Francesca M Quattrocchio

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1456554/publications.pdf

Version: 2024-02-01

41 papers

6,801 citations

29 h-index

172457

289244 40 g-index

41 all docs

41 docs citations

41 times ranked

4969 citing authors

#	Article	IF	CITATIONS
1	Flavonoids: a colorful model for the regulation and evolution of biochemical pathways. Trends in Plant Science, 2005, 10, 236-242.	8.8	1,365
2	The flavonoid biosynthetic pathway in plants: Function and evolution. BioEssays, 1994, 16, 123-132.	2.5	637
3	Molecular Analysis of the anthocyanin2 Gene of Petunia and Its Role in the Evolution of Flower Color. Plant Cell, 1999, 11, 1433-1444.	6.6	545
4	anthocyanin1 of Petunia Encodes a Basic Helix-Loop-Helix Protein That Directly Activates Transcription of Structural Anthocyanin Genes. Plant Cell, 2000, 12, 1619-1631.	6.6	442
5	Analysis of bHLH and MYB domain proteins: speciesâ€specific regulatory differences are caused by divergent evolution of target anthocyanin genes. Plant Journal, 1998, 13, 475-488.	5.7	392
6	Regulatory Genes Controlling Anthocyanin Pigmentation Are Functionally Conserved among Plant Species and Have Distinct Sets of Target Genes Plant Cell, 1993, 5, 1497-1512.	6.6	369
7	PH4 of Petunia Is an R2R3 MYB Protein That Activates Vacuolar Acidification through Interactions with Basic-Helix-Loop-Helix Transcription Factors of the Anthocyanin Pathway. Plant Cell, 2006, 18, 1274-1291.	6.6	335
8	The an11 locus controlling flower pigmentation in petunia encodes a novel WD-repeat protein conserved in yeast, plants, and animals Genes and Development, 1997, 11, 1422-1434.	5 . 9	331
9	Insight into the evolution of the Solanaceae from the parental genomes of Petunia hybrida. Nature Plants, 2016, 2, 16074.	9.3	311
10	ANTHOCYANIN1 of Petunia Controls Pigment Synthesis, Vacuolar pH, and Seed Coat Development by Genetically Distinct Mechanisms. Plant Cell, 2002, 14, 2121-2135.	6.6	241
11	An H+ P-ATPase on the tonoplast determines vacuolar pH and flower colour. Nature Cell Biology, 2008, 10, 1456-1462.	10.3	178
12	Tomato R2R3-MYB Proteins SIANT1 and SIAN2: Same Protein Activity, Different Roles. PLoS ONE, 2015, 10, e0136365.	2.5	133
13	Regulatory Genes Controlling Anthocyanin Pigmentation Are Functionally Conserved among Plant Species and Have Distinct Sets of Target Genes. Plant Cell, 1993, 5, 1497.	6.6	129
14	Functionally Similar WRKY Proteins Regulate Vacuolar Acidification in Petunia and Hair Development in Arabidopsis. Plant Cell, 2016, 28, 786-803.	6.6	128
15	Targeted gene inactivation in petunia by PCR-based selection of transposon insertion mutants Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 8149-8153.	7.1	127
16	Hyperacidification of Vacuoles by the Combined Action of Two Different P-ATPases in the Tonoplast Determines Flower Color. Cell Reports, 2014, 6, 32-43.	6.4	117
17	Selection of high-affinity phage antibodies from phage display libraries. Nature Biotechnology, 1999, 17, 397-399.	17.5	94
18	One Protoplast Is Not the Other! Â. Plant Physiology, 2011, 156, 474-478.	4.8	93

#	Article	lF	Citations
19	New Challenges for the Design of High Value Plant Products: Stabilization of Anthocyanins in Plant Vacuoles. Frontiers in Plant Science, 2016, 7, 153.	3.6	90
20	Hyperacidification of Citrus fruits by a vacuolar proton-pumping P-ATPase complex. Nature Communications, 2019, 10, 744.	12.8	90
21	Chalcone Synthase Promoters in Petunia Are Active in Pigmented and Unpigmented Cell Types Plant Cell, 1990, 2, 379-392.	6.6	89
22	Molecular Analysis of the anthocyanin2 Gene of Petunia and Its Role in the Evolution of Flower Color. Plant Cell, 1999, 11, 1433.	6.6	58
23	The <scp>MYB</scp> 5â€driven <scp>MBW</scp> complex recruits a <scp>WRKY</scp> factor to enhance the expression of targets involved in vacuolar hyperâ€acidification and trafficking in grapevine. Plant Journal, 2019, 99, 1220-1241.	5.7	54
24	A general method to isolate genes tagged by a high copy number transposable element. Plant Journal, 1995, 7, 677-685.	5.7	53
25	Genetic Control and Evolution of Anthocyanin Methylation Â. Plant Physiology, 2014, 165, 962-977.	4.8	45
26	Evolution of tonoplast Pâ€ <scp>ATP</scp> ase transporters involved in vacuolar acidification. New Phytologist, 2016, 211, 1092-1107.	7.3	37
27	The maize zein gene zE19 contains two distinct promoters which are independently activated in endosperm and anthers of transgenic Petunia plants. Plant Molecular Biology, 1990, 15, 81-93.	3.9	35
28	Revealing impaired pathways in the <i>an11</i> mutant by highâ€throughput characterization of <i>Petunia axillaris</i> and <i>Petunia inflata</i> transcriptomes. Plant Journal, 2011, 68, 11-27.	5.7	35
29	Two <i>Silene vulgaris</i> copper transporters residing in different cellular compartments confer copper hypertolerance by distinct mechanisms when expressed in <i>Arabidopsis thaliana</i> New Phytologist, 2017, 215, 1102-1114.	7.3	32
30	Identification and functional analysis of three new anthocyanin R2R3â€∢scp>MYB genes in ⟨i>Petunia. Plant Direct, 2019, 3, e00114.	1.9	32
31	The Genetics of Flower Color. , 2009, , 269-299.		27
32	Alteration of flavonoid pigmentation patterns during domestication of food crops. Journal of Experimental Botany, 2019, 70, 3719-3735.	4.8	27
33	A Study on the Possible Role of Auxin in Potato «Hairy Root» Tissues. Journal of Plant Physiology, 1986, 123, 143-149.	3.5	26
34	A Tonoplast P3B-ATPase Mediates Fusion of Two Types of Vacuoles in Petal Cells. Cell Reports, 2017, 19, 2413-2422.	6.4	23
35	Transgenes and protein localization: myths and legends. Trends in Plant Science, 2013, 18, 473-476.	8.8	20
36	Proteomics of red and white corolla limbs in petunia reveals a novel function of the anthocyanin regulator ANTHOCYANIN1 in determining flower longevity. Journal of Proteomics, 2016, 131, 38-47.	2.4	18

#	Article	lF	CITATIONS
37	Chalcone Synthase Promoters in Petunia Are Active in Pigmented and Unpigmented Cell Types. Plant Cell, 1990, 2, 379.	6.6	11
38	<i>Agrobacterium</i> -mediated transient expression of vacuolar GFPs in <i>Petunia</i> leaves and petals. Plant Biosystems, 2008, 142, 343-347.	1.6	11
39	anthocyanin1 of Petunia Encodes a Basic Helix-Loop-Helix Protein That Directly Activates Transcription of Structural Anthocyanin Genes. Plant Cell, 2000, 12, 1619.	6.6	9
40	An ancient RAB5 governs the formation of additional vacuoles and cell shape in petunia petals. Cell Reports, 2021, 36, 109749.	6.4	6
41	Modifying Anthocyanins Biosynthesis in Tomato Hairy Roots: A Test Bed for Plant Resistance to lonizing Radiation and Antioxidant Properties in Space. Frontiers in Plant Science, 2022, 13, 830931.	3.6	6