Propoxyphene and norpropoxyphene plasma concentrations in the anephric patient. Clinical Pharmacology and Therapeutics, 1980, 27, 665-670.	2.3	62