
N-J Schlegel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1454113/publications.pdf Version: 2024-02-01

N-I SCHLECEL

#	Article	lF	CITATIONS
1	Projected land ice contributions to twenty-first-century sea level rise. Nature, 2021, 593, 74-82.	27.8	200
2	ISMIP6 Antarctica: a multi-model ensemble of the Antarctic ice sheet evolution over the 21st century. Cryosphere, 2020, 14, 3033-3070.	3.9	198
3	The future sea-level contribution of the Greenland ice sheet: a multi-model ensemble study of ISMIP6. Cryosphere, 2020, 14, 3071-3096.	3.9	144
4	Projecting Antarctica's contribution to future sea level rise from basal ice shelf melt using linear response functions of 16 ice sheet models (LARMIP-2). Earth System Dynamics, 2020, 11, 35-76.	7.1	92
5	Design and results of the ice sheet model initialisation experiments initMIP-Greenland: an ISMIP6 intercomparison. Cryosphere, 2018, 12, 1433-1460.	3.9	89
6	Understanding of Contemporary Regional Seaâ€Level Change and the Implications for the Future. Reviews of Geophysics, 2020, 58, e2019RG000672.	23.0	74
7	initMIP-Antarctica: an ice sheet model initialization experiment of ISMIP6. Cryosphere, 2019, 13, 1441-1471.	3.9	69
8	Slowdown in Antarctic mass loss from solid Earth and sea-level feedbacks. Science, 2019, 364, .	12.6	56
9	Inferred basal friction and surface mass balance of the Northeast Greenland Ice Stream using data assimilation of ICESat (Ice Cloud and land Elevation Satellite) surface altimetry and ISSM (Ice Sheet) Tj ETQq1 1	0.7 &9 314	rg ₿Ђ /Overl⊂
10	Rate of mass loss from the Greenland Ice Sheet will exceed Holocene values this century. Nature, 2020, 586, 70-74.	27.8	53
11	Exploration of Antarctic Ice Sheet 100-year contribution to sea level rise and associated model uncertainties using the ISSM framework. Cryosphere, 2018, 12, 3511-3534.	3.9	52
12	Future Sea Level Change Under Coupled Model Intercomparison Project Phase 5 and Phase 6 Scenarios From the Greenland and Antarctic Ice Sheets. Geophysical Research Letters, 2021, 48, e2020GL091741.	4.0	28
13	Ice discharge uncertainties in Northeast Greenland from boundary conditions and climate forcing of an ice flow model. Journal of Geophysical Research F: Earth Surface, 2015, 120, 29-54.	2.8	27
14	Decadalâ€scale sensitivity of Northeast Greenland ice flow to errors in surface mass balance using ISSM. Journal of Geophysical Research F: Earth Surface, 2013, 118, 667-680.	2.8	23
15	The impact of model resolution on the simulated Holocene retreat of the southwestern Greenland ice sheet using the Ice Sheet System Model (ISSM). Cryosphere, 2019, 13, 879-893.	3.9	22
16	Exceptionally high heat flux needed to sustain the Northeast Greenland Ice Stream. Cryosphere, 2020, 14, 841-854.	3.9	22
17	Application of GRACE to the assessment of model-based estimates of monthly Greenland Ice Sheet mass balanceÂ(2003–2012). Cryosphere, 2016, 10, 1965-1989.	3.9	21
18	Sensitivity of the Northeast Greenland Ice Stream to Geothermal Heat. Journal of Geophysical Research F: Earth Surface, 2020, 125, e2019JF005252.	2.8	19

N-J SCHLEGEL

#	Article	IF	CITATIONS
19	Implementation of higher-order vertical finite elements in ISSM v4.13 for improved ice sheet flow modeling over paleoclimate timescales. Geoscientific Model Development, 2018, 11, 1683-1694.	3.6	16
20	Greenland Ice Sheet seasonal and spatial mass variability from model simulations and GRACE (2003–2012). Cryosphere, 2016, 10, 1259-1277.	3.9	14
21	The Polar Radiant Energy in the Far Infrared Experiment: A New Perspective on Polar Longwave Energy Exchanges. Bulletin of the American Meteorological Society, 2021, 102, E1431-E1449.	3.3	14
22	Simulating ice thickness and velocity evolution of Upernavik IsstrÃ,m 1849–2012 by forcing prescribed terminus positions in ISSM. Cryosphere, 2018, 12, 1511-1522.	3.9	13
23	Carbon Dioxide Ice Glaciers at the South Pole of Mars. Journal of Geophysical Research E: Planets, 2022, 127, .	3.6	10
24	Quantification of Surface Forcing Requirements for a Greenland Ice Sheet Model Using Uncertainty Analyses. Geophysical Research Letters, 2019, 46, 9700-9709.	4.0	6
25	On ISSM and leveraging the Cloud towards faster quantification of the uncertainty in ice-sheet mass balance projections. Computers and Geosciences, 2016, 96, 193-201.	4.2	5
26	ISSM-SLPS: geodetically compliant Sea-Level Projection System for the Ice-sheet and Sea-level System Model v4.17. Geoscientific Model Development, 2020, 13, 4925-4941.	3.6	4
27	Derivation of bedrock topography measurement requirements for the reduction of uncertainty in ice-sheet model projections of Thwaites Glacier. Cryosphere, 2022, 16, 761-778.	3.9	3
28	Simulating the Holocene deglaciation across a marine-terminating portion of southwestern Greenland in response to marine and atmospheric forcings. Cryosphere, 2022, 16, 2355-2372.	3.9	2