Fraser A Armstrong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1456961/publications.pdf Version: 2024-02-01

		7096	12597
207	19,260	78	132
papers	citations	h-index	g-index
212	212	212	10204
212	212	212	10204
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Iron–sulfur clusters as inhibitors and catalysts of viral replication. Nature Chemistry, 2022, 14, 253-266.	13.6	23
2	A Nanoconfined Four-Enzyme Cascade Simultaneously Driven by Electrical and Chemical Energy, with Built-in Rapid, Confocal Recycling of NADP(H) and ATP. ACS Catalysis, 2022, 12, 8811-8821.	11.2	9
3	The crystalline state as a dynamic system: IR microspectroscopy under electrochemical control for a [NiFe] hydrogenase. Chemical Science, 2021, 12, 12959-12970.	7.4	8
4	Selective cysteine-to-selenocysteine changes in a [NiFe]-hydrogenase confirm a special position for catalysis and oxygen tolerance. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	14
5	Exploiting Bidirectional Electrocatalysis by a Nanoconfined Enzyme Cascade to Drive and Control Enantioselective Reactions. ACS Catalysis, 2021, 11, 6526-6533.	11.2	17
6	Exploiting Electrode Nanoconfinement to Investigate the Catalytic Properties of Isocitrate Dehydrogenase (IDH1) and a Cancer-Associated Variant. Journal of Physical Chemistry Letters, 2021, 12, 6095-6101.	4.6	10
7	Some fundamental insights into biological redox catalysis from the electrochemical characteristics of enzymes attached directly to electrodes. Electrochimica Acta, 2021, 390, 138836.	5.2	7
8	The power of electrified nanoconfinement for energising, controlling and observing long enzyme cascades. Nature Communications, 2021, 12, 340.	12.8	34
9	Nanotechnology for catalysis and solar energy conversion. Nanotechnology, 2021, 32, 042003.	2.6	44
10	The roles of long-range proton-coupled electron transfer in the directionality and efficiency of [FeFe]-hydrogenases. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 20520-20529.	7.1	48
11	Progress in Scaling up and Streamlining a Nanoconfined, Enzymeâ€Catalyzed Electrochemical Nicotinamide Recycling System for Biocatalytic Synthesis. ChemElectroChem, 2020, 7, 4672-4678.	3.4	16
12	Electron flow between the worlds of Marcus and Warburg. Journal of Chemical Physics, 2020, 153, 225101.	3.0	12
13	Aerobic Photocatalytic H ₂ Production by a [NiFe] Hydrogenase Engineered to Place a Silver Nanocluster in the Electron Relay. Journal of the American Chemical Society, 2020, 142, 12699-12707.	13.7	21
14	Viperin, through its radical‧AM activity, depletes cellular nucleotide pools and interferes with mitochondrial metabolism to inhibit viral replication. FEBS Letters, 2020, 594, 1624-1630.	2.8	28
15	Bacterial rhomboid proteases mediate quality control of orphan membrane proteins. EMBO Journal, 2020, 39, e102922.	7.8	21
16	The final steps of [FeFe]-hydrogenase maturation. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 15802-15810.	7.1	19
17	Efficient Electrocatalytic CO ₂ Fixation by Nanoconfined Enzymes via a C3-to-C4 Reaction That Is Favored over H ₂ Production. ACS Catalysis, 2019, 9, 11255-11262.	11.2	32
18	Electrified Nanoconfined Biocatalysis with Rapid Cofactor Recycling. ChemCatChem, 2019, 11, 5662-5670.	3.7	21

#	Article	IF	CITATIONS
19	Enzyme-catalysed enantioselective oxidation of alcohols by air exploiting fast electrochemical nicotinamide cycling in electrode nanopores. Green Chemistry, 2019, 21, 4958-4963.	9.0	17
20	The value of enzymes in solar fuels research – efficient electrocatalysts through evolution. Chemical Society Reviews, 2019, 48, 2039-2052.	38.1	62
21	Electrocatalytic Volleyball: Rapid Nanoconfined Nicotinamide Cycling for Organic Synthesis in Electrode Pores. Angewandte Chemie, 2019, 131, 5002-5006.	2.0	5
22	Electrocatalytic Volleyball: Rapid Nanoconfined Nicotinamide Cycling for Organic Synthesis in Electrode Pores. Angewandte Chemie - International Edition, 2019, 58, 4948-4952.	13.8	60
23	Fast and Selective Photoreduction of CO ₂ to CO Catalyzed by a Complex of Carbon Monoxide Dehydrogenase, TiO ₂ , and Ag Nanoclusters. ACS Catalysis, 2018, 8, 2789-2795.	11.2	82
24	A hydrogen fuel cell for rapid, enzyme-catalysed organic synthesis with continuous monitoring. Chemical Communications, 2018, 54, 972-975.	4.1	21
25	Protein Film Electrochemistry of Iron–Sulfur Enzymes. Methods in Enzymology, 2018, 599, 387-407.	1.0	20
26	The structure of hydrogenase-2 from <i>Escherichia coli</i> : implications for H2-driven proton pumping. Biochemical Journal, 2018, 475, 1353-1370.	3.7	46
27	Direct visible light activation of a surface cysteine-engineered [NiFe]-hydrogenase by silver nanoclusters. Energy and Environmental Science, 2018, 11, 3342-3348.	30.8	26
28	Mechanistic Exploitation of a Self-Repairing, Blocked Proton Transfer Pathway in an O ₂ -Tolerant [NiFe]-Hydrogenase. Journal of the American Chemical Society, 2018, 140, 10208-10220.	13.7	33
29	X-ray structural, functional and computational studies of the O2-sensitive E. coli hydrogenase-1 C19G variant reveal an unusual [4Fe–4S] cluster. Chemical Communications, 2018, 54, 7175-7178.	4.1	5
30	Transfer of photosynthetic NADP ⁺ /NADPH recycling activity to a porous metal oxide for highly specific, electrochemically-driven organic synthesis. Chemical Science, 2017, 8, 4579-4586.	7.4	74
31	Generating single metalloprotein crystals in well-defined redox states: electrochemical control combined with infrared imaging of a NiFe hydrogenase crystal. Chemical Communications, 2017, 53, 5858-5861.	4.1	18
32	Frequency and potential dependence of reversible electrocatalytic hydrogen interconversion by [FeFe]-hydrogenases. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 3843-3848.	7.1	47
33	Importance of the Active Site "Canopy―Residues in an O ₂ -Tolerant [NiFe]-Hydrogenase. Biochemistry, 2017, 56, 132-142.	2.5	31
34	The radicalâ€SAM enzyme Viperin catalyzes reductive addition of a 5′â€deoxyadenosyl radical to UDPâ€glucose <i>in vitro</i> . FEBS Letters, 2017, 591, 2394-2405.	2.8	27
35	Guiding Principles of Hydrogenase Catalysis Instigated and Clarified by Protein Film Electrochemistry. Accounts of Chemical Research, 2016, 49, 884-892.	15.6	75
36	Catalysis of solar hydrogen production by iron atoms on the surface of Fe-doped silicon carbide. Catalysis Science and Technology, 2016, 6, 7038-7041.	4.1	7

#	Article	IF	CITATIONS
37	Hydrogen activation by [NiFe]-hydrogenases. Biochemical Society Transactions, 2016, 44, 863-868.	3.4	18
38	Electrochemical Investigations of the Mechanism of Assembly of the Active-Site H-Cluster of [FeFe]-Hydrogenases. Journal of the American Chemical Society, 2016, 138, 15227-15233.	13.7	38
39	Selective, light-driven enzymatic dehalogenations of organic compounds. RSC Advances, 2016, 6, 84882-84886.	3.6	10
40	How the oxygen tolerance of a [NiFe]-hydrogenase depends on quaternary structure. Journal of Biological Inorganic Chemistry, 2016, 21, 121-134.	2.6	26
41	Electrocatalysis by H ₂ –O ₂ membrane-free fuel cell enzymes in aqueous microenvironments confined by an ionic liquid. RSC Advances, 2016, 6, 44129-44134.	3.6	5
42	Mechanism of hydrogen activation by [NiFe] hydrogenases. Nature Chemical Biology, 2016, 12, 46-50.	8.0	102
43	Integration of an [FeFe]-hydrogenase into the anaerobic metabolism of Escherichia coli. Biotechnology Reports (Amsterdam, Netherlands), 2015, 8, 94-104.	4.4	8
44	Solar-driven proton and carbon dioxide reduction to fuels — lessons from metalloenzymes. Current Opinion in Chemical Biology, 2015, 25, 141-151.	6.1	54
45	Investigations by Protein Film Electrochemistry of Alternative Reactions of Nickel-Containing Carbon Monoxide Dehydrogenase. Journal of Physical Chemistry B, 2015, 119, 13690-13697.	2.6	30
46	Pushing the limits for enzyme-based membrane-less hydrogen fuel cells – achieving useful power and stability. RSC Advances, 2015, 5, 3649-3656.	3.6	44
47	Discovery of Dark pH-Dependent H ⁺ Migration in a [NiFe]-Hydrogenase and Its Mechanistic Relevance: Mobilizing the Hydrido Ligand of the Ni-C Intermediate. Journal of the American Chemical Society, 2015, 137, 8484-8489.	13.7	65
48	How Formaldehyde Inhibits Hydrogen Evolution by [FeFe]-Hydrogenases: Determination by ¹³ C ENDOR of Direct Fe–C Coordination and Order of Electron and Proton Transfers. Journal of the American Chemical Society, 2015, 137, 5381-5389.	13.7	14
49	Spectroscopic and Redox Studies of Valence-Delocalized [Fe2S2]+ Centers in Thioredoxin-like Ferredoxins. Journal of the American Chemical Society, 2015, 137, 4567-4580.	13.7	20
50	Structural differences of oxidized iron–sulfur and nickel–iron cofactors in O 2 -tolerant and O 2 -sensitive hydrogenases studied by X-ray absorption spectroscopy. Biochimica Et Biophysica Acta - Bioenergetics, 2015, 1847, 162-170.	1.0	14
51	Bacterial formate hydrogenlyase complex. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E3948-56.	7.1	209
52	Investigations of the Efficient Electrocatalytic Interconversions of Carbon Dioxide and Carbon Monoxide by Nickel-Containing Carbon Monoxide Dehydrogenases. Metal Ions in Life Sciences, 2014, 14, 71-97.	2.8	13
53	Structure, Function, and Mechanism of the Nickel Metalloenzymes, CO Dehydrogenase, and Acetyl-CoA Synthase. Chemical Reviews, 2014, 114, 4149-4174.	47.7	470
54	How oxygen reacts with oxygen-tolerant respiratory [NiFe]-hydrogenases. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 6606-6611.	7.1	75

#	Article	IF	CITATIONS
55	A unified model for surface electrocatalysis based on observations with enzymes. Physical Chemistry Chemical Physics, 2014, 16, 11822.	2.8	74
56	Unusual Reaction of [NiFe]-Hydrogenases with Cyanide. Journal of the American Chemical Society, 2014, 136, 10470-10477.	13.7	16
57	Selective Visible-Light-Driven CO ₂ Reduction on a p-Type Dye-Sensitized NiO Photocathode. Journal of the American Chemical Society, 2014, 136, 13518-13521.	13.7	97
58	A Multi-Heme Flavoenzyme as a Solar Conversion Catalyst. Journal of the American Chemical Society, 2014, 136, 12876-12879.	13.7	34
59	Transforming an oxygen-tolerant [NiFe] uptake hydrogenase into a proficient, reversible hydrogen producer. Energy and Environmental Science, 2014, 7, 1426-1433.	30.8	61
60	Electrochemistry of Metalloproteins: Protein Film Electrochemistry for the Study of E. coli [NiFe]-Hydrogenase-1. Methods in Molecular Biology, 2014, 1122, 73-94.	0.9	16
61	Copying Biology's Ways with Hydrogen. Science, 2013, 339, 658-659.	12.6	16
62	How Light-Harvesting Semiconductors Can Alter the Bias of Reversible Electrocatalysts in Favor of H ₂ Production and CO ₂ Reduction. Journal of the American Chemical Society, 2013, 135, 15026-15032.	13.7	77
63	Energy and environment policy case for a global project on artificial photosynthesis. Energy and Environmental Science, 2013, 6, 695.	30.8	264
64	Crystal Structure of the O 2 -Tolerant Membrane-Bound Hydrogenase 1 from Escherichia coli in Complex with Its Cognate Cytochrome b. Structure, 2013, 21, 184-190.	3.3	93
65	Optimizing the power of enzyme-based membrane-less hydrogen fuel cells for hydrogen-rich H2–air mixtures. Energy and Environmental Science, 2013, 6, 2166.	30.8	61
66	Photons in biology. Interface Focus, 2013, 3, 20130039.	3.0	1
67	A Unified Electrocatalytic Description of the Action of Inhibitors of Nickel Carbon Monoxide Dehydrogenase. Journal of the American Chemical Society, 2013, 135, 2198-2206.	13.7	60
68	Principles of Sustained Enzymatic Hydrogen Oxidation in the Presence of Oxygen – The Crucial Influence of High Potential Fe–S Clusters in the Electron Relay of [NiFe]-Hydrogenases. Journal of the American Chemical Society, 2013, 135, 2694-2707.	13.7	91
69	Investigations of Two Bidirectional Carbon Monoxide Dehydrogenases from <i>Carboxydothermus hydrogenoformans</i> by Protein Film Electrochemistry. ChemBioChem, 2013, 14, 1845-1851.	2.6	37
70	Electrochemistry of Hydrogenases. Electroanalytical Chemistry, A Series of Advances, 2013, , 33-104.	1.7	0
71	Electrocatalytic mechanism of reversible hydrogen cycling by enzymes and distinctions between the major classes of hydrogenases. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 11516-11521.	7.1	158
72	Importance of the Protein Framework for Catalytic Activity of [FeFe]-Hydrogenases. Journal of Biological Chemistry, 2012, 287, 1489-1499.	3.4	129

#	Article	IF	CITATIONS
73	X-ray crystallographic and computational studies of the O ₂ -tolerant [NiFe]-hydrogenase 1 from <i>Escherichia coli</i> . Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 5305-5310.	7.1	194
74	Order-of-magnitude enhancement of an enzymatic hydrogen-air fuel cell based on pyrenyl carbon nanostructures. Chemical Science, 2012, 3, 1015.	7.4	130
75	Visible light-driven CO ₂ reduction by enzyme coupled CdS nanocrystals. Chemical Communications, 2012, 48, 58-60.	4.1	184
76	EPR Spectroscopic Studies of the Fe–S Clusters in the O ₂ -Tolerant [NiFe]-Hydrogenase Hyd-1 from Escherichia coli and Characterization of the Unique [4Fe–3S] Cluster by HYSCORE. Journal of the American Chemical Society, 2012, 134, 15581-15594.	13.7	88
77	Inhibition of [FeFe]-Hydrogenases by Formaldehyde and Wider Mechanistic Implications for Biohydrogen Activation. Journal of the American Chemical Society, 2012, 134, 7553-7557.	13.7	31
78	Enzymes and bio-inspired electrocatalysts in solar fuel devices. Energy and Environmental Science, 2012, 5, 7470.	30.8	127
79	Editorial overview. Current Opinion in Chemical Biology, 2012, 16, 1-2.	6.1	35
80	How <i>Salmonella</i> oxidises H ₂ under aerobic conditions. FEBS Letters, 2012, 586, 536-544.	2.8	34
81	Formaldehyde—A Rapid and Reversible Inhibitor of Hydrogen Production by [FeFe]-Hydrogenases. Journal of the American Chemical Society, 2011, 133, 1282-1285.	13.7	30
82	CO2 photoreduction at enzyme-modified metal oxide nanoparticles. Energy and Environmental Science, 2011, 4, 2393.	30.8	155
83	A unique iron-sulfur cluster is crucial for oxygen tolerance of a [NiFe]-hydrogenase. Nature Chemical Biology, 2011, 7, 310-318.	8.0	225
84	Oxygen-Tolerant [NiFe]-Hydrogenases: The Individual and Collective Importance of Supernumerary Cysteines at the Proximal Fe-S Cluster. Journal of the American Chemical Society, 2011, 133, 16881-16892.	13.7	118
85	Reversibility and efficiency in electrocatalytic energy conversion and lessons from enzymes. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 14049-14054.	7.1	310
86	A TiO2 Nanoparticle System for Sacrificial Solar H2 Production Prepared by Rational Combination of a Hydrogenase with a Ruthenium Photosensitizer. Methods in Molecular Biology, 2011, 743, 107-117.	0.9	6
87	Gas pressure effects on the rates of catalytic H2 oxidation by hydrogenases. Chemical Communications, 2010, 46, 8463.	4.1	1
88	How Escherichia coli Is Equipped to Oxidize Hydrogen under Different Redox Conditions. Journal of Biological Chemistry, 2010, 285, 3928-3938.	3.4	204
89	Characteristics of Enzyme-Based Hydrogen Fuel Cells Using an Oxygen-Tolerant Hydrogenase as the Anodic Catalyst. Journal of Physical Chemistry C, 2010, 114, 12003-12009.	3.1	96
90	Efficient and Clean Photoreduction of CO ₂ to CO by Enzyme-Modified TiO ₂ Nanoparticles Using Visible Light. Journal of the American Chemical Society, 2010, 132, 2132-2133.	13.7	392

#	Article	IF	CITATIONS
91	Mechanistic studies of the â€~blue' Cu enzyme, bilirubin oxidase, as a highly efficient electrocatalyst for the oxygen reduction reaction. Physical Chemistry Chemical Physics, 2010, 12, 13962.	2.8	184
92	A kinetic and thermodynamic understanding of O ₂ tolerance in [NiFe]-hydrogenases. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 20681-20686.	7.1	130
93	Oxygen-tolerant H2 Oxidation by Membrane-bound [NiFe] Hydrogenases of Ralstonia Species. Journal of Biological Chemistry, 2009, 284, 465-477.	3.4	112
94	Dynamic electrochemical experiments on hydrogenases. Photosynthesis Research, 2009, 102, 541-550.	2.9	20
95	Dynamic electrochemical investigations of hydrogen oxidation and production by enzymes and implications for future technology. Chemical Society Reviews, 2009, 38, 36-51.	38.1	265
96	Visible Light-Driven H ₂ Production by Hydrogenases Attached to Dye-Sensitized TiO ₂ Nanoparticles. Journal of the American Chemical Society, 2009, 131, 18457-18466.	13.7	407
97	Waterâ^'Gas Shift Reaction Catalyzed by Redox Enzymes on Conducting Graphite Platelets. Journal of the American Chemical Society, 2009, 131, 14154-14155.	13.7	55
98	Catalytic electrochemistry of a [NiFeSe]-hydrogenase on TiO2 and demonstration of its suitability for visible-light driven H ₂ production. Chemical Communications, 2009, , 550-552.	4.1	160
99	Electrochemical Kinetic Investigations of the Reactions of [FeFe]-Hydrogenases with Carbon Monoxide and Oxygen: Comparing the Importance of Gas Tunnels and Active-Site Electronic/Redox Effects. Journal of the American Chemical Society, 2009, 131, 14979-14989.	13.7	167
100	How oxygen attacks [FeFe] hydrogenases from photosynthetic organisms. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 17331-17336.	7.1	302
101	Enzymes as Working or Inspirational Electrocatalysts for Fuel Cells and Electrolysis. Chemical Reviews, 2008, 108, 2439-2461.	47.7	918
102	A Natural Choice for Activating Hydrogen. Science, 2008, 321, 498-499.	12.6	53
103	The Difference a Se Makes? Oxygen-Tolerant Hydrogen Production by the [NiFeSe]-Hydrogenase from <i>Desulfomicrobium baculatum</i> . Journal of the American Chemical Society, 2008, 130, 13410-13416.	13.7	172
104	Hydrogen Production under Aerobic Conditions by Membrane-Bound Hydrogenases from Ralstonia Species. Journal of the American Chemical Society, 2008, 130, 11106-11113.	13.7	94
105	Enzymatic Oxidation of H ₂ in Atmospheric O ₂ :  The Electrochemistry of Energy Generation from Trace H ₂ by Aerobic Microorganisms. Journal of the American Chemical Society, 2008, 130, 424-425.	13.7	57
106	Why did Nature choose manganese to make oxygen?. Philosophical Transactions of the Royal Society B: Biological Sciences, 2008, 363, 1263-1270.	4.0	164
107	Voltammetry of Adsorbed Redox Enzymes: Mechanisms in The Potential Dimension. , 2008, , 91-128.		10
108	Investigating and Exploiting the Electrocatalytic Properties of Hydrogenases. Chemical Reviews, 2007, 107, 4366-4413.	47.7	687

#	Article	IF	CITATIONS
109	A stable electrode for high-potential, electrocatalytic O2 reduction based on rational attachment of a blue copper oxidase to a graphite surface. Chemical Communications, 2007, , 1710.	4.1	285
110	Enzymatic catalysis on conducting graphite particles. Nature Chemical Biology, 2007, 3, 761-762.	8.0	63
111	Rapid and Efficient Electrocatalytic CO ₂ /CO Interconversions by <i>Carboxydothermus hydrogenoformans</i> CO Dehydrogenase I on an Electrode. Journal of the American Chemical Society, 2007, 129, 10328-10329.	13.7	181
112	Electrochemical Investigations of the Interconversions between Catalytic and Inhibited States of the [FeFe]-Hydrogenase fromDesulfovibriodesulfuricans. Journal of the American Chemical Society, 2006, 128, 16808-16815.	13.7	78
113	Electricity from low-level H2 in still air ? an ultimate test for an oxygen tolerant hydrogenase. Chemical Communications, 2006, , 5033.	4.1	126
114	Rapid and Reversible Reactions of [NiFe]-Hydrogenases with Sulfide. Journal of the American Chemical Society, 2006, 128, 7448-7449.	13.7	55
115	Application of Power Spectra Patterns in Fourier Transform Square Wave Voltammetry To Evaluate Electrode Kinetics of Surface-Confined Proteins. Analytical Chemistry, 2006, 78, 2948-2956.	6.5	41
116	The pyrolytic graphite surface as an enzyme substrate: microscopic and spectroscopic studies. Journal of Solid State Electrochemistry, 2006, 10, 826-832.	2.5	55
117	Fumarate Reductase and Succinate Oxidase Activity of Escherichia coli Complex II Homologs Are Perturbed Differently by Mutation of the Flavin Binding Domain. Journal of Biological Chemistry, 2006, 281, 11357-11365.	3.4	49
118	A Proton Delivery Pathway in the Soluble Fumarate Reductase from Shewanella frigidimarina. Journal of Biological Chemistry, 2006, 281, 20589-20597.	3.4	47
119	Recent developments in dynamic electrochemical studies of adsorbed enzymes and their active sites. Current Opinion in Chemical Biology, 2005, 9, 110-117.	6.1	181
120	From The Cover: Electrocatalytic hydrogen oxidation by an enzyme at high carbon monoxide or oxygen levels. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 16951-16954.	7.1	250
121	Electrochemical Definitions of O2 Sensitivity and Oxidative Inactivation in Hydrogenases. Journal of the American Chemical Society, 2005, 127, 18179-18189.	13.7	208
122	Investigating Metalloenzyme Reactions Using Electrochemical Sweeps and Steps:Â Fine Control and Measurements with Reactants Ranging from Ions to Gases. Inorganic Chemistry, 2005, 44, 798-809.	4.0	46
123	The Mechanism of Activation of a [NiFe]-Hydrogenase by Electrons, Hydrogen, and Carbon Monoxide. Journal of the American Chemical Society, 2005, 127, 6595-6604.	13.7	85
124	Electron Transfer and Catalytic Control by the Ironâ^'Sulfur Clusters in a Respiratory Enzyme,E.coliFumarate Reductase. Journal of the American Chemical Society, 2005, 127, 6977-6989.	13.7	83
125	[NiFe]-hydrogenases: spectroscopic and electrochemical definition of reactions and intermediates. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2005, 363, 937-954.	3.4	56
126	Hydrogenases: active site puzzles and progress. Current Opinion in Chemical Biology, 2004, 8, 133-140.	6.1	184

#	Article	IF	CITATIONS
127	Fast, long-range electron-transfer reactions of a â€`blue' copper protein coupled non-covalently to an electrode through a stilbenyl thiolate monolayer. Chemical Communications, 2004, , 316-317.	4.1	28
128	Voltammetric Studies of the Catalytic Mechanism of the Respiratory Nitrate Reductase fromEscherichia coli:Â How Nitrate Reduction and Inhibition Depend on the Oxidation State of the Active Siteâ€. Biochemistry, 2004, 43, 799-807.	2.5	88
129	Electrochemical Potential-Step Investigations of the Aerobic Interconversions of [NiFe]-Hydrogenase fromAllochromatiumvinosum:Â Insights into the Puzzling Difference between Unready and Ready Oxidized Inactive States. Journal of the American Chemical Society, 2004, 126, 14899-14909.	13.7	133
130	Enzyme Electrokinetics:Â Using Protein Film Voltammetry To Investigate Redox Enzymes and Their Mechanismsâ€. Biochemistry, 2003, 42, 8653-8662.	2.5	266
131	Voltammetry of a â€ [~] protein on a rope'. FEBS Letters, 2003, 539, 91-94.	2.8	21
132	Hydrogenase on an electrode: a remarkable heterogeneous catalyst. Dalton Transactions, 2003, , 4152-4157.	3.3	40
133	Enzyme Electrokinetics:Â Electrochemical Studies of the Anaerobic Interconversions between Active and Inactive States ofAllochromatium vinosum[NiFe]-hydrogenase. Journal of the American Chemical Society, 2003, 125, 8505-8514.	13.7	151
134	Effect of a Dispersion of Interfacial Electron Transfer Rates on Steady State Catalytic Electron Transport in [NiFe]-hydrogenase and Other Enzymes. Journal of Physical Chemistry B, 2002, 106, 13058-13063.	2.6	248
135	Direct comparison of the electrocatalytic oxidation of hydrogen by an enzyme and a platinum catalystElectronic supplementary information (ESI) available: Levich plots at 1% and 10% hydrogen, and a comparison of the effect of carbon monoxide on oxidation currents obtained at platinum and enzyme-modified electrodes. See http://www.rsc.org/suppdata/cc/b2/b201337a/. Chemical	4.1	226
136	Communications, 2002, reference/ Insights into Gated Electron-Transfer Kinetics at the Electrodeâ^'Protein Interface:  A Square Wave Voltammetry Study of the Blue Copper Protein Azurin. Journal of Physical Chemistry B, 2002, 106, 2304-2313.	2.6	130
137	Insights from protein film voltammetry into mechanisms of complex biological electron-transfer reactionsBased on the presentation given at Dalton Discussion No. 4, 10–13th January 2002, Kloster Banz, Germany Dalton Transactions RSC, 2002, , 661-671.	2.3	102
138	A Voltammetric Study of Interdomain Electron Transfer within Sulfite Oxidase. Journal of the American Chemical Society, 2002, 124, 11612-11613.	13.7	90
139	Detection and interpretation of redox potential optima in the catalytic activity of enzymes. Biochimica Et Biophysica Acta - Bioenergetics, 2002, 1555, 54-59.	1.0	41
140	Enzyme Electrokinetics:Â Hydrogen Evolution and Oxidation byAllochromatium vinosum[NiFe]-Hydrogenaseâ€. Biochemistry, 2002, 41, 15736-15746.	2.5	116
141	Protein Film Voltammetry: Revealing the Mechanisms of Biological Oxidation and Reduction. Russian Journal of Electrochemistry, 2002, 38, 49-62.	0.9	23
142	Electrochemistry of Peroxidases. , 2002, , 124-145.		0
143	Enzyme Electrokinetics:  Energetics of Succinate Oxidation by Fumarate Reductase and Succinate Dehydrogenase. Biochemistry, 2001, 40, 11234-11245.	2.5	88
144	Electrochemical Origin of Hysteresis in the Electron-Transfer Reactions of Adsorbed Proteins:Â Contrasting Behavior of the "Blue―Copper Protein, Azurin, Adsorbed on Pyrolytic Graphite and Modified Gold Electrodes. Iournal of Physical Chemistry B. 2001, 105, 5271-5282.	2.6	93

#	Article	IF	CITATIONS
145	Determination of an Optimal Potential Window for Catalysis by E. coli Dimethyl Sulfoxide Reductase and Hypothesis on the Role of Mo(V) in the Reaction Pathway. Biochemistry, 2001, 40, 3117-3126.	2.5	87
146	A Distal Histidine Mutant (H52Q) of Yeast CytochromecPeroxidase Catalyzes the Oxidation of H2O2Instead of Its Reduction. Journal of the American Chemical Society, 2001, 123, 9260-9263.	13.7	22
147	Influence of electrochemical properties in determining the sensitivity of [4Fe-4S] clusters in proteins to oxidative damage. Biochemical Journal, 2001, 360, 717-726.	3.7	18
148	Ferredoxin III of Desulfovibrio africanus: sequencing of the native gene and characterization of a histidine-tagged form. Biochemical Journal, 2000, 346, 375-384.	3.7	7
149	Recent developments in faradaic bioelectrochemistry. Electrochimica Acta, 2000, 45, 2623-2645.	5.2	455
150	Atomically defined mechanism for proton transfer to a buried redox centre in a protein. Nature, 2000, 405, 814-817.	27.8	161
151	The effect of pH and ligand exchange on the redox properties of blue copper proteins. Faraday Discussions, 2000, 116, 205-220.	3.2	40
152	Fast voltammetric studies of the kinetics and energetics of coupled electron-transfer reactions in proteins. Faraday Discussions, 2000, 116, 191-203.	3.2	87
153	Interruption and Time-Resolution of Catalysis by a Flavoenzyme Using Fast Scan Protein Film Voltammetry. Journal of the American Chemical Society, 2000, 122, 6494-6495.	13.7	40
154	Investigations of the Oxidative Disassembly of Feâ^'S Clusters inClostridium pasteurianum8Fe Ferredoxin Using Pulsed-Protein-Film Voltammetryâ€. Biochemistry, 2000, 39, 10587-10598.	2.5	34
155	Catalytic Electron Transport in Chromatium vinosum [NiFe]-Hydrogenase:  Application of Voltammetry in Detecting Redox-Active Centers and Establishing That Hydrogen Oxidation Is Very Fast Even at Potentials Close to the Reversible H+/H2 Value. Biochemistry, 1999, 38, 8992-8999.	2.5	240
156	Thermodynamic influences on the fidelity of iron-sulphur cluster formation in proteins. FEBS Letters, 1999, 451, 91-94.	2.8	6
157	Voltammetric studies of bidirectional catalytic electron transport in Escherichia coli succinate dehydrogenase: comparison with the enzyme from beef heart mitochondria. Biochimica Et Biophysica Acta - Bioenergetics, 1999, 1412, 262-272.	1.0	43
158	Using the Pulsed Nature of Staircase Cyclic Voltammetry To Determine Interfacial Electron-Transfer Rates of Adsorbed Species. Analytical Chemistry, 1999, 71, 174-182.	6.5	38
159	Redox Properties of Flavocytochromec3fromShewanella frigidimarinaNCIMB400â€. Biochemistry, 1999, 38, 3302-3309.	2.5	106
160	Electron transfer and coupled processes in protein film voltammetry. Biochemical Society Transactions, 1999, 27, 206-210.	3.4	9
161	ELECTRON TRANSFER AND COUPLED PROCESSES IN PROTEIN FILM VOLTAMMETRY. Biochemical Society Transactions, 1999, 27, A31-A31.	3.4	0
162	Voltammetric navigation of a flavocytochrome film. Biochemical Society Transactions, 1999, 27, A45-A45.	3.4	0

#	Article	IF	CITATIONS
163	Simultaneous Voltammetric Comparisons of Reduction Potentials, Reactivities, and Stabilities of the High-Potential Catalytic States of Wild-Type and Distal-Pocket Mutant (W51F) Yeast CytochromecPeroxidase. Journal of the American Chemical Society, 1998, 120, 6270-6276.	13.7	48
164	Fast-Scan Cyclic Voltammetry of Protein Films on Pyrolytic Graphite Edge Electrodes:Â Characteristics of Electron Exchange. Analytical Chemistry, 1998, 70, 5062-5071.	6.5	174
165	Kinetics and Mechanism of Redox-Coupled, Long-Range Proton Transfer in an Ironâ^'Sulfur Protein. Investigation by Fast-Scan Protein-Film Voltammetry. Journal of the American Chemical Society, 1998, 120, 7085-7094.	13.7	104
166	Interpreting the Catalytic Voltammetry of Electroactive Enzymes Adsorbed on Electrodes. Journal of Physical Chemistry B, 1998, 102, 6889-6902.	2.6	139
167	Discovery of a Novel Ferredoxin from Azotobacter vinelandii Containing Two [4Fe-4S] Clusters with Widely Differing and Very Negative Reduction Potentials. Journal of Biological Chemistry, 1998, 273, 5514-5519.	3.4	40
168	Voltammetric studies of the reactions of iron–sulphur clusters ([3Fe-4S] or [M3Fe-4S]) formed in Pyrococcus furiosus ferredoxin. Biochemical Journal, 1998, 335, 357-368.	3.7	34
169	[3Fe-4S]↔[4Fe-4S] cluster interconversion in <i>Desulfovibrio africanus</i> ferredoxin III: properties of an Asp14→Cys mutant. Biochemical Journal, 1997, 323, 95-102.	3.7	51
170	Electrochemical Potential and pH Dependences of [3Fe-4S] ↔ [M3Fe-4S] Cluster Transformations (M = Fe,) Tj E Journal of the American Chemical Society, 1997, 119, 9729-9737.	TQq0 0 0 13.7	rgBT /Overlo 46
171	Global Observation of Hydrogen/Deuterium Isotope Effects on Bidirectional Catalytic Electron Transport in an Enzyme:Â Direct Measurement by Protein-Film Voltammetry. Journal of the American Chemical Society, 1997, 119, 7434-7439.	13.7	39
172	Direct Detection and Measurement of Electron Relays in a Multicentered Enzyme:  Voltammetry of Electrode-Surface Films of <i>E. coli</i> Fumarate Reductase, an Ironâ^'Sulfur Flavoprotein. Journal of the American Chemical Society, 1997, 119, 11628-11638.	13.7	111
173	Applications of voltammetric methods for probing the chemistry of redox proteins. , 1997, , 205-255.		9
174	Reaction of complex metalloproteins studied by protein-film voltammetry. Chemical Society Reviews, 1997, 26, 169.	38.1	398
175	Evaluations of reduction potential data in relation to coupling, kinetics and function. Journal of Biological Inorganic Chemistry, 1997, 2, 139-142.	2.6	27
176	Direct Measurement of the Reduction Potential of Catalytically Active CytochromecPeroxidase Compound I:Â Voltammetric Detection of a Reversible, Cooperative Two-Electron Transfer Reaction. Journal of the American Chemical Society, 1996, 118, 263-264.	13.7	84
177	Electrocatalytic Voltammetry of Succinate Dehydrogenase:Â Direct Quantification of the Catalytic Properties of a Complex Electron-Transport Enzyme. Journal of the American Chemical Society, 1996, 118, 5031-5038.	13.7	105
178	Control of Myoglobin Electron-Transfer Rates by the Distal (Nonbound) Histidine Residue. Journal of the American Chemical Society, 1996, 118, 3490-3492.	13.7	74
179	Novel Redox Chemistry of [3Feâ^'4S] Clusters:Â Electrochemical Characterization of the All-Fe(II) Form of the [3Feâ^'4S] Cluster Generated Reversibly in Various Proteins and Its Spectroscopic Investigation inSulfolobus acidocaldariusFerredoxin. Journal of the American Chemical Society, 1996, 118, 8593-8603.	13.7	92
180	Identification of the Iron-Sulfur Clusters in a Ferredoxin from the Archaeon Sulfolobus acidocaldarius. Evidence for a Reduced [3Fe-4S] Cluster with pH-dependent Electronic Properties. FEBS Journal, 1995, 233, 937-946.	0.2	62

#	Article	IF	CITATIONS
181	Formation and properties of a stable â€~high-potential' copper-iron-sulphur cluster in a ferredoxin. Nature Structural and Molecular Biology, 1994, 1, 427-433.	8.2	29
182	Azotobacter vinelandii ferredoxin I. Alteration of individual surface charges and the [4FE-4S]2+/+ cluster reduction potential. Journal of Biological Chemistry, 1994, 269, 8564-75.	3.4	36
183	Classification of fumarate reductases and succinate dehydrogenases based upon their contrasting behaviour in the reduced benzylviologen/fumarate assay. FEBS Letters, 1993, 326, 92-94.	2.8	33
184	Electrocatalytic reduction of hydrogen peroxide at a stationary pyrolytic graphite electrode surface in the presence of cytochrome c peroxidase: a description based on a microelectrode array model for adsorbed enzyme molecules. Analyst, The, 1993, 118, 973-978.	3.5	48
185	Reversible electrochemistry of fumarate reductase immobilized on an electrode surface. Direct voltammetric observations of redox centers and their participation in rapid catalytic electron transport. Biochemistry, 1993, 32, 5455-5465.	2.5	160
186	Voltammetric characterization of rapid and reversible binding of an exogenous thiolate ligand at a [4Fe-4S] cluster in ferredoxin III from Desulfovibrio africanus. Journal of the American Chemical Society, 1993, 115, 1413-1421.	13.7	42
187	Azotobacter vinelandii ferredoxin I. Aspartate 15 facilitates proton transfer to the reduced [3Fe-4S] cluster Journal of Biological Chemistry, 1993, 268, 25928-25939.	3.4	82
188	Azotobacter vinelandii ferredoxin I. Aspartate 15 facilitates proton transfer to the reduced [3Fe-4S] cluster. Journal of Biological Chemistry, 1993, 268, 25928-39.	3.4	61
189	Diode-like behaviour of a mitochondrial electron-transport enzyme. Nature, 1992, 356, 361-362.	27.8	190
190	Binding of thallium(I) to a [3Fe-4S] cluster: evidence for rapid and reversible formation of [Tl3Fe-4S]2+ and [Tl3Fe-4S]1+ centers in a ferredoxin. Journal of the American Chemical Society, 1991, 113, 8948-8950.	13.7	58
191	Investigation of metal ion uptake reactivities of [3Fe-4S] clusters in proteins: voltammetry of co-adsorbed ferredoxin-aminocyclitol films at graphite electrodes and spectroscopic identification of transformed clusters. Journal of the American Chemical Society, 1991, 113, 6663-6670.	13.7	97
192	Site-directed mutagenesis of Azotobacter vinelandii ferredoxin I. Changes in [4Fe-4S] cluster reduction potential and reactivity. Journal of Biological Chemistry, 1991, 266, 21563-71.	3.4	69
193	Probing metalloproteins by voltammetry. , 1990, , 137-221.		130
194	Evidence for reversible multiple redox transformations of [3Fe-4S] clusters. FEBS Letters, 1989, 259, 15-18.	2.8	40
195	Electrochemical and spectroscopic characterization of the 7Fe form of ferredoxin III from Desulfovibrio africanus. Biochemical Journal, 1989, 264, 265-273.	3.7	89
196	Direct electrochemistry of redox proteins. Accounts of Chemical Research, 1988, 21, 407-413.	15.6	674
197	Direct electrochemistry in the characterisation of redox proteins: Novel properties of Azotobacter 7Fe ferredoxin. FEBS Letters, 1988, 234, 107-110.	2.8	65
198	Redox properties of <i>Azotobacter</i> 7Fe ferredoxin. Biochemical Society Transactions, 1988, 16, 840-842.	3.4	1

#	Article	IF	CITATIONS
199	Towards macromolecular recognition at electrodes: fast interfacial electron transfer to cytochrome <i>c</i> peroxidase at graphite electrodes is promoted by aminoglycosides. Biochemical Society Transactions, 1988, 16, 842-843.	3.4	8
200	Cryokinetic studies of cytochrome c in aqueous alcohols. Biochemical Society Transactions, 1988, 16, 846-847.	3.4	0
201	Investigation of the function of plastocyanin by electrochemistry and nuclear-magnetic-resonance spectroscopy. Biochemical Society Transactions, 1987, 15, 767-772.	3.4	4
202	Fast interfacial electron transfer between cytochrome c peroxidase and graphite electrodes promoted by aminoglycosides: novel electroenzymic catalysis of hydrogen peroxide reduction. Journal of the American Chemical Society, 1987, 109, 7211-7212.	13.7	144
203	Metal ions and complexes as modulators of protein-interfacial electron transport at graphite electrodes. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1987, 217, 331-366.	0.1	161
204	Direct electrochemistry of the â€~blue' copper protein plastocyanin. Biochemical Society Transactions, 1986, 14, 44-45.	3.4	3
205	Reactions of electron-transfer proteins at electrodes. Quarterly Reviews of Biophysics, 1985, 18, 261-322.	5.7	138
206	Chemistry: Cyclic fixation of nitrogen. Nature, 1985, 317, 576-577.	27.8	5
207	Catalysis of plastocyanin electron self-exchange by redox-inert multivalent cations. FEBS Letters, 1985, 190, 242-248.	2.8	35