Sergio Caprara

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1456994/publications.pdf

Version: 2024-02-01

87888 4,782 187 38 citations h-index papers

g-index 190 190 190 2855 docs citations times ranked citing authors all docs

114465

63

#	Article	IF	CITATIONS
1	Singular Quasiparticle Scattering in the Proximity of Charge Instabilities. Physical Review Letters, 1995, 75, 4650-4653.	7.8	413
2	Non-Fermi-liquid behavior and d-wave superconductivity near the charge-density-wave quantum critical point. Zeitschrift FÃ $\frac{1}{4}$ r Physik B-Condensed Matter, 1996, 103, 137-144.	1.1	152
3	Superconductivity, phase separation, and charge-transfer instability in theU=â^ž limit of the three-band model of theCuO2planes. Physical Review Letters, 1991, 67, 259-262.	7.8	144
4	d-wave superconductivity near charge instabilities. Physical Review B, 1996, 54, 16216-16225.	3.2	137
5	Multiple quantum criticality in a two-dimensional superconductor. Nature Materials, 2013, 12, 542-548.	27.5	136
6	Dynamical charge density fluctuations pervading the phase diagram of a Cu-based high- <i>T</i> _c superconductor. Science, 2019, 365, 906-910.	12.6	125
7	Resonant and crossover phenomena in a multiband superconductor: Tuning the chemical potential near a band edge. Physical Review B, 2010, 82, .	3.2	124
8	Electron-phonon interactions in the presence of strong correlations. Physical Review B, 1994, 50, 16880-16898.	3.2	116
9	Anomalous Isotopic Effect Near the Charge-Ordering Quantum Criticality. Physical Review Letters, 2001, 87, 056401.	7.8	106
10	Gap and pseudogap evolution within the charge-ordering scenario for superconducting cuprates. European Physical Journal B, 2000, 17, 95-102.	1.5	105
11	Re-entrant charge order in overdoped (Bi,Pb)2.12Sr1.88CuO6+ \hat{l} outside the pseudogap regime. Nature Materials, 2018, 17, 697-702.	27.5	93
12	Charge-density waves and superconductivity as an alternative to phase separation in the infinite-UHubbard-Holstein model. Physical Review B, 1996, 54, 12443-12457.	3.2	84
13	Field-effect control of superconductivity and Rashba spin-orbit coupling in top-gated LaAlO3/SrTiO3 devices. Scientific Reports, 2015, 5, 12751.	3.3	82
14	Symmetry of Hole States in Superconducting Oxides: Correlation with Tc. Physical Review Letters, 1991, 66, 3209-3212.	7.8	80
15	The stripe critical point for cuprates. Journal of Physics Condensed Matter, 2000, 12, 10655-10666.	1.8	78
16	Two-gap model for underdoped cuprate superconductors. Physical Review B, 2000, 62, R9295-R9298.	3.2	77
17	Phase Separation Close to the Density-Driven Mott Transition in the Hubbard-Holstein Model. Physical Review Letters, 2004, 92, 106401.	7.8	75
18	Dynamical charge density waves rule the phase diagram of cuprates. Physical Review B, 2017, 95, .	3.2	72

#	Article	IF	Citations
19	Apical oxygen ions and the electronic structure of the high-Tccuprates. Physical Review B, 1992, 45, 10647-10669.	3.2	68
20	Critical spin fluctuations and the origin of nematic order in Ba(Fe1â^'xCox)2As2. Nature Physics, 2016, 12, 560-563.	16.7	67
21	Mean-field theories of cuprate superconductors: A systematic analysis. Physical Review B, 1990, 42, 329-341.	3.2	63
22	Intrinsic Instability of Electronic Interfaces with Strong Rashba Coupling. Physical Review Letters, 2012, 109, 196401.	7.8	60
23	STRIPE FORMATION: A QUANTUM CRITICAL POINT FOR CUPRATE SUPERCONDUCTORS. Journal of Physics and Chemistry of Solids, 1998, 59, 1694-1698.	4.0	58
24	Low-energy phase-only action in a superconductor: A comparison with the XY model. Physical Review B, 2004, 69, .	3.2	54
25	Phase Separation from Electron Confinement at Oxide Interfaces. Physical Review Letters, 2016, 116, 026804.	7.8	53
26	Effective medium theory for superconducting layers: A systematic analysis including space correlation effects. Physical Review B, 2011, 84, .	3.2	52
27	Shape resonance for the anisotropic superconducting gaps near a Lifshitz transition: the effect of electron hopping between layers. Superconductor Science and Technology, 2011, 24, 015012.	3.5	52
28	Charge collective modes and dynamic pairing in the three-band Hubbard model. II. Strong-coupling limit. Physical Review B, 1993, 47, 3331-3346.	3.2	50
29	Phase fluctuations, dissipation, and superfluid stiffness ind-wave superconductors. Physical Review B, 2001, 63, .	3.2	50
30	Charge-Fluctuation Contribution to the Raman Response in Superconducting Cuprates. Physical Review Letters, 2005, 95, 117004.	7.8	50
31	Multiband superconductivity and nanoscale inhomogeneity at oxide interfaces. Physical Review B, 2013, 88, .	3.2	49
32	Collective excitations, photoemission spectra, and optical gaps in strongly correlated Fermi systems. Physical Review Letters, 1992, 69, 2009-2012.	7.8	48
33	Mott metal-insulator transition in the half-filled Hubbard model on the triangular lattice. Physical Review B, 2001, 63, .	3.2	47
34	Striped phases in the two-dimensional Hubbard model with long-range Coulomb interaction. Physical Review B, 1998, 58, 13506-13509.	3.2	44
35	Confinement of superconducting fluctuations due to emergent electronic inhomogeneities. Physical Review B, 2016, 93, .	3.2	41
36	Phase Separation and Superconductivity in the Kondo-like Spin-Hole Coupled Model. Europhysics Letters, 1991, 14, 597-602.	2.0	40

3

#	Article	IF	Citations
37	Single-particle properties of a model for coexisting charge and spin quasicritical fluctuations coupled to electrons. Physical Review B, 1999, 59, 14980-14991.	3.2	40
38	Competition between electron pairing and phase coherence in superconducting interfaces. Nature Communications, 2018, 9, 407.	12.8	40
39	Spectral properties of incommensurate charge-density wave systems. European Physical Journal B, 2000, 13, 87-97.	1.5	39
40	Phase diagrams of voltage-gated oxide interfaces with strong Rashba coupling. Physical Review B, 2014, 89, .	3.2	38
41	Do we have a consistent non-adiabatic quantum-classical mechanics?. Europhysics Letters, 2007, 78, 30001.	2.0	36
42	Multiple gaps and superfluid density from interband pairing in a four-band model of the iron oxypnictides. Physical Review B, 2008, 78, .	3.2	36
43	Theory of fluctuation conductivity from interband pairing in pnictide superconductors. Physical Review B, 2009, 79, .	3.2	34
44	High-temperature ferromagnetism in Si:Mn alloys. Physical Review B, 2011, 83, .	3.2	34
45	Gap suppression at a Lifshitz transition in a multi-condensate superconductor. Nature Materials, 2019, 18, 948-954.	27.5	34
46	Mean-field phase diagram of a two-bandt-Jmodel forCuO2layers. Physical Review B, 1991, 43, 8000-8004.	3.2	33
47	PHASE SEPARATION AND SUPERCONDUCTIVITY IN THE U=â^ž LIMIT OF THE EXTENDED MULTIBAND HUBBARD MODEL. International Journal of Modern Physics B, 1991, 05, 309-321.	2.0	31
48	Theory of the Spin Galvanic Effect at Oxide Interfaces. Physical Review Letters, 2017, 119, 256801.	7.8	31
49	Anomalous Optical Absorption in the Normal State of Overdoped Cuprates Near the Charge-Ordering Instability. Physical Review Letters, 2002, 88, 147001.	7.8	30
50	Phase separation, charge-transfer instability, and superconductivity in the three-band extended Hubbard model: Weak-coupling theory. Physical Review B, 1991, 43, 13724-13727.	3.2	29
51	Functional-integral formulation of the slave-boson approach: Beyond the mean-field treatment with the correct continuum limit. Physics Reports, 1994, 241, 291-369.	25.6	29
52	Strange metal behaviour from charge density fluctuations in cuprates. Communications Physics, 2021, 4, .	5.3	29
53	Ground-state magnetic properties of the Kondo lattice model at low electron densities. Europhysics Letters, 1997, 39, 55-60.	2.0	26
54	Metal–superconductor transition in low-dimensional superconducting clusters embedded in two-dimensional electron systems. New Journal of Physics, 2013, 15, 023014.	2,9	26

#	Article	IF	CITATIONS
55	Coherence length in superconductors from weak to strong coupling. Physical Review B, 2002, 66, . Extracting the dynamical effective interaction and competing order from an analysis of Raman spectra of the high-temperature La <mml:math <="" td="" xmlns:mml="http://www.w3.org/1998/Math/MathML"><td>3.2</td><td>25</td></mml:math>	3.2	25
56	display="inline"> <mml:msub><mml:mrow></mml:mrow><mml:mrow>â^'<mml:mi></mml:mi></mml:mrow></mml:msub> xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:msub><mml:mrow><td><≱∷2ml:ma</td><td>t½∦Sr∢mml:</td></mml:mrow></mml:msub>	< ≱∷2 ml:ma	t ½ ∦Sr∢mml:
57	/> <mml:mi>xCuO<mml:math .<="" 2001,="" 63,="" b,="" charge-density-wave="" dynamic="" high-tccuprates.="" incommensurate="" influence="" line="" of="" on="" photoemission="" physical="" review="" scattering="" shape="" superconducting="" td="" the="" xmlns:mml="http://www.w3.org/1998/M"><td>3.2</td><td>23</td></mml:math></mml:mi>	3.2	23
58	Electronic polymers and soft-matter-like broken symmetries in underdoped cuprates. Nature Communications, 2015, 6, 7691.	12.8	23
59	Nonlinear <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>I</mml:mi><mml:mtext>â^'<td>nţext><mi< td=""><td>ကျ<u>ွဲ</u>ကျေး 23</td></mi<></td></mml:mtext></mml:mrow></mml:math>	nţext> <mi< td=""><td>ကျ<u>ွဲ</u>ကျေး 23</td></mi<>	ကျ <u>ွဲ</u> ကျေး 23
60	Spin and charge ordering in the dimerized Hubbard model. Physical Review B, 2000, 61, 15667-15675.	3.2	22
61	Restored strange metal phase through suppression of charge density waves in underdoped YBa ₂ Cu ₃ O _{7–Î′} . Science, 2021, 373, 1506-1510.	12.6	21
62	Extended paraconductivity regime in underdoped cuprates. Physical Review B, 2005, 72, .	3.2	20
63	Spin ordering in semiconductor heterostructures with ferromagnetic <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>Î</mml:mi></mml:math> layers. Physical Review B, 2009, 80, .	3.2	20
64	Half-metallic spin polarized electron states in the chimney-ladder higher manganese silicides MnSi1â^'x ($x\hat{A}=\hat{A}1.75\hat{A}\hat{a}^{*}\hat{A}1.73$) with silicon vacancies. European Physical Journal B, 2012, 85, 1.	1.5	20
65	Three-bandt-Jmodel: A systematic large-Nanalysis. Physical Review B, 1994, 49, 6971-6984.	3.2	19
66	Phase diagram of the 1D Kondo lattice model. Journal of Low Temperature Physics, 1999, 117, 323-328.	1.4	19
67	Fermi surface dichotomy in systems with fluctuating order. Physical Review B, 2009, 79, .	3.2	19
68	Inhomogeneous multi carrier superconductivity at LaXO ₃ /SrTiO ₃ (X = Al or Ti) oxide interfaces. Superconductor Science and Technology, 2015, 28, 014002.	3.5	19
69	Majorana Fermions in One-Dimensional Structures at LaAlO3/SrTiO3 Oxide Interfaces. Condensed Matter, 2018, 3, 37.	1.8	19
70	Magnetic and charge-transfer phase separation in the three-bandt-Jmodel. Physical Review B, 1995, 51, 9286-9293.	3.2	18
71	Quantum Ising model in a transverse random field: A density-matrix renormalization-group analysis. Physical Review B, 1997, 56, 11097-11101.	3.2	18
72	The renormalization-group approach for Fermi systems in the presence of singular forward scattering. Nuclear Physics B, 2001, 594, 747-768.	2.5	17

#	Article	IF	CITATIONS
73	Large-N analysis of the local quantum critical point and the spin-liquid phase. Physical Review B, 2003, 67, .	3.2	17
74	Nematic phase without Heisenberg physics in FeAs planes. Physical Review B, 2011, 84, .	3.2	17
75	Stripes in cuprate superconductors: Excitations and dynamic dichotomy. Physica C: Superconductivity and Its Applications, 2012, 481, 132-145.	1.2	17
76	Optical conductivity near finite-wavelength quantum criticality. Physical Review B, 2007, 75, . Room-temperature ferromagnetism and anomalous Hall effect in Six multimath	3.2	16
77	xmins:mmi="http://www.w3.org/1998/Math/MathML" display="inline"> <mmi:msub><mmi:mrow ><mml:mrow><mml:mn>1< mml:mn><mml:mo>â^'< mml:mo><mml:mi>x< mml:mi>< mml:mrow>< mml:msub xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mrow< th=""><th>> <th>ath>Mn<m<mark>ml</m<mark></th></th></mml:mrow<></mml:msub></mml:mi></mml:mo></mml:mn></mml:mrow></mmi:mrow </mmi:msub>	> <th>ath>Mn<m<mark>ml</m<mark></th>	ath>Mn <m<mark>ml</m<mark>

#	Article	IF	CITATIONS
91	Spin-fluctuation mediated high-temperature ferromagnetism in Si:Mn dilute magnetic semiconductors. European Physical Journal B, 2010, 77, 337-343.	1.5	12
92	Phonon renormalization from local and transitive electron-lattice couplings in strongly correlated systems. Physical Review B, 2010, 81, .	3.2	12
93	Pseudogap and (An)isotropic Scattering in the Fluctuating Charge-Density Wave Phase of Cuprates. Journal of Superconductivity and Novel Magnetism, 2017, 30, 25-30.	1.8	12
94	Spin-polarized states of matter on the surface of a three-dimensional topological insulator with implanted magnetic atoms. Physical Review B, 2012, 85, .	3.2	11
95	Signatures of nematic quantum critical fluctuations in the Raman spectra of lightly doped cuprates. Physical Review B, 2015, 91, .	3.2	11
96	The Ancient Romans' Route to Charge Density Waves in Cuprates. Condensed Matter, 2019, 4, 60.	1.8	11
97	Progress in a Vacuum Weight Search Experiment. Physics, 2020, 2, 1-13.	1.4	11
98	Doping-dependent competition between superconductivity and polycrystalline charge density waves. SciPost Physics, 2020, 8, .	4.9	11
99	Protected superconductivity at the boundaries of charge-density-wave domains. New Journal of Physics, 2020, 22, 073025.	2.9	11
100	Paraconductivity in layered cuprates behaves as if due to pairing of nearly free quasiparticles. Physical Review B, 2009, 79, .	3.2	10
101	Critical properties and phase diagram of quantum anisotropicXYspin chain in a random magnetic field: A density-matrix renormalization-group analysis. Physical Review B, 1999, 60, 14771-14778.	3.2	9
102	Interlayer exchange coupling in digital magnetic alloys. Physical Review B, 2008, 78, .	3.2	9
103	Hidden ferronematic order in underdoped cuprates. Physical Review B, 2013, 87, .	3.2	9
104	Possible Mechanisms of Electronic Phase Separation in Oxide Interfaces. Journal of Superconductivity and Novel Magnetism, 2015, 28, 1273-1277.	1.8	9
105	Spin-to-charge current conversion. Nature Materials, 2016, 15, 1224-1225.	27.5	9
106	Incommensurate charge-density-wave instability in the extended three-band Hubbard model. Physical Review B, 1998, 57, 4382-4396.	3.2	8
107	Fermi surface and gap parameter in high-Tc superconductors: the Stripe Quantum Critical Point scenario. Physica C: Superconductivity and Its Applications, 1999, 317-318, 230-237.	1.2	8
108	Antiferromagnetic integer-spin chains in a staggered magnetic field:â€∫Approaching the thermodynamic limit through the infinite-size density-matrix renormalization group. Physical Review B, 2001, 64, .	3.2	8

#	Article	IF	Citations
109	Superconducting transition in a mixture of bosons and fermions. Physical Review B, 2003, 67, .	3.2	8
110	Doping-driven transition to a time-reversal breaking state in the phase diagram of the cuprates. Physical Review B, 2003, 67, .	3.2	8
111	Spectral signatures of critical charge and spin fluctuations in cuprates. Physica B: Condensed Matter, 2009, 404, 3070-3074.	2.7	8
112	Proximity-induced spin ordering at the interface between a ferromagnetic metal and a magnetic semiconductor. Physical Review B, 2010, 81 , .	3.2	8
113	Phase separation and superconductivity. Physica Scripta, 1992, T45, 81-84.	2.5	8
114	Spin-density-wave transition in systems with chemical dimerization. Physical Review B, 1996, 54, 5466-5470.	3.2	7
115	The pseudogap state in high-superconductors. Physica A: Statistical Mechanics and Its Applications, 2000, 280, 185-192.	2.6	7
116	Effective electron–electron and electron–phonon interactions in the Hubbard–Holstein model. Nuclear Physics B, 2006, 744, 277-294.	2.5	7
117	INHOMOGENEOUS ELECTRON GAS AT OXIDE INTERFACES WITH STRONG RASHBA SPIN–ORBIT COUPLING. Spin, 2014, 04, 1440004.	1.3	7
118	Phase separation and long-wavelength charge instabilities in spin-orbit coupled systems. Europhysics Letters, 2015, 109, 17006.	2.0	7
119	The Archimedes experiment. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2016, 824, 646-647.	1.6	7
120	Inhomogeneous Rashba spin–orbit coupling and intrinsic spin-Hall effect. Journal of Magnetism and Magnetic Materials, 2017, 440, 63-65.	2.3	7
121	Spin and Charge Density Waves in the Extended Hubbard Model: A Slave Boson Approach. International Journal of Modern Physics B, 1997, 11, 2057-2074.	2.0	6
122	COMMENSURATE VERSUS INCOMMENSURATE SPIN-ORDERING IN THE TRIANGULAR HUBBARD MODEL. International Journal of Modern Physics B, 2000, 14, 3386-3391.	2.0	6
123	Spin-polarized half-metallic state of a ferromagneticlayer in a semiconductor host. Physical Review B, 2011, 84, .	3.2	6
124	Density inhomogeneities and Rashba spin-orbit coupling interplay in oxide interfaces. Journal of Physics and Chemistry of Solids, 2019, 128, 118-129.	4.0	6
125	Phase separation and superconductivity in strongly interacting electron systems. Physica C: Superconductivity and Its Applications, 1994, 235-240, 2155-2156.	1.2	5
126	Phase separation and charge density waves: Possible sources of non-Fermi liquid behavior and pairing in high-temperature superconductors. Journal of Superconductivity and Novel Magnetism, 1996, 9, 413-424.	0.5	5

#	Article	IF	Citations
127	On the contribution of nearly critical spin and charge collective modes to the Raman spectra of high-Tc cuprates. Journal of Magnetism and Magnetic Materials, 2009, 321, 686-689.	2.3	5
128	Picoradiant tiltmeter and direct ground tilt measurements at the Sos Enattos site. European Physical Journal Plus, 2021, 136, 1.	2.6	5
129	Two-gap <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi mathvariant="normal">s</mml:mi><mml:mo>$\hat{A}\pm$</mml:mo></mml:msub></mml:math> -wave superconductivity at an oxide interface. Physical Review B, 2022, 105, .	3.2	5
130	Density-matrix renormalization group for fermions: Convergence to the infinite-size limit. Nuclear Physics B, 1997, 493, 640-650.	2.5	4
131	Incommensurate structure of a spin density wave in the one-dimensional tâ [°] J model. Physics Letters, Section A: General, Atomic and Solid State Physics, 1999, 255, 98-102.	2.1	4
132	Interplay between density and superconducting quantum critical fluctuations. Journal of Physics Condensed Matter, 2015, 27, 425701.	1.8	4
133	Glue function of optimally and overdoped cuprates from inversion of the Raman spectra. Journal of Physics Condensed Matter, 2016, 28, 065701.	1.8	4
134	Casimir energy for two and three superconducting coupled cavities: Numerical calculations. European Physical Journal Plus, 2017, 132, 1.	2.6	4
135	The Strange-Metal Behavior of Cuprates. Condensed Matter, 2022, 7, 29.	1.8	4
136	Vertex Corrections near the Stripe Phase. Physical Review Letters, 2002, 88, 066403.	7.8	3
137	Introduction to Renormalization Group and Ward Identities in Critical Phenomena and in Fermi and Bose Liquids. AIP Conference Proceedings, 2002, , .	0.4	3
138	Low-energy signatures of charge and spin fluctuations in Raman and optical spectra of the cuprates. Journal of Physics and Chemistry of Solids, 2008, 69, 2155-2159.	4.0	3
139	Effect of carrier confinement on exchange coupling in dilute magnetic semiconductors with self-organized nanocolumns. Physical Review B, 2009, 79, .	3.2	3
140	Reply to the Comment by V. V. Kisil. Europhysics Letters, 2010, 89, 50006.	2.0	3
141	Effect of anomalous diffusion of fluctuating Cooper pairs on the density of states of superconducting NbN thin films. Physical Review B, 2019, 100, .	3.2	3
142	Casimir energy for N superconducting cavities: a model for the YBCO (GdBCO) sample to be used in the Archimedes experiment. European Physical Journal Plus, 2022, 137, .	2.6	3
143	Disorder effects in thet-Jmodel. Physical Review B, 1995, 51, 11996-11999.	3.2	2
144	Reduction of the charge-density-wave amplitude in a strongly correlated system. Journal of Physics Condensed Matter, 1998, 10, 5389-5398.	1.8	2

#	Article	IF	CITATIONS
145	Single-particle spectra near a stripe instability. Physica B: Condensed Matter, 2000, 284-288, 983-984.	2.7	2
146	Strong correlation, electron–phonon interaction and critical fluctuations: isotope effect, pseudogap formation, and phase diagram of the cuprates. Journal of Physics and Chemistry of Solids, 2002, 63, 2219-2224.	4.0	2
147	TIME REVERSAL BREAKING SUPERCONDUCTING STATE IN THE PHASE DIAGRAM OF THE CUPRATES. International Journal of Modern Physics B, 2003, 17, 614-620.	2.0	2
148	Collective transport and optical absorption near the stripe criticality. Journal of Magnetism and Magnetic Materials, 2004, 272-276, 134-135.	2.3	2
149	Short-range ferromagnetic order and metal-insulator transition in amorphous RexSi1â^'x (Re=Gd,Tb,Y) nano-composites. Microelectronic Engineering, 2005, 81, 293-302.	2.4	2
150	Short-range ferromagnetism and transport properties of amorphous (Gd, Y)xSi1â^'x alloys. Journal of Experimental and Theoretical Physics, 2005, 101, 305-316.	0.9	2
151	Charge critical fluctuations in cuprates: Isotope effect, pseudogap, conductivity and Raman spectroscopy. Journal of Physics and Chemistry of Solids, 2006, 67, 160-164.	4.0	2
152	Evidence for short-range ferromagnetic order in amorphous(Gd,Y)xSi1â^2xalloys. Physical Review B, 2006, 74, .	3.2	2
153	Charge inhomogeneity coexisting with large Fermi surfaces. Physica C: Superconductivity and Its Applications, 2007, 460-462, 1176-1177.	1.2	2
154	Dynamical charge and spin density wave scattering in cuprate superconductors. New Journal of Physics, 2010, 12, 105010.	2.9	2
155	Pecularities of Hall effect in GaAs∫l´ã€^Mn〉/GaAs/InxGa1â^'xAs/ GaAs (x â‰^ 0.2) heterostructures with high M content. European Physical Journal B, 2012, 85, 1.	ln 1.5	2
156	Spin excitations of ferronematic order in underdoped cuprate superconductors. Scientific Reports, 2015, 4, 5319.	3.3	2
157	Non-equilibrium Spin Currents in Systems with Striped Rashba Spin-Orbit Coupling. Journal of Superconductivity and Novel Magnetism, 2017, 30, 123-128.	1.8	2
158	Law Without Law or "Just―Limit Theorems?. Foundations of Physics, 2018, 48, 1112-1127.	1.3	2
159	Superfluid Properties of Superconductors with Disorder at the Nanoscale: A Random Impedance Model. Condensed Matter, 2020, 5, 36.	1.8	2
160	Undecidability of the Spectral Gap: An Epistemological Look. Journal for General Philosophy of Science, 2021, 52, 157-170.	1.4	2
161	Chaos and Stochastic Models in Physics: Ontic and Epistemic Aspects. Studies in Applied Philosophy, Epistemology and Rational Ethics, 2016, , 133-146.	0.3	2
162	Shadow Bands, Gap and Pseudogaps in High-Tc Superconductors. Journal of Superconductivity and Novel Magnetism, 1999, 12, 71-73.	0.5	1

#	Article	IF	CITATIONS
163	GAP AND PSEUDOGAP EVOLUTION IN UNDERDOPED CUPRATES. International Journal of Modern Physics B, 2000, 14, 3006-3011.	2.0	1
164	CHARGE AND SPIN MODULATION IN THE PRESENCE OF A DIMERIZED CRYSTAL FIELD. International Journal of Modern Physics B, 2000, 14, 3392-3397.	2.0	1
165	Title is missing!. Journal of Superconductivity and Novel Magnetism, 2002, 15, 517-521.	0.5	1
166	Renormalization Group and Ward Identities in Quantum Liquid Phases and in Unconventional Critical Phenomena. Journal of Statistical Physics, 2004, 115, 91-123.	1.2	1
167	Spectroscopic evidences of quantum critical charge fluctuations in cuprates. Physica C: Superconductivity and Its Applications, 2007, 460-462, 1103-1104.	1.2	1
168	Compressible Convective Instability by Molecular Dynamics. Progress of Theoretical Physics Supplement, 2009, 178, 15-23.	0.1	1
169	Finite-Frequency Dissipation in Two-Dimensional Superconductors with Disorder at the Nanoscale. Nanomaterials, 2021, 11, 1888.	4.1	1
170	Phase Separation as a Possible Scenario for High T c Superconductors: A Particular Overview. , 1994, , 12-25.		1
171	The stripe-quantum-critical-point as a key to the physics of cuprates. European Physical Journal Special Topics, 1999, 09, Pr10-329-Pr10-332.	0.2	1
172	Single-particle spectra and Fermi surface near a stripe instability. European Physical Journal Special Topics, 1999, 09, Pr10-337-Pr10-338.	0.2	1
173	On the Superconducting Critical Temperature of Heavily Disordered Interfaces Hosting Multi-Gap Superconductivity. Coatings, 2022, 12, 30.	2.6	1
174	Enhancement of mass anisotropy in an electron - phonon coupled model close to a Van Hove singularity. Journal of Physics Condensed Matter, 1997, 9, 10195-10202.	1.8	0
175	Title is missing!. Journal of Superconductivity and Novel Magnetism, 1999, 12, 151-152.	0.5	0
176	Effect of Lattice Dimerization on a System with Coexisting Charge and Spin Density Waves. Physica Status Solidi (B): Basic Research, 1999, 216, 1089-1098.	1.5	0
177	SYMMETRY PROPERTIES, WARD IDENTITIES AND RENORMALIZATION GROUP FOR FERMI AND BOSE SYSTEMS. International Journal of Modern Physics A, 2001, 16, 2015-2026.	1.5	0
178	Disordered loops in the two-dimensional antiferromagnetic spin–fermion model. Nuclear Physics B, 2008, 795, 578-595.	2.5	0
179	LUTTINGER LIQUID, SINGULAR INTERACTION AND QUANTUM CRITICALITY IN CUPRATE MATERIALS. International Journal of Modern Physics B, 2012, 26, 1244003.	2.0	0
180	Magnetic field induced transition in superconducting LaTiO3/SrTiO3 interfaces. Journal of Physics: Conference Series, 2013, 449, 012035.	0.4	0

#	Article	IF	CITATIONS
181	On the Evaluation of the Spin Galvanic Effect in Lattice Models with Rashba Spin-Orbit Coupling. Condensed Matter, 2018, 3, 22.	1.8	0
182	Acknowledgement to Reviewers of Condensed Matter in 2017. Condensed Matter, 2018, 3, 3.	1.8	0
183	Non-Fermi-liquid metals in low dimensions. , 2003, , 39-66.		0
184	Do We Have a Consistent Non-Adiabatic Quantum-Classical Statistical Mechanics?. Springer Series in Chemical Physics, 2009, , 437-467.	0.2	0
185	Spin Density Waves in Dimerized Systems. , 1998, , 35-44.		0
186	On the Description of Financial Markets: A Physicist's Viewpoint. Studies in Applied Philosophy, Epistemology and Rational Ethics, 2017, , 63-71.	0.3	0
187	Theory of charge-spin conversion at oxide interfaces: the inverse spin-galvanic effect. , 2018, , .		0